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THE HAUSDORFF DIMENSION DISTRIBUTION OF 
FINITE MEASURES IN EUCLIDEAN SPACE 

COLLEEN D. CUTLER 

1. Introduction. Let E be a Borel set of R .̂ The a-outer Hausdorff 
measure of E has been defined to be 

H"(E) = lirn H%{E) 

where 

H%E)= inf 2 (</(*,•))" 
UB^E 

and each Bt is a closed ball. d(Bt) denotes the diameter of Bt. 
It is easily seen that the same value Ha(E) is obtained if we consider 

coverings of E by open balls or by balls which may be either open or 
closed. 

By dim(£') we will mean the usual Hausdorff-Besicovitch dimension of 
E, where 

dim(E) = sup{a\Ha(E) = oo} = inf{a\Ha(E) = 0}. 

The following (see [7] ) are well known elementary properties of dim(E): 
(1) 0 S dim(E) ^ N. 
(2) if E is countable then dim(E) = 0 while if X(E) > 0 then 

dim(E) = N (where X denotes iV-dimensional Lebesgue measure, a 
notation to be maintained throughout this paper). 

(3) d i m ^ S En) = sup dim(£J . 

These properties will be used freely without comment in the following. 

Let ju be a probability measure on R^. In this paper we introduce the 
notion of the dimension distribution jx of fi. ji is a probability measure on 
[0, N] and the quantity jl(E) can be interpreted as the proportion of mass 
of JU supported strictly on sets with dimension lying in E. Associated with 
JU and JU is a real-valued random variable à (which we will call the 
dimension concentration map determined by n) and a family [\p(-, a) }, 
0 ^ a ^ N, of probability measures on R^ to be referred to as the 
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1460 COLLEEN D. CUTLER 

dimension derivative family of /i. This family is used to obtain an integral 
representation of JU, with respect to its dimension distribution (called the 
dimension disintegration formula) which leads to an intuitive and elegant 
proof of a dimension decomposition theorem first presented and proved in 
another manner by Rogers and Taylor, [8]. These results of course extend 
to finite Borel measures by using the appropriate normalizations. 

We also develop a characterization of dimension derivative families 
which turns out to be extremely useful in constructing measures /x having a 
desired dimension distribution. While it is easy to construct measures 
having an atomic dimension distribution (for example, an absolutely 
continuous measure will always have an atomic dimension distribution 
with all mass concentrated at the point N) the problem of building 
measures with diffuse dimension distributions is much more difficult. It 
was partially addressed by Rogers and Taylor in [8] who, without the 
actual concept of dimension distribution, constructed a specific measure 
which they demonstrated to have a "diffuse dimension spectrum"; that is, 
it had no mass concentrated on any set of any particular dimension. Their 
construction is lengthy and nontrivial and in this paper we prove a much 
stronger result via the simpler techniques of dimension derivatives, namely 
that to each probability distribution y on [0, N] there corresponds a 
probability measure /x on R^ satisfying (i = y. Furthermore the measure 
ju, is constructed explicitly as an integral with respect to y. Extensions of 
results due to Billingsley [1, 2, 3] are employed in the proof. 

In the final section of the paper the same techniques of Billingsley are 
used to develop an alternative characterization of the dimension 
concentration map a; this leads to a more tractable definition of \x which 
we expect will prove useful in the statistical estimation of \x for 
high-dimensional spatially-distributed data. We connect these results with 
work of Gâcs [5] who defined a numerical quantity called the Hausdorff 
dimension of a probability measure and examined its relationship to 
Renyi dimension and entropy. We see that in fact Gacs' number is 
precisely the mean of the dimension distribution. 

By &(RN) and â»( [0, TV] ) we will mean the Borel sets of R^ and [0, N] 
respectively. 

2. Dimension distributions and derivative families. Let ti be a finite Borel 
measure on RN. For each a e [0, N] define the set function fia on 
ât(RN) by 

ILa(B) = sup ii(B n D) 

where D is always assumed to be a Borel set. Clearly 

tia(B) ^ H(B) ^ KB) 

whenever a ^ ft and if dim(i?) ^ a then fia(B) = n(B). 
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LEMMA 2.1. jû  is a measure supported on a set Da satisfying dim(Z)a) ^ a 
and can be expressed as 

pa(B) = ix(B n Da). 

Proof. Countable subadditivity of fia is obvious. To verify finite 
superadditivity let Bx and B2 be disjoint Borel sets and let e > 0. Then 
there exist Dx and D2 with dim(Z)j) ^ a, dim(D2) = a, such that 

li(Bx n Dx) ^ ixa(B) - c/2 and 

H(B2 H £2) ^ /xa(*2) - c/2. 

Letting D* = Z)j U Z>2
 t n e n dim(Z>*) =• « and we have 

tia(Bx U £2) = sup /x( (Bx U £2) D Z>) 
dim(D)^a 

= sup fi(Bx n D) + ii(B2 n /)) 
dim(Z))^« 

^ K^i n D*) + \i(B2 n />*) 

^ lia{Bx) + jia(£2) - €. 

Thus we conclude /xa is a measure and since 

ft/R") = sup /*(£>) 
dim(Z))^a 

there exists a sequence {Z>„}^li of sets with dim(Z>„) ^ a such that 

lia(R
N) = lim juODJ. 

Without loss of generality we can choose Dn Q Dn + X. Let 

OO 

* « - „y> ^ 

Then 

dim(Da) ^ a and Ma(R") = ix(Da) = ^(DJ. 

