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Abstract. To any k-dimensional subspace of Q" one can naturally associate a point in the
Grassmannian Gry, x (R) and two shapes of lattices of rank k and n — k, respectively. These
lattices originate by intersecting the k-dimensional subspace and its orthogonal with the
lattice Z". Using unipotent dynamics, we prove simultaneous equidistribution of all of
these objects under congruence conditions when (k, n) # (2, 4).

Key words: quadratic forms, shapes of lattices, unipotent dynamics, equidistribution
2020 Mathematics Subject Classification: 37A17 (Primary); 11E99, 11H99 (Secondary)

1. Introduction
In this paper, we study the joint distribution of rational subspaces of a fixed discriminant
(also called height by some authors) and of two naturally associated lattices: the integer
lattice in the subspace and in its orthogonal complement together with some natural
refinements.

Let Q be a positive definite integral quadratic form on Q" and let L € Gr, x(Q) be
a rational k-dimensional subspace. Here, Gry, ;. is the projective variety of k-dimensional
subspaces of the n-dimensional linear space. The discriminant discg (L) of L with respect
to Q is the discriminant of the restriction of Q to the integer lattice L(Z) = LNZ". As a
formula, this is

(vi,vi)g -+ (v, vk)o
discp(L) = det )
(v, v1)o -+ (Uk, Vi)
where (-, )¢ is the bilinear form induced by Q and vy, ..., v is a basis of L(Z). We

consider the finite set

Hyy (D) = {L € Gr, x(Q) : disco(L) = D).

Check f
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2 M. Aka et al

We attach to any L € Gr,, 4 (Q) the restriction of Q to L(Z) represented in a basis.
This is an integral quadratic form in k-variables which is well defined up to a change of
basis, i.e. (in the language of quadratic forms), up to equivalence. In particular, it defines a
well-defined point, which is also called the shape of L(Z),

[L(Z)] € Sk,

where Sy is the space of positive definite real quadratic forms on R” up to similarity (i.e.
up to equivalence and positive multiples). We may identify Sy as

Sk = 0, (®) \PCLAR)/pGL, ()

which, in particular, equips S with a probability measure mg, arising from the Haar
measures of the groups on the right. We will simply call m g, the Haar probability measure
on S;.

Analogously, one may define the point [L*(Z)] € S,_x, where Lt is the orthog-
onal complement of L with respect to Q. Overall, we obtain a triple of points
(L, [L(Z)], [L(Z)]). The goal of this work is to study the distribution of these points in
Gry  (R) x Sg x Sy as discg (L) grows. In what follows, Gry, x(R) is given the unique
SOg (R)-invariant probability measure mg, , (R)-

Conjecture 1.1. Let k, n € N be integers such that k > 2 and n — k > 2. Then the sets
(L. [L@)). [L*@) : L € H (D)}

equidistribute (implicitly, we mean with respect to the product ‘Haar’ measure, i.e. the
product measure mgr, ,(R) @ ms, @ ms, ) in Gryx (R) x S x Sy as D — oo along
D e N satisfying Hy' (D) # 0.

Remark 1.2. There exists an analogous conjecture for k = 1, n — k > 2, where one only
considers the pairs (L, [L(Z)]) (and, similarly, for n — k = 1, k > 2). This has been
studied extensively by the first named author with Einsiedler and Shapira in [AES16a,
AES16b], where the conjecture is settled for n > 6 (i.e. n — k > 5), for n = 4, 5 under a
weak congruence condition and for n = 3 under a stronger congruence condition on D.
We remark that, as it is written, [AES16a, AES16b] treat only the case where Q is the
sum of squares (which we will sometimes call the standard form), but the arguments carry
over without major difficulties. Using effective methods from homogeneous dynamics,
Einsiedler, Riithr and Wirth [ERW19] proved an effective version of the conjecture when
n = 4,5, removing, in particular, all congruence conditions. The case n = 3 relies on a
deep classification theorem for joinings by Einsiedler and Lindenstrauss [EL19]; effective
versions of this theorem are well out of reach of current methods from homogeneous
dynamics. Assuming the generalized Riemann hypothesis, Blomer and Brumley [BB20]
recently removed the congruence condition in [AES16b].

Remark 1.3. The case k =2 and n — k = 2 of Conjecture 1.1 was settled in [AEW22]
by the first and the last named author together with Einsiedler under a (relatively strong)
congruence condition when Q is the sum of four squares. The result in the paper is, in
fact, stronger as it considers two additional shapes that one can naturally associate to L,
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essentially, thanks to the local isomorphism between SO4(R) and SO3(R) x SO3(R). The
arguments carry over without major difficulties to consider norm forms on quaternion
algebras (equivalently, the forms Q for which disc(Q) is a square in Q*). In [AW21],
the first and last named author extend the results of [AEW22] to treat arbitrary quadratic
forms.

In this article, we prove Conjecture 1.l in the remaining cases, partially under
congruence conditions. For integers D, £, we write D' for the £-power free part of D,
i.e. the largest divisor d of D with a® { d for any a > 1.

THEOREM 1.4. (Equidistribution of subspaces and shapes) Let2 < k < n be integers with
k<n—kandn—k >3, and let p be an odd prime with p 1 disc(Q). Let D; € N be a
sequence of integers with Dl.[k] — 00 and ?f&k(Di) # O for every i. Then the sets

(L, [LTD)), LX) : L € H (Di)

equidistribute in Gry, x (R) x Sk x S,—k asi — oo, assuming the following conditions.
e piD;ifke {34}
e —D;mod p isasquare inF} if k = 2.

Moreover, the analogous statement holds when the roles of k and n — k are reversed.

Remark 1.5. Maass [Maa56, Maa59] in the 1960s and Schmidt [Sch98] in the 1990s
considered problems of this kind. They proved that the set of pairs (L, [L(Z)]) equidis-
tributes in Gry, x(R) x Sk, where L € Gr, x(Q) varies over the rational subspaces with
discriminant at most D. In this averaged set-up, Horesh and Karasik [HK20] recently
verified Conjecture 1.1. Indeed, their version is polynomially effective in D.

Remark 1.6. (Congruence conditions) As in the previous works referenced in Remarks 1.2
and 1.3, our proof is dynamical in nature and follows from an equidistribution result for
certain orbits in an adelic homogeneous space. The congruence conditions at the prime p
assert, roughly speaking, that one can use non-trivial dynamics at one fixed place for all D.
The acting groups we consider here are (variations of) the Q,-points of

H; ={geSOp:g.L CL)

for L € Gr, x(Q). In particular, the cases k =2 and k > 2 are very different from a

dynamical viewpoint.

e For k > 2, the group Hy, is semisimple. The knowledge about measures on homoge-
neous spaces invariant under unipotents is vast (see Ratner’s seminal works [Rat91,
Rat95]). In our situation, we use an S-arithmetic version of a theorem by Mozes and
Shah [MS95], proved by Gorodnik and Oh [GO11], which describes weak*-limits
of measures with invariance under a semisimple group. Roughly speaking, the
theorem implies that any sequence of orbits under a semisimple subgroup is either
equidistributed or sits (up to a small shift) inside an orbit of a larger subgroup. The
flexibility that this method provides allows us to, in fact, prove a significantly stronger
result; see Theorem 1.11 below.

https://doi.org/10.1017/etds.2023.107 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2023.107

4 M. Aka et al

e Fork =2andn — k > 3, the group Hy, is reductive. Thus, one can apply the results
mentioned in the previous bullet point only to the commutator subgroup of Hy , which
is non-maximal and has intermediate subgroups.

One of the novelties of this article is a treatment of this reductive case where we use

additional invariance under the center to rule out intermediate subgroups ‘on average’ (see

§4.3). Here, as well as for the second component of the triples in Theorem 1.4, we need

equidistribution of certain adelic torus orbits; this is a generalized version of a theorem

of Duke [Duk88] that builds on a breakthrough of Iwaniec [Iwa87] (see, for example,

[ELMV11, HM06, Wiel9]). Furthermore, to prove simultaneous equidistribution of the

tuples in Theorem 1.4, we apply a new simple disjointness trick (see the following remark).

Remark 1.7. (Disjointness) In the upcoming work, the first and last named author
prove, together with Einsiedler, Luethi and Michel [AEL+21], an effective version of
Conjecture 1.1 when k # 2. This removes, in particular, the congruence conditions. The
technique consists of a method to ‘bootstrap’ effective equidistribution in the individual
factors to simultaneous effective equidistribution (in some situations).

In the current article, we use an ineffective analogue of this to prove Theorem 1.4,
namely, the very well-known fact that mixing systems are disjoint from trivial systems
(see also Lemma 4.2). This simple trick has (to our knowledge) not yet appeared in the
literature in a similar context. It is particularly useful when k = 2 and n — k > 3, in which
case, we cannot rely solely on methods from unipotent dynamics (see Remark 1.6).