Thus Da supports fia and we obtain 

lia{B) = ixa(B n Z)a) = ix(B n Z)a). 

The quantity na(B) represents the amount of ju-mass of B which is 
concentrated on sets of dimension not exceeding a. The set Da will be 
called an a-support of \i and is obviously not unique. 

A family {Da}, 0 ^ a ^ N, will be called an a-support chain of ju if, for 
each a, Z>a is an a-support of ju and Da Q Dp whenever a ^ ft. 

LEMMA 2.2. An a-support chain of /x always exists. 

Proof. For each rational q e [0, TV] let E be a #-support of [x. Note then 
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that E supports jua for all a ^ q. Let 

E* = U Ea, 

where q' is rational and define 

D = n F* 
V« qua h* 

It follows that {Da}, 0 ^ a ^ TV, is an «-support chain of /x. 

If {Da)a is an a-support chain of ju we will let 

D~ = u Do and D + = n Do. 
a (3<a P a P>a P 

The chain will be said to be right-continuous if 

A* = Da f ° r e a c n a-

Right-continuous versions exist as it is easily seen that {D^}a is always a 
right-continuous a-support chain. 

LEMMA 2.3. fiJR ) is an increasing right-continuous function of a. 

Proof. Let {Da}a be an a-support chain of ju,. Then 

lim+ iia(R
N) = lim /x(Da) = / x ( < ) = /^fl*")-

Thus jUa(R^) is the distribution function of a finite measure fi defined on 
the Borel sets of [0, N] via the relation 

k [0, a] ) = /ia(R"). 

Note the total mass of JU, is 

ii([09 N]) = pN(JlN) = /i(R"). 

We will refer to /i as the dimension measure of fi and to the normalized 
quantity 

as the dimension distribution of fi. 

Remark. Lemma 2.3 also holds true when R^ is replaced by an arbitrary 
Borel set B, enabling us to define (iB, the dimension measure of /A at B, 
by 

A«( [0, a] ) = na(B). 

We will see that the measures jiB also arise naturally in yet another way. 

For the remainder of this section we will for convenience assume that n 
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is a probability measure. Let {Da}a be some «-support chain of JU, and 
let 

D° = D + \ D " 

Note the family {D^}a partitions DN. Define the map 

a:DN -> [0, N] 

by 

à(x) = inf{a|x Œ Da}. 

It is easily seen that 

{x\à(x) § «} = D + 

while 

{x\à(x) = a} = Z>°. 

As ^(Z)^) = 1 it follows that à is /A-a.e. defined on R^ and thus may be 
regarded as a random variable from the probability space (R^, &(RN), ju) 
into [0, N]. 

Part (ii) of the following theorem shows that, up to a set of /i-measure 
zero, the definition of a does not depend on the choice of «-support chain 
for JU. Thus à is /x-a.e. uniquely defined and will be called the dimension 
concentration map determined by \i. This enables us to associate a 
dimensional number a(x) with each point x. In Section 5 we develop an 
alternate characterization of a(x) which clarifies the meaning of this 
dimensional number in terms of the behaviour of \i in neighbourhoods 
of x. 

THEOREM 2.1. (i) The random variable à has distribution jion[Q, N]. That 
. A A - l 

is, ji = fia 
(ii) If {Da}a and {Ea}a are two a-support chains of \i with 

àD(x) = inf{a|jc e Da} and 

aE(x) = mf{a\x e EJ 

then aD = aE /x-a.e. Equivalently, 

J U (D°akE0
a)) = 0. 

Proof (i) This is trivial as 

tA-\[0,a]) = v({x\&(x) ^a}) 

= /x(Z)a
+) = £( [0, a] ). 

(ii) To prove (ii) we first note that {Ea Pi Da}a is also an a-support 
chain of JU. Hence 
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K {x\aE(x) ^ a and àD(x) S a) ) = /xCE+ n Z>+) 

- A( [0, a] ) 

= K WM*) = «} )• 
Thus, for each a, 

jit( {jc|a£(x) ^ a and aD(x) > a} ) = 0. 

As 

{x\aD(x) > aE(x) } = G U {x\aE(x) ë 4 and «^(x) > #}> 

where g is rational, it then follows from symmetry that 

K {x\aD(x) ¥* aE(x) } ) = 0. 

Noting that 

O^JSN (D°aAEl) = {x\àD(x) * àE(x) } 

the proof is complete. 

We now wish to develop the notion of the dimension derivative family 
of /x. For convenience let x denote the identity map on R . Thus, 
considered as a random vector on (R^, &(RN), ju), x has distribution ju. 
Let ]1 denote the joint distribution of (Je, à) on the product space 
R^ X [0, N]. That is, 

£(G) = /i( {JC| (JC, a(x) ) G G} ) for each G G &(RN X [0, N] ). 

P 
that 
For product sets B X E with B e ^ ( R * ) and E <= ^ ( [0, TV] ) we note 

Ji(B X E) = ix{B H a *(£) ). 

In particular, 

]l(B X [0, a] ) = ix(B O a _ 1 ( [0, a] ) ) 

= MB n Z)a
+) = jua(i?) = £*( [0, a] ) 

where JU,5 is defined as in the remark following Lemma 2.3. Thus 

]KB X E) = iiB{E) 

and so the measures (iB occur naturally as the partial second marginals of 
/I. Clearly JU and (i are, respectively, the first and second marginals of /I. 

The conditional distributions of Jc given a = a consist of a family of 
probability measures on R^ which we will call the dimension derivative 
family of ji. Of less interest are the conditional distributions of à given 
x = x; since x uniquely determines à these are simply point masses 
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which we will refer to as the dimension concentration family of /x. These 
definitions are included in Theorem 2.2. 

Given a point x, by 8X we will mean the unit mass (or Dirac measure) 
at x. That is, 

{J **<*>= 1A X
X%B. 

This notation will be maintained throughout the paper. 

THEOREM 2.2. Let ix be a probability measure on the Bore I sets of RN. 
(i) There exists a family {\p(-, a) }, 0 ^ a = N, of probability measures on 

@(RN) such that 

V(B X E) = jf KB, a)Hda) 

for each B <E ^ ( R * ) , E <E &( [0, TV] ). 
The family {t//(*> a) }, 0 = a ~ JV, zs unique up to an a-set of jx-measure 

zero and will be called the dimension derivative family of \i. 
(ii) There exists a family {TJ(-, JC) }, JC G R^, of probability measures on 

âS( [0, N] ) such that 

]i(B X E) = JB V(E, x)ti(dx) 

for each B <= &(RN\ E e âS{ [0, tf ] ). 
The family {T](-, X ) } , X e R , w unique up to an x-set of fi-measure zero 

and will be called the dimension concentration family of \L Furthermore 

rj(-, x) = 8&(x) (•) ^-a.e. 

Proof. It is well known that a.e.-unique regular conditional distributions 
exist for random vectors defined on Euclidean space. (See, for example, 
[6], (CDX) and (CZ)2), p. 30.) Thus we set 

iK-, a) = /i(l« = a) 

the conditional distribution of x given a = a, and 

T](-, x) = /ï(-|x = x) 

the conditional distribution of à given x = x. Noting that 

KB XE) = IL(B H â " 1 ^ ) ) = j B ôà{x)(EMdx) 

we conclude from uniqueness that 

TJ(-, x) = 8&{x) (•) M.a.e. 

The following theorem lists the basic properties of dimension derivative 
families. Note that part (iii), the dimension disintegration formula, 
provides a representation of JU as an integral with respect to its dimension 
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measure (L. This representation will be used in obtaining the dimen
sion decomposition theorem of Section 3. 

THEOREM 2.3. Let {i//(-, a) }, 0 = a = N, be the dimension derivative 
family of a probability measure /x on R^. Let {DJ, 0 ^ a ^ N, denote any 
a-support chain of fi. 

(i) For every B e &(RN), 

MP* 0 l(dim(5),AT] = 0 A-a.e., 

where \^(B, •) |(dim(fl),An denotes the restriction of the function \p(B, •) to //ze 
interval (dim(£), N]. 

(ii) For each a 

*KA*> 0 l[o,«] = l A-a.e. 

a«J m fact the stronger result 

£( {a\WD°a, a) * 1}) = 0 

/zo/ds. TTza/ is, for (i-almost all a, i//(-, a) zs supported on Da. 
(iii) {Dimension Disintegration Formula): For each 0 = a = N we 

have 

"*<•> - j L ^ *>fo#> 
and in particular 

P/-00/. (i) Noting that 

KB X [0, dim(5) ] ) = K ^ n ^ ( f i , ) 

= K 5 ) = jù(5 X [0, TV] ) 

we obtain 

/o,dim(B)] « * « ^ > = J L **•a)A(ja) 

and thus 

*KB> ') l(dim(5),̂ ] = ° A-a.e. 

(ii) From (i) it follows that for every rational q 

Letting 

^ = {<x\xP(Dq, a) = 0 for all 4 < «}, 

then 
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fi([0,N]\A) = 0 

and for each « e ^ w e have 

KD~, a) = lim iKAr «) = 0-
q—>a 

Thus \p{D~, a) = 0 for /l-almost all a. 
To show *p(Da , a) = 1 for /i-almost all a choose a0 e [0, iV] arbitrarily. 

Then 

A([o, /?]) = /x(R^ x [0, p]) = K^s x [0, fl) 

^ /Z(i)ao X [0, fi] ) whenever £ S a0 

^ £( [0, fl ). 

Hence 

ft [0, p\ ) = jfficx»̂  x [0, B] ) = jf0iffl «KAv «)£W 

for every ft ^ a0 from which we conclude 

*KAv ") l[0,«o] = l A"a-e-

Letting 

A* = {cc\^(Dq, a) = 1 for all q > a) 

where q is rational, it follows that 

fr[0,N]\A*) = 0. 

Furthermore for each a G ^ * we have 

KD+, a) = lim ,KAr «) = *• 

Thus iKA* , a) = 1 for /x-almost all a and hence 

B° = D+\D~ 

supports *//(-, a) for /i-almost all a. 
(iii) For each a e [0, N] and 5 G ^ (R*) we have 

MB) = £(5 X [0, a] ) = jf0(a] MB, B)frdB). 

Since JU^ = ju, we obtain 

^ 5 ) = X.ATJ ^ ' ^ ^ -
The following is a useful characterization of dimension derivative 

families which provides a method of constructing a measure having a 
desired dimension distribution. This technique will be exploited in the 
proof of the existence theorem of Section 4. 

https://doi.org/10.4153/CJM-1986-071-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-071-9


1468 COLLEEN D. CUTLER 

THEOREM 2.4. A family {\p(-, a) }, 0 ^ a ^ N, of probability measures 
defined over the Borel sets of R is the dimension derivative family of some 
probability measure on RN if and only if the following conditions hold: 

1. \^(B, •) is a Borel measurable function of a for each B e ^ ( R ). 
2. There exists a probability measure y on the Borel sets of [0, N] such 

that 

(i) xP(B, •) \{dim(B),N] = 0 y-a.e. 

for each B e # (R*) 
(ii) for each a e [0, JV] //zere aw/5 a set Da satisfying dim(Z>a) ^ a such 

that 

MPa> ') l[o,«] = l ?-a.e. 