Remark 1.8. (On the power assumption) The assumption in Theorem 1.4 regarding the
power free part of the discriminants should be considered a simplifying assumption only.
Its purpose is automatically to rule out situations where, for most subspaces L € W’ék (D),
the quadratic form Q| z) (or Q|11 (7)) is highly imprimitive (i.e. a multiple of a quadratic
form of very small discriminant). We expect that such discriminants do not exist regardless
of their factorization. A conjecture in this spirit is phrased in Appendix B. Moreover,
Schmidt’s work [Sch68] suggests that |7-{'5k(D)| = D"/2-1+o(1) "in which case one could

remove the assumption that D l.[k] — 00 in Theorem 1.4.

1.1. A strengthening. In the following, we present a strengthening of Conjecture 1.1
inspired by the notion of grids introduced in [AES16a] and by Bersudsky’s construction
of a moduli space [Ber19] which refines the results of [AES16a].

Consider the set of pairs (L, A), where L C R" is a k-dimensional subspace and where
A C R”" is a lattice of full rank with the property that L N A is a lattice in L (L is
A-rational). We define an equivalence relation on these pairs by setting (L, A) ~ (L', A')
whenever the following conditions are satisfied.
(1) L=L.
(2) There exists g € GL,(R) with det(g) > 0 such that g acts on L and L' as scalar

multiplication and gA = A’.

We write [L, A] for the class of (L, A); elements of such a class are said to be homothetic
along L or L-homothetic to (L, A). We refer to the set M of such equivalence classes as
the moduli space of basis extensions. Indeed, one can think of a lattice A such that L N A
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is a lattice as one choice of complementing the lattice L N A into a basis of R"”. The
equivalence relation is not very transparent in this viewpoint; see §6 for further discussion.

The moduli space Y is designed to incorporate subspaces as well as both shapes.
Clearly, we have a well-defined map

[L, Al € Y+ L € Gryx(R). (1.1)

The restriction of Q to L N A yields a well-defined element of Si. Similarly, one may
check that L intersects the dual lattice A* in a lattice; the second shape is given by the
restriction of Q to L+ N A*.

We note that there is a natural identification of Y with a double quotient of a Lie group
(cf. Lemma 6.3) so that we may again speak of the ‘Haar measure’ on Y.

Conjecture 1.9. Let k, n € N be integers such that k > 3 and n — k > 3. Then the sets
{([L.Z"): L e Hy" (D)} C Y

equidistribute with respect to the Haar measure as D — oo along D € N satisfying

Hy (D) # 0.

Remark 1.10. (From Conjectures 1.9 to 1.1) When Q is unimodular (i.e. disc(Q) = 1),
Conjecture 1.9 implies Conjecture 1.1. Otherwise, Conjecture 1.9 implies equidistribution
of the triples (L, [L(Z)], [L* N (Z™")*]), where (Z")* is the dual lattice to Z" under the
quadratic form Q: that is,

(Z"* ={x e Q" : (x,y)g € Zforall y € Z"}.

This is not significantly different, as the lattice L N (Z")* contains L+ N Z” with index at
most disc(Q); nevertheless, it is insufficient to deduce Conjecture 1.1. In §6, we introduce
tuples [L, A ] that satisfy an analogue of Conjecture 1.9; this adapted conjecture implies
Conjecture 1.1

We prove the following theorem towards Conjecture 1.9.

THEOREM 1.11. Let k, n be integers with 3 < k < n — k and let p be an odd prime with
p 1disc(Q). Let D; € N be a sequence of integers with Dl.[k] — 00 and 7—(’;2’]( (D;) # 0 for
every i. Then the sets

(L. Z" : L € Hy (D))
equidistribute in Y as i — oo assuming, in addition, that p 1 D; if k € {3, 4}.
Remark 1.12. As mentioned in Remark 1.6, the assumption k > 3 and n — k > 3 asserts
that the acting group underlying the problem is semisimple. There are instances where one
could overcome this obstacle: Khayutin [Kha21] proved equidistribution of grids when

(k,n) = (1, 3), as conjectured in [AES16a], using techniques from geometric invariant
theory.

1.2. Further refinements and questions. For an integral quadratic form ¢ in k variables, a
primitive representation of g by Q is a Z-linear map ¢ : Z* — Z" such that Q(:(v)) = q(v)
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for all v € Z* and such that Qu(Z¥) N Q" = «(Z*). One can identify primitive represen-
tations of ¢ with subspaces L € Gr, «(Q) such that Q|7.(z) is equivalent to g. Given this
definition, one could ask about the distribution of the pairs

{(L, [LYZ)): L e Gr,, 4 (Q) and Q|7 is equivalent to g} (1.2)

inside Gr,x(R) x S;,—x when disc(q) — oo. The condition disc(¢q) — oo here is not
sufficient; for example, when g represents 1 and Q represents 1 only on, say, v € Z",
then any primitive representation of ¢ by O must contain +v. However, the subspaces
in Gr,x(R) containing v form a Zariski closed subset. Assuming that the minimal
value represented by g goes to infinity, the above question is very strongly related to
results of Ellenberg and Venkatesh [EV08], as are indeed our techniques in this article.
In principle, these techniques should apply to show that, under congruence conditions as
in Theorems 1.4 and 1.11, the pairs in (1.2) are equidistributed when ¢; is a sequence of
quadratic forms primitively representable by Q whose minimal values tend to infinity.

As alluded to in Remark 1.12, it would be interesting to know whether Khayutin’s
technique applies to show the analogue of Theorem 1.11 when, say, (k, n) = (2, 5), (2, 4).
The two cases are from quite different dynamical perspectives, as noted in Remark 1.6.

Furthermore, we note that this paper has various clear directions of possible generaliza-
tion. Most notably, this paper can be extended to indefinite forms. Let Q be an indefinite
integral quadratic form on Q" of signature (r, s). Here, we observe that SO (R) does not
act transitively on Gr, x (R). Indeed, the degenerate subspaces form a Zariski closed subset
(the equation being disc(Q|r) = 0). The complement is a disjoint union of finitely many
open sets on which SO¢ (R) acts transitively; for each tuple (+’, s") with r’ +s" = k and
r’ <r, s’ <s, such an open set is given by the subspaces L for which Q|; has signature
(r’, s”). The analogue of the above conjectures and theorems can then be formulated by
replacing Gr, ¢ (R) with one of these open sets. The proofs generalize without major
difficulties to this case; we refrain from doing so here for simplicity of the exposition.
Other directions of generalization include the number field case, which is not addressed in
any of the works prior to this article and is hence interesting in other dimensions as well.

1.3. Organization of the paper.  This article consists of two parts. In Part 1—the ‘dynam-
ical’ part—we establish the necessary results concerning equidistribution of certain adelic
orbits. It is structured as follows.

e In §2.1, we prove various results concerning stabilizer subgroups of subspaces.

e In §3, we prove the homogeneous analogue of Theorem 1.11. The key ingredient of our
proof is an S-arithmetic extension of a theorem of Mozes and Shah [MS95] that was
proved by Gorodonik and Oh [GO11]. The arguments used in this section only work
when the dimension and codimension (that is, k and n — k) are at least three.

e In §4, we prove the homogeneous analogue of Theorem 1.4 for two-dimensional
subspaces (i.e. for k = 2). Contrary to the case of dimension and codimension at least
three, the groups whose dynamics we use are not semisimple (see Remark 1.6). In
particular, the theorem of Gorodonik and Oh [GO11] is not sufficient and more subtle
arguments, relying on Duke’s theorem [Duk88] and the trick mentioned in Remark 1.7,
are required.
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In Part 2, we deduce Theorems 1.4 and 1.11 from the homogeneous dynamics results proved

in §3 (k > 2) and §4 (k = 2) of the first part. More precisely, it is structured as follows.

e In §5.1, we prove that the discriminant of the orthogonal complement of a subspace is
equal to the discriminant of the subspace up to an essentially negligible factor.

e In §6, we study the moduli space of base extensions and show that it surjects
onto Gr, x(R) x Sk x S—k. From this, we prove that a slight strengthening of
Theorem 1.11 implies Theorem 1.4. In these considerations, it is useful to include
subspaces together with an orientation.

e In §7, we finally establish Theorems 1.4 and 1.11. The technique here is by now
standard—we interpret the sets in Theorem 1.11 as projections of the adelic orbits
in Part 1 (or a slight adaptation thereof).