7/" these conditions are met then {ip(-, a) }, 0 ^ a ^ TV, /s z7ze dimension 
derivative family of the probability measure /x defined by 

JU(5) = LN] ^B> «W^) 
and furthermore jl = y. 

Proof Necessity of these conditions is immediate by applying Theorem 
2.3 with y = /x and {£>a}, 0 ^ a ta TV, any a-support chain of ju,. 

To show sufficiency let {;//(•, a) }, 0 ^ a ^ TV, be a family of prob
ability measures satisfying the conditions of the theorem. Let y and {Da}, 
0 ^ a ^ N, be as in condition 2. Define /x by 

^B) = X.M ^a)y(ja)-
Clearly /x is a probability measure. Now for each B e ^ ( R ^ ) and 
a e [0, TV] we must have, by the definition of /x and conditions 2 (i) 
and 2 (ii): 

KB O Da) = j j ^ W H /) a , j8)y(4B) 

But if dim(i?) ^ a condition 2 (i) also implies 

^(i?) = jfo,«] MB, P)y(dP). 
Hence \i{B) = \i(B n Da) whenever dim(2?) ^ a which clearly implies 
Da is in fact an a-support of /x. Thus we obtain for each B e <%(JLN) 

and a <= [0, N}\ 

]i(B X [0, a] ) = KB n Da) 

by definition of /x 
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while 

£( [0, a] ) = jx(RN X [0, «] ) = J[0a] MRN, firtdfi = y( [0, a] ) 

and so /I = y. Hence 

JKB X [0, a] ) = j [ 0 a ] KB, P)k<tP) 

and by uniqueness we conclude {t//(-, a) }, 0 ^ a ^ TV, is the dimension 
derivative family of /A. 

Remark. If we additionally assume the family {i)a}, 0 ^ a ^ TV, in 2 (ii) 
is nested it is tempting to try to replace 2 (i) by 

2 (i)' ftZ)a, •) |(a>Af] = 0 Y-a.e. 

In fact it is easy to construct counterexamples showing that 2 (i)' is not 
sufficient. 

Note that if {\p(-, a) }; 0 ^ a ^ TV, and y satisfy the conditions of 
Theorem 2.4 and v is some probability measure on [0, N] such that i^« y 
then the conditions of the theorem are also met with v in place of y. Hence 
{ (̂•, a) }, 0 ^ a ^ JV, is also the dimension derivative family of the 
measure JU* defined by 

Thus, while a given measure fi determines its dimension derivative family 
ju-a.e. uniquely, any particular dimension derivative family gives rise to an 
equivalence class of measures sharing that derivative family but possessing 
distinct dimension distributions. 

3. The dimension decomposition of measures. In the previous section we 
restricted /x to be a probability measure only for the convenience of using 
the joint and conditional distributions of certain random variables. It is 
clear that the dimension concentration map à is /i-a.e. uniquely defined 
even when /A(R^) ^ 1. The measure (i is simply defined via the relation 

Ji{B X E) = fi(B n a~l(E)). 

As a result we have the following linearity lemma (the proof is elementary 
and therefore omitted). 

LEMMA 3.1. (i) Let /i be a finite Borel measure on R^ and let c > 0. Then 
fi and c\x determine the same dimension concentration map /x-a.e. Further
more cjx = eft, and as a consequence 

(qx)B = c(LB for each B <E #(R*) . 
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(ii) Let JU, /ij, ju,2, . . . be finite Borel measures on R such that 

n 

and as a consequence 

n 

We now note that Theorem 2.2 holds true for any finite Borel measure ju. 
This can be seen by first applying Theorem 2.2 to the normalized measure 
v = fi/c (where c = KR^) ) and then noting that ]l = cv and (I = cv (from 
Lemma 3.1). Thus to each finite Borel measure ju, we can associate a 
dimension derivative family { (̂-, a) }, 0 ^ a ^ N, satisfying (i) of 
Theorem 2.2 and (i), (ii), (hi) of Theorem 2.3. If ii(RN) ¥= 1 it is perhaps 
more aesthetic to consider /I (and /x in the dimension disintegra
tion formula) as an integral with respect to the dimension distribution (x 
rather than the nonnormalized quantity j±. This is easily accomplished by 
modifying the total mass of the dimension derivative family, setting 

*//*(-, a) - o/<-, a) 

where c = fJL(RN). We will continue to present /X as an integral with respect 
to /I, however, as the linearity properties of (i simplify proofs and 
discussions. 

We now note that if JLI is a measure such that jl = 8a then this is 
equivalent to saying that fi can be supported on a set of dimension a but 
has no mass on any set of smaller dimension; in the terminology of Rogers 
and Taylor \x is of exact dimension a. Any measure with an atomic 
dimension distribution is simply a sum of such exact dimensional 
measures. In the following theorem we formalize the fact that any measure 
without a diffuse singular component necessarily has an atomic dimension 
distribution. The Cantor measure v defined over [0, 1] is an easy example 
of a diffuse singular measure with an atomic dimension distribution; in 
fact 

v = filog2-
log3 

THEOREM 3.1. Let /x be a finite Borel measure on R having no diffuse 
singular component. Then 

A = ,xa(R
N)80 + ^ac(R

N)SN 

where \xa and \xac are respectively the atomic and absolutely continuous 
components of \i. 
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Proof. Since \y,a is atomic it can be supported on a countable set and 
thus 

£a = »a(R
N)80. 

If i*>ac(E) > 0 then X(E) > 0 and hence [xac has no mass on any set of 
dimension less than N. Therefore 

he = Vac(RN)8N' 

Applying (ii) of Lemma 3.1 we conclude 

A = pa(R
N)80 + ,xac(R

N)8N. 

We now present our version of Rogers and Taylor's dimension 
decomposition theorem for measures. 

THEOREM 3.2. Let /x be a finite Borel measure on R . Then there exists a 
unique countable set A Q [0, N] and unique finite measures jua, a e A, and 
fx such that na is of exact dimension a, ju has a diffuse dimension measure, 
and 

M = Ei»° + / 

Furthermore A is precisely the set of atoms of jl and 

!?(•) = £({«}W(% «) 

where {ip(-, a) }, 0 = a = N, is the dimension derivative family of fi. 

Proof Let 

/A-) = £({«}>W% «) 

for each atom a of /L AS /t( {a} ) > 0 it follows from (i) of Theorem 2.3 
that \\J(B, a) = 0 whenever dim(i?) < a while (ii) of Theorem 2.3 im
plies \p(-, a) is supported on Da (where Da is any a-support of JU). Hence 
\p(-, a) = 8a and so jua is of exact dimension a. Let A denote the set of 
atoms of jL By the dimension disintegration formula we have 

= 2 £({«}>K-, «) + jf0JV]V4 «K-, /0A<48) 
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Setting 

we thus have 

a^A 

To show ]itJ is diffuse first note that 

jr = A({«})5«. 

Applying Lemma 3.1 we obtain 

A ^ 1 A(X I A j 

a(=A 

= 2 A({«})«a + A" 

As the atomic component of /x must be 

it follows that /i is diffuse. Thus we have the desired decomposition. We 
need only verify uniqueness. Suppose 

is another such decomposition for JU,. Then for each B e &(RN) we have 

h = 2 7a(B)8a + yd
B = 2 Ha(B)8a + 4. 

a^A' a^A 

Taking B = RN and equating atomic and diffuse components we 
immediately obta in^ ' = A. Then noting that we must have ya(B) = na(B) 
for each 2? we conclude ya = /xa for each a e A. 

Remark. A version of Theorem 3.2 can be extended to finite signed 
measures (Rogers and Taylor originally stated the decomposition theorem 
for this case). If v is a finite signed Borel measure on RA let \v\ denote the 
total variation of v. It can be shown that there exists a family {\p(-, a) }, 
0 ^ a ^ TV, of finite signed measures on RN such that 

*B) = Lm ̂  a) ̂  (da) 

where \v\ denotes the dimension measure of |i>| and { \\p\ (•, a) }, 
0 ^ a ^ N, is the dimension derivative family of \v\. We will call 
{\p(-, a) }, 0 ^ a ^ N, the dimension derivative family of v. Applying this 
result and Theorem 3.2 we can obtain a unique decomposition 
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v= 2 Pa + vd 

where \va\ has exact dimension a,\v \ has a diffuse dimension measure, and 
A is the set of atoms of \v\. Furthermore the dimension decomposition of 
IH is related to that of v by 

\v\ = 2 \va\ + \A 

(that is, \v\" = \va\ and \v\d = \vd\ ). 

4. The existence theorem. The main goal of this section is to prove that 
every probability distribution y on [0, N] is the dimension distribution of 
some measure on R^. This will clearly be accomplished if we exhibit the 
existence of a complete dimension derivative family, where we define a 
collection {t//(-, a) }, 0 ^ a ^ N, of probability measures on R^ to be 
a complete dimension derivative family if, for every probability distri
bution y on [0, N], {i//(-, «) }« is the dimension derivative family of 
some measure /i satisfying /t = y. This implies for every choice of y, the 
measure 

*•> = J L «••a)y{da) 

satisfies jx = y. 
The following result describes the structure of such a family. It is not 

known whether condition 3 is necessary. 

THEOREM 4.1. A collection {i//(-, a) }, 0 ^ a ^ N, of probability measures 
on R will be a complete dimension derivative family if the following 
conditions hold: 

1. \p(B, •) is a Borel measurable function of a for each B e ^ ( R ). 

2. ^(-, a) = Safor each a. 

3. There exists a chain {Da}, 0 = a = N, of Borel sets satisfying 
dim(Z)a) = a and Da Q Dp whenever a < ft such that Da supports \p(-, a) 
for each a. 

Furthermore conditions 1 and 2 are also necessary. 

Proof. Sufficiency is immediate by noting that the conditions of 
Theorem 2.4 are met for any probability distribution y on [0, N\. 
Condition 1 is obviously necessary. To show the necessity of 2 fix 
a e [0, N] and take y = Sa. If { (̂-, ft) }^ is complete then the measure 

A A 

satisfies jx = 8a and hence \p(-, a) = Sa as claimed. 

Thus we wish to construct a family of measures satisfying the conditions 
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of Theorem 4.1. In order to do this we need to establish Theorems 4.2 and 
4.3 which are a generalization to TV dimensions of the one-dimensional 
results given by Billingsley in Theorem 14.1 of [3]. We note that while it is 
possible to arrive at Theorems 4.2 and 4.3 by reformulating the problem in 
terms of a finite state space stochastic process and applying Theorems 2.2 
and 2.4 of Billingsley [2] (see also [1] ) it is simpler and more coherent to 
develop the results directly using the methods of Billingsley in [3]. 