In the appendix, we establish various complementary facts.

e In Appendix A, we discuss non-emptiness conditions for the set %k(D) when the
quadratic form Q is the sum of squares. In particular, we prove that ‘H’ék (D) # @ for
all n > 5. The techniques here are completely elementary and we do not provide any
counting results.

e In Appendix B, we prove various facts complementing the discussion in §5.1. For
example, we prove that if L € Gr,x(Q) is a subspace where k < n — k, then the
quadratic form on the orthogonal complement Q|; 17, is primitive up to negligible
factors.

1.4. Notation. Let Vg be the set of places of Q and denote by Q, for any v € Vg the
completion at v. Given a subset S C Vg, we define the ring Qs to be the restricted direct
product of Q,, for p € S with respect to the subgroups Z, for p € S\ {oc}. Moreover, we
set Z5 :=Z[1/p: p € S\ {o0}}. When S = Vi, we denote Qg by A and call it the ring
of adeles. When, instead, S = Vg \ {00}, we denote Qg by A ; and call it the ring of finite
adeles. Finally, we let 7 = [ pevi\ioo) Zp-

Let G < SLy be a connected algebraic group defined over Q. We identify G(Z%) =
G(Qg) N SLy(ZS) with its diagonally embedded copy in G(Qs). If G has no non-trivial
Q-characters (for example, when the radical of G is unipotent), the Borel-Harish—Chandra
theorem (see [PR94, Theorem 5.5]) yields that G(Z%) is a lattice in G(Qg) whenever
oo € S. In particular, the quotient G(Qs)/G(Z5) is a finite volume homogeneous space.
For g € G(Qy) and v € S, g, denotes the v-adic component of g.

Whenever G is semisimple, we denote by G(Qg)™ the image of the simply connected
cover in G(Qg) (somewhat informally, this can be thought of as the part of G(Qy) that is
generated by unipotents).

1.4.1. Quadratic forms. Throughout this article, (V, Q) is a fixed non-degenerate
quadratic space over QQ of dimension n. The induced bilinear form is denoted by (-, -) 0. We
assume throughout that (V, Q) is positive definite. We also identify V with Q" and suppose
that (-, -)p takes integral values on Z" x Z", in which case we say that Q is integral.
Equivalently, the matrix representation M in the standard basis of Z" has integral entries.

We denote by O (respectively, SO ) the orthogonal (respectively, special orthogonal)
group for Q. Recall that SO¢ is abelian if dim(V) =2 and semisimple otherwise.

https://doi.org/10.1017/etds.2023.107 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2023.107

8 M. Aka et al

We denote by Spin, the spin group for Q, which is the simply connected cover of
SOy if dim(V) > 2. Explicitly, the spin group may be constructed from the Clifford
algebra of Q. We remark that this article contains certain technicalities that will use the
Clifford algebra—we refer to [Knu88] for a thorough discussion. The spin group comes
with an isogeny of Q-groups pg : Spiny — SO¢ which satisfies that, for any field K of
characteristic zero, we have an exact sequence (cf. [Knu88, p. 64])

Spiny (K) — SOg(K) — K*/(K*)?,

where the second homomorphism is given by the spinor norm. The isogeny p¢ induces an
integral structure on Spin . For example, Spin, (Z) consists of elements g € Spin, (Q) for
which pg(g) € SO (Z). To simplify notation, we will write g.v for the action of Spin, on
a vector in n-dimensional linear space. Here, the action is naturally induced by the isogeny
po (and the standard representation of SOgp).

Furthermore, we let Gr, x denote the Grassmannian of k-dimensional subspaces of V.
Note that this is a homogeneous variety for SOp and (through the isogeny pp) also for
Sping. If we assume that Q is positive definite (as we always do), the action of SO¢ (R)
on Gr, (R) is transitive. Furthermore, in this case, the spinor norm on SOg(R) takes
only positive values so that SpinQ(R) surjects onto SOg(R) and, in particular, also acts
transitively.

We denote the standard positive definite form (i.e. the sum of n squares) by Qo and
write SO,, for its special orthogonal group. As Q¢ and Q have the same signature, there
exists ng € GL, (R) with det(no) > 0 such that n’Qr;Q = M or, equivalently,

Qo(mox) = Q(x) (1.3)

holds for all x € R" (similarly for the induced bilinear forms). In particular, np maps
pairs of vectors in V that are orthogonal with respect to Q onto pairs of vectors that are
orthogonal with respect to Q¢. Also, 775150,, R)ng =SOp[R).

1.4.2. Quadratic forms on sublattices and discriminants. For any finitely generated
Z-lattice ' < Q" (of arbitrary rank), the restriction of Q to I' induces a quadratic form.
We denote by gr the representation of this form in a choice of basis of I". Hence, gr is
well defined up to equivalence (and not proper equivalence) of quadratic forms (i.e. up to
change of basis).

If ' <Z", qr is an integral quadratic form and we denote by gcd(gr) the greatest
common divisor of its coefficients (which is independent of the choice of basis). Note that
gcd(gr) is sometimes also referred to as the content of gr. We write gr = 1/gcd(gr)qr
for the primitive multiple of gr. If L C Q" is a subspace, we sometimes write g7 instead
of q1.(z) for simplicity.

The discriminant disc (I") of a finitely generated Z-lattice I' < Q" is the discriminant
of gr. As at the beginning of the introduction, we write discg (L) instead of discg (L(Z))
for any subspace L C Q". Given a prime p, we also define

discp,o(L) = disc(Q|Lz,)) € Z,,/(Z[X,)z, (1.4)
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where L(Z,) = L(Qp) N Z’;. We have the following useful identity,

discg(L) = [ ] pr@iere®, (1.5)
p

where the product is taken over all primes p and v, denotes the standard p-adic valuation.
Note that only primes dividing the discriminant contribute non-trivially.

1.4.3. Choice of a reference subspace. We fix an integer k < n for which we always
assume that one of the following holds:

e k>3andn—k > 3;

e k=2andn—k > 3;o0r

e k>3andn—k=2.

Let Ly C V be given by

Lo=QF x{(0,...,0)} C V. (1.6)

We adapt the choice of n¢ to this reference subspace L( and suppose that the first k
column vectors in nél are an orthonormal basis of L¢. This choice asserts that 7y maps
Lo(R) to Lo(R) and hence Ly (R) to {(0, . . ., 0)} x R"7*.

1.4.4. Ambient groups. The following subgroups of SL,, will be useful throughout this
work: that is,

Ppi = {(13 g) € SL,, : det(A) = det(D) = 1},

Dy = {(g 10)> € SL,, : det(A) = det(D) = 1},

where A is ak x k-matrix, Disan (n — k) X (n — k)-matrix and Bis ak x (n — k)-matrix.
We denote by 71 (respectively, m2) the projection of P, x onto the upper-left (respectively,
bottom-right) block. We also define the group

G= SpinQ x Py
By G, we denote the Levi subgroup of G with B = 0: that s,
G= Sping X Dy x = Sping x SLg x SLy—g.

Remark 1.13. With regard to the aforementioned groups we will need two well-known
facts. First, D, x is a maximal subgroup of P, x (which means that there is no connected
Q-group M with D,y CM C P, ;) (see, for example, [AELM20, Proposition 3.2]).
Second, for any quadratic form ¢ in d variables, SO, is maximal in SL; (see, for example,
[LS98] for a modern discussion of maximal subgroups of the classical groups).

1.4.5. Landau notation. In classical Landau notation, we write f < g for two positive

functions if there exist constants ¢, C > 0 with cf < g < Cf. If the constants depend on
another quantity a, we sometimes write f =<, g to emphasize the dependence.
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2. Part 1: Homogeneous results
For an overview of the contents of this part, we refer the reader to §1.3.

2.1. Stabilizer groups. Recall that, throughout the article, Q is a positive definite integral
quadratic form on V = Q". In particular, any subspace of Q" is non-degenerate with
respect to Q.

2.1.1. Stabilizers of subspaces. For any subspace L C @n, we define the following

groups.

e H; < Spin, is the identity component of the stabilizer group of L in Spin, for the
action of Sping, on Gry «.

e H) < SOy is the identity component of the stabilizer group of L in SO for the action
of SO¢p on Gry .

Note that we have an isogeny H; — H) . Furthermore, the restriction to L (respectively,

L) yields an isomorphism of Q-groups

H/L — SOg), X SOQILL' 2.1)

To see this, one needs to check that the image does indeed consist of special orthogonal
transformations. This follows from the fact that the determinant of the restrictions is a
morphism with finite image and hence its kernel must be everything by connectedness. In
particular, we have the following cases.

o Ifk>3andn—k >3, H/L (and hence also Hy ) is semisimple.

o Ifk=2andn—k>3(ork>3andn —k = 2),H/L is reductive.

e Ifk=2andn — k = 2 (which is not a case this paper covers), H} is abelian.

Remark 2.1. (Special Clifford groups and (2.1)) Although it might seem appealing to
suspect that Hy is simply connected, this is actually false. The following vague and lengthy
explanation is not needed in what follows. Denote by M the special Clifford group of Q
and similarly by M (respectively M) the special Clifford groups of Q|1 (respectively,
Q| 1) for the duration of this remark—cf. [Knu88]. These are reductive groups whose
center is a one-dimensional Q-isotropic torus. We identify M, M, as subgroups of M
and write C for the center of M which is, in fact, equal to M; N M,. The natural map
¢ : M x My — M has kernel {(x, y) € C x C: xy = 1} so that

Mi XM /(2 y) € Cx C:xy =1}~ {g € M: g preserves L}°.

Furthermore, we have the spinor norm which is a character xy : M — G,, whose kernel is
the spin group. Similarly, we have spinor norms xi, x2 for M; (respectively, M), which
are simply the restrictions of x. The above yields that

H, ~ {(81,82) € Mi x M2 2 X (80X (82) = 1} /er(¢)-
which is isogenous (but not isomorphic) to Sping, X SpinQ|L L

The first result that we prove states that the group H;, totally determines the subspace
L (up to orthogonal complements). This is given more precisely in the following
proposition. Recall that a non-trivial subspace W C V is non-degenerate if disc(Q|w) # 0
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or, equivalently, if there is no non-zero vector w € W so that (w, w’) = 0 for all w’ € W.
This notion is stable under extension of scalars.

PROPOSITION 2.2. Let L1, Ly <V be non-degenerate subspaces. If Hy, = Hp,, then
Li=LyorL = Lj.

The proposition follows directly from the following simple lemma.

LEMMA 2.3. Let L C V be a non-degenerate subspace and let W C V be a non-trivial
non-degenerate subspace invariant under H’L. Then W € {L, Lt Vi

Proof. First, we observe the following: over Q, H/ acts transitively on the set of
anisotropic lines in L and in L*. Indeed, by Witt’s theorem [Cas78, p. 20], the special
orthogonal group in dimension at least two acts transitively on vectors of the same
quadratic value. In any two lines, one can find vectors of the same quadratic value by
taking roots.

Let w € W be anisotropic and write w = wj + w; for w; € L and w, € Lt Aswis
anisotropic, one of wj or wy must also be anisotropic; we suppose that wy is anisotropic,
without loss of generality. Let & € H/L (Q) be such that hw; # wi and hwy = w». Then

u:=hw—w=hw;—wy e LNW.

We claim that we can choose 4 so that u is anisotropic. Indeed, as w; is anisotropic, its
orthogonal complement in L is non-degenerate (as L is non-degenerate). We can thus
choose & to map w; to a vector orthogonal to it by the above variant of Witt’s theorem.
Then

Qu) = Q(hwy) + Q(w1) =2Q(wy) # 0.

Now note that L N W is H/ -invariant. By a further application of the above variant of
Witt’s theorem and the fact that L is spanned by anisotropic vectors (L is non-degenerate),
we obtain that L N W = L or, equivalently, L C W. Thus, we may write W = L & W',
where W’ is an orthogonal complement to L in W and, in particular, is contained in L.
The subspace W’ must be non-degenerate because W and L are, and hence it is trivial
or contains anisotropic vectors. If W’ is trivial, then W = L and the proof is complete.
Otherwise, we apply the above variant of Witt’s theorem and obtain that W = L+ and
W=V. O

An analogous statement holds for the relationship between quadratic forms and their
special stabilizer groups.

PROPOSITION 2.4. Let Q1, Q2 be rational quadratic forms on V. If SOg, = SOyq,, then
Q1 =rQ; for somer € Q.

For a proof, see [AES16a, Lemma 3.3].
2.1.2. Maximality. 'We now aim to prove that, for any non-degenerate subspace L, the

connected Q-groups H; and H;, are maximal subgroups. Here, maximal means among
connected and proper subgroups (as it was in Remark 1.13).
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PROPOSITION 2.5. For any non-degenerate subspace L C V, the groups H;, and Hy, are
maximal.

The result above is well known and due to Dynkin, who classified the maximal
subgroups of the classical groups in [Dyn52] (see also the work of Liebeck and Seitz,
for example [LL.S98]). We will give an elementary proof.

Proof. Note that it suffices to prove the statement for H), . As L is non-degenerate, we may
choose an orthogonal basis of V consisting of an orthogonal basis of L and an orthogonal
basis of L1. Let

M
Mg = ( 01 134) with M, M4 diagonal matrices
be the matrix representation of Q in this basis. Computing the Lie algebras of SOy and
H/, we obtain

g :=Lie(SOg) = {A € Mat(n) : AT My + MgA =0}
and

A O

h:=LieH)) = {A e Mat(n) : A = (0 A

) and AT M; + M;A; = 0,i =1, 4}.
‘We may split g in a direct sum § @ ¢, where v is an invariant subspace under the adjoint
action of H), on g. Explicitly, we may set

_) (0 A2\ 1 _
t—{<A3 0>.A2M1+M4A3—0}.

We claim that the representation of H on ¢ is irreducible. Note that we may also show
that the representation of SOg, x SOg|, , on Mat(k, n — k) given by

(01, 02), A) > o140y

is irreducible. Over Q, we may apply Lemma 2.6 below, from which this follows.

Now let M be a connected group containing H), and let m be its Lie algebra. Note that
m N ¢ is an invariant subspace under the adjoint action of H/, on t. Since this representation
is irreducible, m Nt = {0} or m Nt = t. In the former case, we have that m = f and in the
latter m = g. It follows that H), is maximal and the proof is complete. O

LEMMA 2.6. For any k,m >3, the action of SOy x SO,, on Mat(k, m) by right-
multiplication (respectively, left-multiplication) is irreducible.

Proof. We write a very elementary proof for the sake of completeness. First, assume that
k, m > 3. Note that the standard representation of SOy (respectively, SO,,) is irreducible
as (note that, whenever k = 2, any isotropic vector is a fixed vector) k > 3 (respectively,
m > 3). It follows that the representation of SOy x SO,, on the tensor product of the
respective standard representations is also irreducible (see, for example, [EGH+11,
Theorem 3.10.2]); the latter is isomorphic to the representation in the lemma. O
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2.2. The isotropy condition. Here, we establish congruence conditions that imply
isotropy of the stabilizer groups H; . Recall that a Q,-group G is strongly isotropic if, for
every connected non-trivial normal subgroup N < G defined over Q,, the group N(Q,)
is not compact. We say that a Q-group G is strongly isotropic at a prime p if G is strongly
isotropic as a Q,-group.

PROPOSITION 2.7. Let (V', Q') be any non-degenerate quadratic space over Q,. Then
Q' is isotropic if and only if Spiny is strongly isotropic.

Proof. If Q' is isotropic, V' contains a hyperbolic plane H (see [Cas78, Ch. 2,
Lemma 2.1]). Then Spiny contains Sping,, which is a split torus. Hence, Sping is
isotropic. Conversely, if Q' is anisotropic, then Spin o' (Qp) is compact as the hypersurface
Q’'(x) = 1 is compact. This proves that Q’ is isotropic if and only if Spiny is isotropic.
This is sufficient to prove the proposition if dim(V’) =2 (as the torus Spin,, is one
dimensional) and if dim(V’) > 2 is not equal to 4 as Spiny is absolutely almost simple in
these cases.

Suppose that dim(V’) = 4. We freely use facts about Clifford algebras and spin groups
from [Knu88] (mostly Ch. 9 therein). Recall that Spin y is equal to the norm one elements
of the even Clifford algebra C0 of Q'. If the center Z of C is a field over Q p» then Clis
a quaternion algebra over Z and Spiny is simple. In this case, the proof works as in the
case of dim(V') # 4.

Suppose that the center is split, which is equivalent to disc(Q’) being a square in Q,,.
Thus, there is a quaternion algebra 8 over Q,, such that (V’, Q') is similar to (8, Nr),
where Nr is the norm on 8. Then, Sping, =~ SL;(8) x SL;(8), which is a product of two
Qp-simple groups. Note that 8B or SL(8) are isotropic if and only if Q" is isotropic. This
concludes the proof of the proposition. O

By means of (2.1), we obtain the following corollary.

COROLLARY 2.8. Let L € Gr,x(Q) and let p be an odd prime. Then, Hy, is strongly
isotropic at p if and only if the quadratic spaces (L, Q|r) and (L*, Q| 1.1) are isotropic
over Qp.

Using standard arguments (as in [AES16a, Lemma 3.7], for example) we may deduce
the following explicit characterization of isotropy.

PROPOSITION 2.9. Let L € Gry, x(Q) be a rational subspace and let p be an odd prime.
Then, Hy, is strongly isotropic at p if any of the following conditions hold.

e k>5andn—k > 5.