If r ^ 2 is a fixed positive integer then by an r-adic interval in [0, 1] we 
will mean an interval In of the form 

In = A / ( X 1 ' • • ' Xn) 

= I x €= [0, 1] 2 xr~J ^ x < 2 x.r~] 4- r~n } 

where n is a positive integer and the possible values of x- are 0, 1, . . . , 
r — 1. Equivalently x G Jn if and only if the first n terms of the 
terminating (if one exists) base r expansion of x coincide with 
* ] , . . . , Xn. 

An r-adic cube C in the unit cube [0, 1]^ will be a product of TV r-adic 
intervals of equal length, so there will exist n such that 

C = I\ X . . . X INn. 

If fi is a diffuse probability measure on the Borel sets of [0, 1]^ we define 
the set function L^ on the subsets of [0, 1]^ by 

L;(E) = lim Ll8(E) 

where 

L;8(E)= inf 2 ( K Q ) f 

KCk)^8 

and each Q is an r-adic cube. 
By a ju, — 8 covering of E we will mean a countable covering of E by 

Borel sets {Sk}k satisfying ii(Sk) ^ 8 for each k. Since /x is diffuse it 
follows that fi — 8 coverings of E by r-adic cubes exist for each 8 > 0. 

If a = 1 then 

L ^ ) = lim inf 2 K Q ) = /i*(£) 
8^0+ UCk^E 

KCk)^8 

where 

/i*(E) = inf 2 K Q ) 

is the outer measure of ju, constructed using the algebra of finite unions of 
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r-adic cubes. (Equality of L^ and ju* follows from the fact that any r-adic 
cube is the finite disjoint union of smaller cubes each having /x-mass not 
exceeding 8.) As a consequence Ll is finite. In a proof analogous to that 
for Hausdorff a-outer measures it can be shown that for each set E there 
exists a unique value a0 where 0 ^ a0 ^ 1 such that L^(E) = oo if 
a < a0 and L°^E) = 0 if a > a0. We define 

dim,, (E) = a0. 

If E is a Borel set then 

L\{E) = ju*(£) = /!(£) 

and so \i{E) > 0 implies 

dim^(E) = 1. 

It is also easily established that 

dim^ (U En) = sup dim^ (£„). 

(The one-dimensional analogue of this notion is developed in [3]; a 
somewhat different presentation in terms of stochastic processes is given 
in [2].) 

In order that the ratio of logarithms used below in Theorem 4.2 is 
always defined we adopt the following conventions. 

If 0 < a < 1 andO < b < 1 , then 

log a 

logO ~ 
log l _ 
logé 

log l _ 
logO 

0, 

logO _ 
log b 

log a 

log 1 " 

log 0 _ 

log l 
oo, 

logO log 1 : 1 
logO log l 

THEOREM 4.2. Let E Q [0, 1]' . Let ju and v be any two diffuse probability 
measures on the Borel sets of [0, 1] . For each x e [0, 1] let Cn(x) 
denote that unique r-adic cube of volume r~n which contains x. 

If 

E ç < x|lim mf = TJ t 
I „-»oo l o g K Q O ) ) ' 

then 

dim^ (E) g Tj dim„ (£). 

Proof It can be shown that Billingsley's proof for the one-dimensional 
case serves equally well in N dimensions. We present here a modified 
proof which is somewhat more compact. 
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If 77 = 0 the theorem is trivially true. Thus let TJ > 0. It is sufficient to 
show 

din\ (E) ^ £a whenever a > dim (E) and £ > - . 

If x <= E then there exists N(x) such that n ^ N(x) implies 

logv(C„(x))^UogtiCn(x)). 

Hence for n ^ N(x) we have 

v(Cn{x) )* â f<C„(x) ) 

and so 

v(Cn(x)fa ^ ^Cn{x)f. 

Therefore 
oo 

E= U Em 
m— 1 

where 
oo 

£ m = n {* e £|KC„(x))*a ë KC„(*))°}. 

Since 
dim„ (£) = sup dim„ (Em) 

m 

it is sufficient to prove 

dim, (EJ ^ Za. 

Let 8 > 0 and let {C^}^ be a ju — ô covering of Em by r-adic cubes. 
Without loss of generality we can assume Ck meets Em for each h and 
hence Ck = Cn(x) for some n and some x e £"m. If n ^ w then 
let Ck = Ck. If n < m then Q. is the finite disjoint union of no more 
than rmN subcubes of volume r~

mN. We will let {Ck:}- denote the collec
tion of those subcubes which also meet Em. (Hence each Ck- = Cm(x) for 
some x <= Em.) Then the collection {Di}i consisting of all Ck and Ckj is a 
JU — 8 covering of Em and 

(KA) fa = (KA) )a for each '• 
Thus {Di}l is also a v — 8l/* covering of Em and 

= 2 (KQ) )" + 2 (KCkJ) )
a 
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Hence 

L%^EJ â r^L^EJ. 

Letting 8 —» 0 + we conclude 

L*>(Em) ^ r^L^EJ. 

But 

a > dim^ (E) â dim^ (Em) 

so La^(Em) = 0 and hence L**(Em) = 0. Thus 

dim„ (Em) ^ fa. 

THEOREM 4.3. If\x and v are diffuse probability measures on [0, i f and 

f I logv(Cn(x)) \ 
E Q \ x\ lim - = V t 

I l„-*oo \0gfx(Cn(x)) J 
then dim^ (E) = j] dim„ (E). 

Proof The result follows by applying Theorem 4.2 then interchanging v 
and JLI and applying Theorem 4.2 again with 1/TJ in place of TJ. 

In order to apply Theorem 4.2 and 4.3 for our purpose we need to note 
the relationship between dimx (E) and dim(£"). In fact 

dimx (E) = dim(£) \N, 

simply a change of scale due to the fact that L% is calculated in terms of 
the Lebesgue measures of the members of the coverings while //** is 
calculated in terms of the diameters. It can be shown that using coverings 
by r-adic cubes or by balls does not affect the value obtained for the 
dimension. 

THEOREM 4.4. A complete dimension derivative family exists on R . 

Proof. We will construct a family {i//(-, a) }, 0 ^ a ^ N, on the unit cube 
[0, \]N. To each real number x e [0, 1] associate its terminating (if one 
exists) dyadic expansion 

oo 

x = 2 x{j)2-j 

where x(j) = 0 or 1. Let 
n 

sn(x) = 2 x(j). 
7 = 1 

For each 0 ^ p ^ - define the set M(p) in [0, \]N by 

https://doi.org/10.4153/CJM-1986-071-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-071-9


1478 COLLEEN D. CUTLER 

= | (*„...,*„ M(p) = \(xu...,x„) e [0, 1]' 
n—>oo n 

for each k = 1, . . . , Af I . 

Let 

The collection {M*(p) } , 0 ^ p ^ -, is a nested increasing family of 

sets; we will show shortly that 

dim(M*(/?)) = Nd(p) 

where 

p t o g ^ + d - ^ l o g ^ ) 
</(/>) = - — . 

log 2 

Let 

c„ = /; x ... x % 
be a dyadic cube of volume 2~nN. By definition 

Ik„ = Ik
n(x, . . . , xn) 

for some choice of xl9. . . , xn (which depends on k). We will let 

4 = sk
n(ù = 2 xj. 

For each 0 = /> â - let ju'' denote the N-dimensional product (Ber

noulli) measure on [0, 1] whose value over dyadic cubes is given by 

/ ( C „ ) = pP(l\ X . . . X IN
n) 

= ( / ( i - P)n'sh • • • ( / - ( I - P)"~^) 
N N 

2 sk
n „N- 2 sk„ 

-Pk-X 0 - / 0 M . 
It is well-known (and easily proved by applying the strong law of large 
numbers) that \ip is supported on M(p) and hence also on M*(/?). \iP is a 

diffuse singular measure for 0 < /? < - while ju° = <S0 and /x1/2 = À. 
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Note that if x e [0, 1]^ and Cn(x) is that unique dyadic cube of volume 
~n which contains x then 

log \ (C„(x) ) 

l o g / ( C „ ( x ) ) 

nN logy-J 

N , N \ 

2 s„(xk)logp + [nN - 2 s„(xk)) log(l - p) 

N\o%2  

2̂ iog(±)+ 2 [ i -^W-U 
k = \ n \p/ k = \ L n J \\ — p' 

If x G M(p) then 

lim n k = /? 

for each /: and so 

logX(Cw(x)) iVlog2 
lim 

Thus 

M(^)C {, g [0,l]^| lim ^ ^ ^ l / ^ ) } 
I ]n-*oologllP(Cn(x)) ) 

and applying Theorem 4.3 we conclude 

dimx (M(p) ) = </(/>) d i n y (M(p) ). 

As fxp(M(p) ) > 0 we have 

d iny (M( /> ) ) = 1 

and thus 

dim(M (/>) ) - AT dimx (M(p) ) - M/Q>). 

It is easily seen that if 0 ^ p' ^ p Ik - then 

/ l o g ^ + d - ^ l o g ^ ) 

<*(/>) ^ ~ 7—, — • 
log 2 
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Thus if x e M*(p) (and hence there exists// ta p such that 

lim '->&>=? 

for all k) we obtain 

H m logA(C„(x)) _ log 2 

»-» log /(c„(x)) / n .. ,.. / i ̂  
/,logUj+(l-^)log^---j 

g l/J(/>). 

Hence 

{̂  M*(p) Ç < x G [0, i f 
*->cx> log / A ^ C ^ x ) ) 

and from Theorem 4.2 we conclude 

dim(M*(/>) ) = N dimx (M*(p) ) 

^ M/(/>) d i n y (M*(p) ) = M/(/>). 

But also 

dim(M*(/?)) ^ M/(/>) 

since M*(p) D M(p). Thus 

dim(M*(/?)) = M/(/?). 

Furthermore if ju/̂ yl ) > 0 then 

/x^(^ n M(/?)) > 0 

and since 

A n M(/?) ç \ x G [0, i f 
„-*oo log / A C „ ( . x ) ) 

we conclude 

dim(^) ^ dim(/l n Af(/?) ) = Nd(p). 

Thus jit̂  has no mass on any set of dimension less than Nd(p) yet is 
supported on M*(p). Hence \ip is of exact dimension Nd{p)\ that 
is, letting d*(p) = Nd(p) we have 

A p o 

A1 ~ °d*(Py 

Noting that d* maps the interval 0, - onto [0, N] in a one-one 

strictly increasing continuous fashion we define the probability measures 
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iK% a) on [0, 1]* for 0 ^ a ^ N by 

A 

Note that \p(-, a) = 8a and t//(-, a) is supported on 

Da = M*((d*y\a)); 

the chain {Da}, 0 ta a ^ N, satisfies 3 of Theorem 4.1. It is also easily 
verified that \p(B, •) is a Borel measurable function of a by noting that 
yp(Cn, •) is in fact continuous for any dyadic cube Cn. 