3<k<5n—k=>5andptdiscy(L).

k>53<n—-k< 5andpj(dich(LJ-).

3<k<53<n—k<S5 ptdiscg(L) and p tdisco(LL).

k=2 n—k>5 and —discg(L) € (IF;)2 (i.e. —discg(L) is a non-zero square
modulo p).

o k=23<n—k<35 ptdiscg(Lt) and —disco(L) € (F))™

o k=5n—k=2and—disco(L") € (F})*.

o 3<k<5n—k=2 ptdiscg(L) and —disco(L™) € (F))™
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Although the list is lengthy, let us note that half of it consists of interchanging the
roles of k and n — k as well as L and L*. Also, whenever p 1 disc(Q), the conditions
p fdisco(L) and p ¢ dich(Ll) are equivalent (see Proposition 5.4 and its corollary).
When k = 4 or n — k = 4, the above criteria are sufficient but not necessary. For example,
the form x12 + x% + x32 + pxi is isotropic although its discriminant is divisible by p.

2.3. Diagonal embeddings of stabilizer groups. In this section, we define a diago-
nally embedded copy AH; < Spingy x Py of the stabilizer group of any subspace

L € Gr, x(Q).
With the arithmetic application in Part 2 in mind, we must allow any rational subspace
a choice of a full-rank Z-lattice A; C Q" with

Z'Cc AL Cc ZY ={veQ": (v,w) e Zforallw € Z"}.

If Q is unimodular (i.e. disc(Q) = 1), then A; = Z" = (Z")*. We emphasize that, for the
arguments in the current Part 1, this choice of intermediate lattice A is inconsequential
and the reader may safely assume that Ay = Z" at first.

Let g7 € GL,,(Q) be such that g7 Z" = Ay, its first k columns are a basis of L N A
and det(gr) > 0. In words, the columns of g; complement a basis of L N Ay into an
oriented basis of Ay . We then have a well-defined morphism with finite kernel

Yy Hy = Pog, b g po(h)gr. (2.2)

Note that the morphism depends on the choice of Ay, but we omit this dependency here
to simplify notation. It also depends on the choice of basis; a change of basis conjugates
W, by an element of P, 4 (Z).

One can restrict the action of an element of Hy to L and represent the so-obtained
special orthogonal transformation in the basis contained in gy . This yields an epimorphism
(asin (2.1))

YL Hp — SquAL.
Explicitly, the epimorphism is given by
Yieh e He o mi(sy po(h)gr) = mi o Wi (h) € SO, .

Similarly to the above, one can obtain an epimorphism H; — SOg|, , . To make this
explicit, we would like to specify how to obtain a basis of L N Aﬁ from gy . To do this,
observe first that the basis dual to the columns of g;, is given by the columns of Mél (gzl)t.

Note that the last n — k columns of M él (gL_l)’ are orthogonal to L so they form a basis of
A}'f N L+. Hence, we obtain an epimorphism

Yau h € Hy o ma(g Mopo(DMg'(8,1)) €S0, s
Note that

g Mopo(mMy'(gr") = grpoh™) (g7 = (8] ' pohHeL)',
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which shows that
Yo (h) = ma((g;, ' po(h™Hgr)) = ma(gy ' po(h™Hgr)' = ma(¥r(h™h)'.
We define the group
AHz = {(h, Y (h)) : h e Hy} C Sping X Ppy = G. (2.3)
By the definitions above, the morphism

G — G, (g1.8) — (g1, m1(g2), m2(g5 ")

induces a morphism

AH — {(h, Y1 0(h), Yo (h) : h € Hy} =: AH, C G,

which is, in fact, an isogeny.

3. The dynamical version of the theorem in codimension at least three
As mentioned in the introduction, our aim is to translate the main theorems into a statement
concerning weak™ limits of orbit measures on an adequate adelic homogeneous space.
In this and the next section, we shall establish these equidistribution theorems for orbit
measures. This section treats the case k, n — k > 3.

In the following we call a sequence of subspaces L; € Gr, x(Q) admissible if:
(1) discg(L;) — ocoasi — oo;
(2) disc(gr,) > oo asi — oo;
(3) disc(g, 1) = ooasi — oo; and
(4) there exists a prime p such that Hy, (Q,) is strongly isotropic for all i.

This section establishes the following theorem. Conjecturally, an analogous version
should hold when k = 2 or n — k = 2 (see Remark 1.12).

THEOREM 3.1. Let L; € Gry, x(Q) be an admissible sequence of rational subspaces (with
a choice of lattice Ay, as in §2.3), let g; € G(R) and let p; be the Haar probability
measure on the closed orbit

giAHL, (A)G(Q c G /().
Then w; converges to the Haar probability measure on G(A) /| G(Q) as i — oo.

The rest of the section is devoted to proving Theorem 3.1. We remark that the notion
of admissible sequences here is an ad hoc notion that appeared in other instances (see, for
example, [AEW22]) to achieve a similar goal. The assumptions (1)—(3) in the definition
of admissibility are, in fact, necessary for the above theorem to hold while (4) can
conjecturally be removed.

3.1. A general result on equidistribution of packets. The crucial input to our results is
an S-arithmetic extension of a theorem of Mozes and Shah [MS95] by Gorodnik and Oh
[GO11]. We state a version of it here for the reader’s convenience.

Let G be a simply connected connected semisimple algebraic group defined over Q
and Y = G(A)/G(Q). Let W be a compact open subgroup of G(A ). We denote by
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C.(Ya, W) the set of all continuous compactly supported functions on Y which are W
invariant. Consider a sequence (H;);cn of connected semisimple subgroups of G and let
w; denote the Haar probability measure on the orbit H; (A)TG(Q) C Yu, where H; (A)™
is the image of the adelic points of the simply connected cover of H; in H; (A). For given
gi € G(A), we are interested in the weak* limits of the sequence of measures g; ;.

THEOREM 3.2. (Gorodnik and Oh [GO11, Theorem 1.7]) Assume that there exists a prime
p such that H; is strongly isotropic at p for all i € N. Then, for any weak* limit of the
sequence (g; ;) with u(Ya) = 1, there exists a connected Q-group M < G such that the
following hold.

(1)  For all i large enough, there exist §; € G(Q) such that:

87 H;8 c M.

(2) For any compact open subgroup W of G(Ay), there exists a finite-index normal
subgroup Mo = Mo(W) of M(A) and g € G(A) such that  agrees with the Haar
probability measure on gMyG(Q) when restricted to C.(Ya, W). Moreover, there
exists h; € H; (A)™ such that g;h;8; — g asi — oo.

(3) Ifthe centralizers of H; are Q-anisotropic for all i € N, then M is semisimple. More-
over, for any compact open subgroup W, My = My(W) in 2 contains M(A)TM(Q).

We remark that the theorem as stated in [GO11] does not assume that G is simply
connected; we will, however, need only this case.

3.2. Proof of Theorem 3.1. We prove Theorem 3.1 in several steps and start with a short
overview. Note that we have a morphism

G — G = Spingy x SLg x SL,_¢

given by mapping g € P, to (1(g), m2(g~1)") and Spiny, to itself via the identity map
(see also §2.3). The first step of the theorem establishes equidistribution of the projec-
tions to the respective homogeneous quotients for Sping, SLi, SL,—k (hencefortf_l called
‘individual equidistribution’). The second step is the analogous statement for G. Note
that the admissibility assumption on the sequence of subspaces L; is used for individual
equidistribution and, in fact, the different conditions (1)—(3) imply the corresponding
individual equidistribution statements (i.e. (1) implies equidistribution in the homogeneous
quotient SpinQ(A) / SpinQ((@) etc.).
To briefly outline the argument here, consider a sequence of orbits

gH, (8)Sping Q) € SPing™) /gpin ().

As the groups H;, are maximal subgroups, the theorem of Gorodnik and Oh above
implies that either the orbits are equidistributed or that there exist lattice elements §; so
that §;Hy, 8, Uis eventually independent of i. In the latter case, we also know that the
lattice elements are up to a bounded amount in the stabilizer group; this will be shown to
contradict the assumption that discp(L;) — oo.
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3.2.1. Applying Theorem 3.2.  Consider the subgroup J = Sping x SL,. Note that J is
semisimple and simply connected so that we may apply Theorem 3.2 given a suitable
sequence of subgroups.

The groups H;,; are potentially not simply connected, so a little more care is needed in
applying Theorem 3.2 to the orbit measures ;. We fix, for any i, some h; € AHp,(A)
and consider the orbit measures on g;h; AHz, (A)TG(Q). In view of the theorem, it
suffices to show that these converge to the Haar probability measure on G(4) / G(Q).
Indeed, by disintegration, the Haar measure on g; AHy, (A)G(Q) is the integral over the
Haar measures on g;h; AH, (A)TG(Q) when h; is integrated with respect to the Haar
probability measure on the compact group AHy, (A)/AH , (A)*. In other words, the Haar
measure on g; AHz, (A)G(Q) is a convex combination of the Haar measures on the orbits
gihi AHL, (A)TG(Q). To simplify notation, we replace g; by g;h; in order to omit ;.
Furthermore, we abuse notation and write w; for these ‘components’ of the original orbit
measures.

We fix a compact open subgroup W of G(A r) in view of (2)(b) in Theorem 3.2 and an
odd prime p as in the definition of admissibility of the sequence (L;);.

Let u be any weak*-limit of the measures u;. Note that u is a probability measure.
Indeed, the pushforward of the measures u; to SpinQ(A) /SpinQ(Q) has to converge
to a probability measure as Spin (A)/Sping (Q) is compact. We let M < J be as in
Theorem 3.2. Because g; € G(A) and AH;, < G for all i, the support of the measures
i is contained in G(A)J(Q) ~ G(A) / G(Q). Thus, M < G.

CLAIM. It suffices to show that M = G.

Proof of the claim. Suppose that M = G. Let My = My(W) be as in Theorem 3.2. Since
G(A) has no proper finite-index subgroups [BT73, Theorem 6.7], we have My = G(A)
(independently of W). Therefore, for any W-invariant continuous compactly supported
function f, the integral w(f) agrees with the integral against the Haar measure on
G(A)/G(Q). But any continuous compactly supported function is invariant under some
compact open subgroup W; hence, the claim follows. O

We now focus on proving that M = G. By Theorem 3.2, there exist §; € G(Q) such
that §;” 1AHL 8; <M for all i > iy. Furthermore, we fix g € G(A) as well as h,- =
(hi, \IJLI (hi)) € AHy, (A)T, as in Theorem 3.2, such that

gihidi — g. (3.1)
3.2.2. Individual equidistribution of subspaces and shapes. ~Consider the morphism
G—->G-= Sping x SLg x SLy—k. 3.2)

In the following step of the proof, we show that the image M of the subgroup M via (3.2)
projects surjectively onto each of the factors of G.

PROPOSITION 3.3. The morphism obtained by restricting the projection of G onto any
almost simple factor of G to M is surjective.
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Proof. We prove the proposition for each factor separately. To ease notation, & will
denote the projection of G onto the factor in consideration, which we extend to G by
precomposition.

First factor: As m(AHy,;) = H;,, we have, for each i,

7 (8) "ML, (8;) < m(M).

Since Hy, is a maximal subgroup of Spin, (see Proposition 2.5), there are two options:
either 771 (M) = Spin, or n(8i)_1HLi7r(8,~) = (M) for all i > iy.
Suppose the second option holds (as the proof is complete otherwise). Setting
Vi = n(s,-aigl) and L = L;,,
HVi-L = ViHL)/,-_l = HL..

i

By Proposition 2.2, we have y;.L = L; or y;.L = L;; by changing to a subsequence and
increasing i, we may suppose that the former option holds for all i > iy. By (3.1) there
exist #; € Hy, (A) such that (g;)h;y; — 7(g) for some g’ € G(A). Roughly speaking,
this implies that L; = h;y;.L — m(g).L as Q,-subspaces for any prime p contradicting
the discriminant condition. More precisely, let &; — e be such that 7 (g;)h;y; = &;m(g).
Then, for any prime p, the local discriminant gives

diSCp,Q(L,') = diSCp’Q(h,',p)/,'.L). = diSCp,Q(é‘,',pJT(g;).L)
If i is large enough such that ¢; € Spiny (R x Z),
diSCQ(L,') — 1_[ pv,,(discp,Q(L,-)) — 1_[ pup(discp,Q(n(g’p).L))’
p P

which is constant, contradicting that discp (L;) — oo.
Second factor: The proof is very similar to the first case, so we will be brief. By
maximality of special orthogonal groups (Remark 1.13) and as w(AHy,) = SO‘IL I
iNAL;

we may suppose, by contradiction, that, for all i > i,
”(5i)_ISOqL,.nAL, 7(8;) = (M.

We simplify notation and write ¢; for the least integer multiple of g LA, that has integer
coefficients. Since L; N Ay, and L;(Z) are commensurable with indicés controlled by
disc(Q), we have disc(g;) < disc(gr,;) and disc(g;) < disc(gr,). In particular, by our
assumption, disc(g;) — oo asi — oo.

Sety; = n(aisi—ol) € SL(Q) so that

—1
Soyiéio =SO0y,q;, = ViSOqL,.O ¥i =950 =S0g;. (3.3)

By Proposition 2.4, there exist coprime integers m;, n; such that

m;YiGi, = nig;.
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Using (3.1), write mw(g)h;y; = &im(g’) for some g’ € G(A) and ¢ — e. By (3.3),
hi(¥iqi,) = Yidi,- Thus, for any prime p,

migi p7t(8,)qiy = mihi pViiy = nigi.

The form n(g;,)c},-o is a form over Q,, with trivial denominators for all but finitely many p.
Applying ¢; , for large i does not change this. Furthermore, m; needs to divide all
denominators of g;, over Z, for all i as g; is primitive. Hence, m; can only assume finitely
many values and, by reversing roles, one can argue the same for n;. For any prime p,

ord, (m; /n;

disc,(gi) = p Mdisc,, (77(g),)di)-

and hence

m; . N
disc(g;) = — H pOrdpdisey (m(g)dig))
0

Lop

which is in contradiction to disc(g;) — o0.

Third factor: The proof here is the same as for the second factor. We do, however, point
out that the morphism G — G was constructed to satisfy that, for any & € H;,, we have
w((h, W, (h)) = ¥o,1,;(h) and hence m(AH,;) = SOqLiimA*z . O]
Remark 3.4. We recall from the beginning of §3.2 that the first three conditions in
admissibility were used in this order for the three factors in the above proof. This has
a consequence: if L; € Gr,x(Q) is any sequence of subspaces satisfying properties (1)
and (4), then, for any g; € Spin, (R), the packets

gHL, (8)Sping (Q) € SPINg () /gpin , (@)

are equidistributed as i — oo. This can be used to obtain equidistribution of 'H'ék(D) -
Gr,, x (R) without any restrictions on the k-power free part of D (as opposed to our main
theorems in the introduction).

3.2.3. Simultaneous equidistribution of subspaces and shapes. Proposition 3.3 shows
that the image M of M under (3.2) satisfies that the projection onto each simple factor of
G is surjective. We claim that this implies that M = G.

We first show that the projection of M to SL; x SL,,— is surjective. Note that
any proper subgroup of SL; x SL,_j; with surjective projections is the graph of an
isomorphism SLy — SL,_. In particular, the intermediate claim is finished if k # n — k.
Suppose that k = n — k and choose, for some i > ip, an element 2 € H;, acting trivially
on L; but not trivially on L IJ- The projection of gzil po(h)gy, to the first (respectively, the
second) SLy is trivial (respectively, non-trivial); the projection of M to SL; x SL,,_ thus
contains elements of the form (e, g) with g # e. This rules out graphs under isomorphisms
and concludes the intermediate claim.

Now note that M projects surjectively onto Sping and SLg x SL,—¢ and that the latter
two Q-groups do not have isomorphic simple factors. By an argument similar to that above,
we deduce that M = G.
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3.2.4. Handling the unipotent radical. 'We now turn to proving that M = G, which
concludes the proof of the theorem. By §3.2.3, we know that M surjects to G. In particular,
by the Levi-Malcev theorem, there exists some element in the unipotent radical of Py, x

Ik C
yc = <O In—k> e P, (Q)

such that M contains Sping X ycDniye L By maximality of the latter group
(cf. Remark 1.13), M is either equal to G or

M = Spiny x ycDuiyc -
Assume, by contradiction, the latter. The inclusion §; ! AH; §; C Mimplies that
85,81, Po(MgL.82i € yeDuryc '

where &;; denotes the second coordinate of the element §; € G(Q) = Spiny(Q) x
P,x(Q). Since chn,kygl stabilizes two subspaces, namely, ycLo = Lo and
L' = yc({(0,...,0)} x Q" %), the conjugated group ng.(Sigchn,kyEl(Si_’zngil fixes
the subspaces

gr;8i2Lo=gr,Lo=L; and gr,82L .