From Theorem 4.1 we conclude {i//(% a) }, 0 ^ a ^ N, is a complete 
dimension derivative family. 

COROLLARY 4.4.1. (The Existence Theorem). Let y be any probability 
distribution on the Borel sets of [0, N]. Then there exists a prob
ability distribution ju defined over the Borel sets of the unit cube [0, 1 ] such 
that ju = y. 

Proof Let {\p(-, a) }, 0 ^ a ^ TV, be the complete dimension derivative 
family provided by Theorem 4.4. Define 

5. A characterization of the dimension concentration map. In this section 
we develop an alternative form of the dimension concentration map 
which clarifies the meaning of the dimensional number a(x) and the 
structure of «-supports. We use the following result, a version of Theorem 
2.1 in [2]. 

THEOREM 5.1. Let \x and v be two probability measures on [0, i f such that 
v is diffuse. Then 

dimifJliminf l0gKC" ( j c ) )ggl)gg, 
"V I I „^oo log v{Cn(x) ) J / 

where Cn(x) is the r-adic cube of volume r~" containing x. 

Proof. Let 
log ii(Cn(x) ) g g l 

*«r log KC„(X) ) y 

Let 8' > S and n0 any positive integer. Let # be the collection of r-adic 
cubes {Ck}k for which Ck = Cn(x) for some n è n0 and such that 

log K Q ) 

log p(Ck) 

As x e £ implies 

x lim inf 

< Ô'. 

inf l Q g K C " ( X ) ) < * 
^ 0 log KC„(*) ) 
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it follows that ^ is a covering of E. Furthermore as <& consists of r-adic 
cubes we can choose a subcollection céf of # consisting of disjoint cubes 
such that (€f covers E. We obtain 

2 v(Ckf < 2 KCk) = Ku ck) ^ l. 

It follows that, setting en = s\xp{v(C) \C = Cn for some n â n0} 

L% (E) ^ 1 

and as n0 was arbitrary we conclude 

4(E) ^ 1. 
Hence 

dim, (E) ^ 8'. 

Since this holds for each 8' > 8 we have 

dim, (£) ^ S. 

THEOREM 5.2. Le/ ju Z?e a probability measure on the Borel sets of[0, \]N 

and let a denote the dimension concentration map determined by \i. Then 

a(x) = TV hm mi /x-a.e. 
«->oo log\(Cn(x)) 

Proof. Let 

M„ = 
i L r • flogKCw(x)) < 1 
\ JC L/V hm m i i ia|. 
I ' „->oo l o g \ ( C „ ( x ) ) ) 

We will show that {Ma}, 0 ^ a ^ ]V, is a right-continuous a-support 
chain of /x. From the definition of à and (ii) of Theorem 2.1 the result will 
then follow. 

Clearly {Ma}a is a nested chain and Ma = M^. From Theorem 5.1 we 
also have 

dimx (Ma) ^ a/N 

and hence 

dim(Ma) ^ a. 

Thus we need only show that Ma supports /xa. If jia = 0, the zero measure, 
there is nothing to prove. Therefore assume 

M [0, I f ) > 0 
and let 

logKC, 
A^ = \x\N liminf • 

log \(C, 
' » ( * ) ) - > p \ 
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As 

A^tfO, lf\Ma as /? -» « + 

we will show that 

Ha( [0, lJ^XM^) = 0 

by proving /xa(M^) = 0 for fi > a and hence Ma will be a support of 

Let Z>a be any a-support of ju. If ju,a(M^) > 0 for some fi > a then 

/ia(JW*) = K ^ n Da) > 0. 

Thus 

d i m ^ M ^ n Da) = 1. 

But 

M ^ n D a ç ( J l i m i n f l 0 g p ( C " ( x ) ) i= /J/Jv) 
I I n^oo log\(Cn(x)) J 

and so Theorem 4.2 implies 

dim(M^ n Da) = N dimx (M^ n Da) ^ fi dim^ (A/^ n Da) = fi 

which contradicts the fact that 

dim(M^ n Da) ^ «. 

Thus we must have 

Ha(M°) = 0 for every /? > a. 

Remark. In [5] Gâcs considered the function 

f{x) = l i m i n f l08MC.(x)) 
*-*x> log |C„(x) I 

where C^(JC) is a dyadic cube and \Cn(x) \ = N2~n is the sum of edges of 
Cn(x). Given a probability measure ju he defined a numerical quantity 
(which we will denote by d(fx) ) called the Hausdorff dimension of /x; he 
demonstrated that 

JR" d{l*) = JRN f{x)ii(dx) 

and for this reason called/(jc) the dimension density of /x. In fact it is easy 

to see that/(jc) = a{x) and since ju, = fià~ we obtain 

d^ = JRN à(xMdx) = J[0,N]
 a^do^ 

which is simply the mean of ju. We prefer the term dimension 
concentration map rather than density as in this context the latter term 
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conveys the erroneous impression that a is the Radon-Nikodym derivative 
of JU with respect to Lebesgue measure. 

Note that we can now express 

\ \ ' «-̂ oo log X(Cn(x) ) J ' 

which is somewhat more tractable than the original supremum definition. 
In [4] Cutler has discussed the measurability of the map /x —> jl considered 
as a function on the space of measures under the topology of weak 
convergence; some applications to measure-valued stochastic processes 
are given. 
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