As Hj, fixes exactly the subspaces L;, LI.J-, we must have

L+ =g1,8i0L (3.4)
for all i. We denote by v’]', e, vfl the columns of g;,, which is a basis of Ay, and by
wi, ..., w! its dual basis. Recall that wf{H, ..., w! form a basis of A’zi N L+ By (3.4),

there exists a rational number «; € Q such that
Oli(w;iﬂ A Awh) = gr8ioye(ersl A Aen). (3.5)
To simplify notation, we set n; = §; 2yc.
We first control the numbers «;. From (3.1), we know that there are #; € Hy, such that
gz,igz,.l,OQ(hi)gL, n — g

for some g €P,x(A). For i large enough, there exist & € P,x(R x Z) with
287, po(hi)grni = eig’. We now fix a prime p so that pg(hip)gL.ni = g1,8ip8),
(as g2,; € G(R)). Applying pg (h; p) to (3.4), we obtain

oWy g A Awy) = gL,-Si,pg;(ekH A Nep).

Considering that the vectors w;; AN TA w' and eg11 A - - - A e, are primitive (see, for
example, [Cas97, Ch. 1, Lemma 2]) and that g;, and g;] have bounded denominators, this
shows that the denominators and numerators of the numbers «; are bounded independently

of i.
‘We now compute the discriminant of the lattice spanned by w}; IR TR w' in two ways.
First, note that, as w;{ IR TR w;l is a basis of A’L N Ll.i, the discriminant in question

is equal to the discriminant of A’zi N Lf- and hence = discp(L;). For the second way,
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observe that, by (3.5), the discriminant of the lattice spanned by w}'C IRTRERY w' is given by
a; ! multiplied by the determinant of the matrix with entries

(gLimiej, wh)o with j,m > k. (3.6)

(One conceptual way to see this is the following: the bilinear form (-, -) ¢ induces a bilinear
form (-, -) Ak On the wedge product /\"71‘ Q" by defining it on pure wedges through

(WA AV, WL A A wn_k>/\n—k 0= det({v;, w;) o).

This definition asserts that the discriminant of a rank n — k lattice is the quadratic value
of the wedge product of any of its bases. Equation 3.6 is then obtained by replacing one of
the wedges in (w,’chl A AW, w,’(Jrl A A w,’1)/\n7k 0 via (3.5).)

To compute this determinant, write nie; =, aé et for all j > k so that
gL.niej = Z ag; vy
[
Using that {wf } are dual vectors to {vli }, we compute

(grimiej, wh)o = Y aj; (v, wh)o = ab,;
14
for all m, j > k. This implies that the determinant of the matrix with entries (3.6) is equal
to the determinant of the lower right-hand block of the matrix n;. As the latter is equal to
one, we conclude that the discriminant of the lattice spanned by w,i IRTARERRA w,’; is equal
too; L
To summarize, we have established the identity

disco(A} NLH) = "

Since the left-hand side of this identity goes to infinity as i — oo (because < discg(L;))
whereas the right-hand side is bounded, we have reached a contradiction. It follows that
M = G, and hence the proof of Theorem 3.1 is complete.

4. The dynamical version of the theorem in codimension 2
In the following, we prove the analogue of Theorem 3.1 for the case k =2 andn — k > 3
(i.e. n > 5) ignoring the unipotent radical (cf. Remark 1.12); the case n —k =2, k > 3
is completely analogous and can be deduced by passing to the orthogonal complement.
Contrary to cases treated in §3, the groups whose dynamics we use are not semisimple and
have a non-trivial central torus (see also Remark 1.6).
Recall the following notation (for k = 2).
e G= Spiny x SLy x SL,_» (here, the ambient group).
° AI:IL = {(h, ¥1,L.(h), Y2 (h)) : h e H.} (here, the acting group) for any L €
Gr, «(Q), where 11 (respectively, 2 1) is roughly the restriction of the action
of h to L (respectively, LYY (cf. §2.3).
e For any L € Gr,2(Q), a choice of intermediate lattice Z" C Ay C ZM* (also
implicit in the definition of AH;). For simplicity, we also assume here that
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AL NL=L(Z) and A% NL+ = L1 (Z); such a choice will be constructed later
(cf. Proposition 6.6). Again, if Q is unimodular, A; = Z" satisfies this property.

THEOREM 4.1. Let L; € Gry,2(Q) for i > 1 be an admissible sequence of rational
subspaces and let g; € G(R) be such that g; AHp, (]R)gf1 = AH;,(R). Let w; be the Haar
probability measure on the closed orbit

g AL, ()G c 6 /g ().

Then wu; converges to the Haar probability measure on G(A) / G(Q) asi — oo.

We will structure the proof somewhat differently as equidistribution in the first
component turns out to be the most difficult challenge in the proof. We fix an admissible
sequence of subspaces L; and a prime p, as in the definition of admissibility.

Recall (cf. §2.1.1) that, for any L € Gr,2(Q), the group Hy, is not semisimple but only
reductive. Let us describe the center as well as the commutator subgroup of H; . Define
the pointwise stabilizer subgroup

HY' = {g € Sping : gv=vforallv € L}.

pt
L+
in this case. The commutator subgroup of Hy is the semisimple group le[ and Hy is
isogenous to Hit x Tr (see Remark 2.1). As in §3, one can use the measure rigidity
result of Gorodnik and Oh [GO11], this time for subgroups of the form HEt. These are,
however, non-maximal so that we need to put in extra effort to rule out intermediate
groups. (Roughly speaking, the obstacle to overcome are ‘short vectors’ in L. Ellenberg
and Venkatesh [EV08] prove the theorem we are alluding to here assuming that L does not
contain ‘short vectors’ (see also Proposition 4.7).) Here, we use an averaging procedure
involving the torus Ty, as well as Duke’s theorem [Duk88] to show that these obstructions
typically do not occur.

We now outline the structure of the proof.

The center of Hy is equal to H' |, which we denote by Ty for simplicity, as it is abelian

e In §4.1, we show (in Lemma 4.4) that it is sufficient to prove equidistribution in each
of the factors of G, that is, to show equidistribution of the projections of the packets in
Theorem 4.1 to

SPing (@) /spin, @) SL2W/s1,@) S22 /s, ,@) @D

As mentioned in Remark 1.7, we use the elementary fact that ergodic systems are
disjoint from trivial systems for this reduction (see Lemma 4.2).

e To prove equidistribution in each of the factors of G, we first note that equidistribution
in the third factor can be verified as in §3, Proposition 3.3. Equidistribution in the
second factor turns out to be a variant of Duke’s theorem [Duk88], which we discuss
in §4.2.

e Due to the difficulties described above, equidistribution in the first factor of G is the
hardest to prove (cf. §4.3) and implies Theorem 4.1 by the first two items in this list.
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In §4.3.2, we collect a useful corollary of the above variant of Duke’s theorem which
we then use in Lemma 4.10 to prove that the subspaces in the packet do not contain
short vectors on average.

4.1. Reduction to individual equidistribution. As explained, we begin by reducing
Theorem 4.1 to the corresponding equidistribution statement in each of the factors of G.
To this end, we will use the following elementary fact from abstract ergodic theory.

LEMMA 4.2. Let X1 = (X, By, u1, 11) and Xy = (X3, Ba, 12, Tn) be measure-preserving
systems. Suppose that X1 is ergodic and that Xy is trivial (that is, T (x) = x for pa-almost
every x € X»7). Then the only joining of X1 and Xy is ;11 X wa.

Proof. Let v be a joining and let A; x Ay C X1 x X3 be measurable. It suffices to show
that v(A] X A2) = p1(A1)u2(A2). By T1 x Th-invariance of v,

b(A; X Az)Z/ Lo, ) Lay (x2) dv(x1, x2)
XIXXZ

M—1
1
— i L[ L) dve. ).
m=0 X1XX2

As X is ergodic, there is a pi-conull set By C X with

1 M—1
- 2 L (@) = (A

m=0

for every x € Bj, by Birkhoff’s ergodic theorem. As X, is trivial, there is a po-conull set
B> with T>(x) = x for all x € B,. We let B = B| x B and note that B has full measure
as it is the intersection of the full-measure sets B; x X and X x Bj (we use, here, that
v is a joining). Therefore,

S

l)(A] X Az) =

<=

f La, (T{"x1)1 4, (T5" x2) dv(x1, X2)
B

X 3
Tl

La, (T{"x1)1 4, (x2) dv(x1, x2)

Nk
i
—

N
L

La, (T{" x1) 1 4, (x2) dv(x1, x2)

I
—
|- 3

Il
=}

m
— / m1(A) 14, (x2) dv(x, x2) = 1 (A p2(A2),
B
as claimed. O]

We aim to apply Lemma 4.2 to any weak*-limit u of the measures in Theorem 4.1.
Thus, we need to establish some invariance of the latter. Let p be as in the definition of
admissibility.

https://doi.org/10.1017/etds.2023.107 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2023.107

24 M. Aka et al

LEMMA 4.3. There exists g € GL,(Q,) with the following property. Let L € Gr,2(Q,)
be the subspace spanned by the first two columns of g. Then w is invariant under the
subgroup of AH; @Qp) C G(Qp) where

AHL = {(h, m1(g" ' po()g), m2(g ™ po(h")g)") : h € HL}.

Moreover, the Q,-group AH is strongly isotropic.

Proof. First, we prove that there exists a compact subset K C GL,(Q)) suchthatg;, € K
for all i € N. Recall that g7, consists of a basis of an intermediate lattice Z" € Ay, C
(Z")* (cf. §2.3). The set K of elements g € GL,,(Q p) withZ, C g7, C (Z’;)# is compact
(in fact, it consists of finitely many cosets modulo GL,(Z) on the right).

By compactness of K, we may assume (by passing to a subsequence) that the sequence
(gL;)ien converges to some g € K. Let L denote the Q,-plane spanned by the first two
columns of g. Note that u is AH, (Qp)-invariant because each p; is AHL (Qp)-invariant.
Therefore, we are left to show that L is non-degenerate and AH.(Q p) 1s strongly isotropic.

We observe that L and L+ are non-degenerate. Indeed, since g;, — g, there exist
Zp-bases of the subspaces L; which converge towards a basis of L. Taking discriminants
of L; and L with respect to these bases, we obtain

discp o(L;) — discp g (L).

Since Z; /(va< )2 is discrete, discy, o (L;) is eventually constant and therefore disc,, o (L) =
discp o(L;) for i large enough; non-degeneracy of L follows. In particular, Lt is
non-degenerate.

We may now use Corollary 2.8 to show that AH; or, equivalently, that Hy, is strongly
isotropic. Since Hy, is strongly isotropic at p, the quadratic spaces (Q|.;, L;) and
(Ol 1, LI.J-) are isotropic over QQ,. By isotropy of the spaces (Q|.;, L;), we have a
sequénce of non-zero primitive vectors v; € L;(Z,) such that Q(v;) = 0 (after multiplying
with denominators). By compactness of Zj, \ pZ',, the sequence v; admits a limit v €
Zy, \ pZ, after passing to a subsequence. This limit clearly satisfies v € L(Z,) and
Q) =0,s0 (Q]L, L) is isotropic. An identical argument proves that (Q|; 1, L1) is also
isotropic, which proves (cf. Corollary 2.8) that Hy, is a strongly isotropic group. The proof
is complete. U

Recall that vy 1., ¥»,; denote the epimorphisms H;, — SOqLi JHp, — SOqL | » respec-
tively. [

LEMMA 4.4. Suppose that individual equidistribution holds, i.e. that:

(1) gi1Hy, (A)SpinQ(Q) is equidistributed in SpinQ(A) / SpinQ(Q);

(2)  gi2¥1,L (Hg, (A))SL2(Q) is equidistributed in SLy(A) / SLo(Q); and
() 8i3¥2, (Mg, (A)SL,—2(Q) is equidistributed in SLy,—>(A) / SLy—2(Q).
Then Theorem 4.1 holds.

Proof. Let p be a weak*-limit and choose L as in Lemma 4.3. By assumption, p is a
joining with respect to the Haar measures on each factor. We proceed in two steps and
apply Lemma 4.2 once in each step.
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For the first step, we choose 2 € Hy (Q)), which acts trivially on L but non-trivially
on L. As Hy, (Qp) is strongly isotropic, we can choose h so that it is unipotent and
not contained in any normal subgroup of Spin, (Q,). Since Spin, is simply connected
and Spin, (Q)) is isotropic, Sping, has strong approximation with respect to {p} (see,
for example, [PR94, Theorem 7.12]). In particular, SpinQ(Q p) acts ergodically on X =
Sping (A) / Spiny (Q) with respect to the Haar measure on X ;. By Mautner’s phenomenon
(see [MT96, §2] for this instance), & also acts ergodically. Embedding 4 diagonally (using
the embedding in Lemma 4.3), we can apply Lemma 4.2 for X, as above, and for
X, =SLy(A) / SLy(Q) and obtain that the pushforward of u to X x X, is the Haar
measure.

For the second step, we proceed similarly. Choose & € Hy (Q,), which acts trivially
on Lt but non-trivially on L. One checks that & acts ergodically on X x X, (via
nz(g’po(h’l)g)’ on the second factor; cf. Lemma 4.3). Applying Lemma 4.2 again
for X| x X7 and for X3 = SL,_»(A) / SL,,_>(Q), we obtain the claim. O

We prove the conditions of Lemma 4.4 in an order that is potentially peculiar at
first sight. The third assertion can be proved exactly as in §3 by applying [GO11] (see
Proposition 3.3) so we omit it here.

4.2. Individual equidistribution in the second factor. The aim of this section is to prove
the second assertion of Lemma 4.4. It follows from Duke’s theorem [Duk88] and its
generalizations (see, for example, [ELM V11, HM06]. Note that

gi2¥1,L(Hr, (A))SLa(Q) C 2S04, (A)SL2(Q).

Although the right-hand side is equidistributed by Duke’s theorem (specifically, for
example, by [ELMV11, Theorem 4.6] or—as we assume a splitting condition—by
[Wiel9]), one needs to verify that the left-hand side has sufficiently large ‘volume’.

PROPOSITION 4.5. For L € Gry2(Q) and any field K of characteristic zero, the image
Y1, (HL (K)) contains the group of squares in the abelian group SOy, (K).

Proof. The proof is surprisingly involved. First, observe that v ;(H;(K)) contains
Y1, (T (K)), which we now identify as the set of squares in SO, (K).

We identify the torus Ty, in terms of the Clifford algebra. Denote by C (respectively,
C% the Clifford algebra of Q (respectively, the even Clifford algebra of Q). Let vy, v
be an orthogonal basis of L and complete it into an orthogonal basis of Q. Consider
X = v € (CY)* (Lis non-degenerate), which satisfies the relationships

Xvi =v; X, Xv; = —-0Ww)vy = —v1 X, Xvy =—-1nX 4.2)

for all i > 2. Moreover, X% = — Q1) Q(v2) € Q*. Denote by o the standard involution
on C. Then o(X) = vov; = —X.

It follows directly from (4.2) that, for all a, b € K, the element t = a + bX satisfies
tv; = v;t fori > 2. Also,

tvio(t) = (a + bX)vi(a — bX) = a’vi +abXv; —abv X — b*Xv X
= a’v) —2abQ(vi)v2 — b* Q1) Q(v)v; € L,
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and similarly for vy. Therefore, ¢+ € Ty, if and only if
o)t =(a—bX)a+bX)=a>—b*X*=a’>—b*Q()Q(v2) = 1.
We set

F=Q(=0Q(1)Q(v)) = Q(—disco(L))
and embed F into C° via \/—disco (L) > X. The non-trivial Galois automorphism on F
is then given by o | r. To summarize, we obtain
T, (K)={te FRK :0(t)t =1}.

Also, recall that the special Clifford group surjects onto SOg, so that one may show
analogously that

SO,, (K) = (F ® K)*/K*.

The proposition then follows from Hilbert’s theorem 90, as in the proof of [Wiel9,
Lemma 7.2]. O]

COROLLARY 4.6. The orbits

gi2V1.L (HL, (A)SLy(Q) € SL2(A) /g1, ()

equidistribute as i — 00.

Proof. We deduce the corollary from existing literature and Proposition 4.5. We first claim
that, as i — oo, the sets

8280, (Z)yn1.L(HL, (A)SLy(Q) (4.3)

are equidistributed By Proposition 4.5, the abelian group SO, L (i)wl 1 (Hp, (A)) contains
the group SOq (Z)SOq (A)?, where SOq (A)? denotes the group of squares.

The orbit (4 3) is then a union of suborbits of the same form associated to these
subgroups. Any sequence of such suborbits is equidistributed, for example, by [HM06]
as the volume is of size discg (L;j)'/2t°M)  (Since the 2-torsion of the Picard group of the
order of discriminant discg (L;) has size disco (L 2D (see, for example, [Cas78, p. 342]),
the squares form a subgroup of size discp (L;) 1/2+0(1) ) We note that the result in [HMO06]
allows smaller volumes (where the exponent % can be replaced by % — n for some not too
large n > 0). In the case needed here, one can also apply Linnik’s ergodic method as we
assume a splitting condition at a fixed prime (see [Wiel9, §7]). By averaging, the claim
in (4.3) follows. The corollary is implied by (4.3) and ergodicity of the Haar measure on
SL,(A)/SL7(Q) under any diagonal flow. O

4.3. Individual equidistribution in the first factor. In view of the discussion in §4.2 and
Lemma 4.4, it suffices to show equidistribution of the packets

gi1Hz, (A)Sping (Q) € SPing () /spin ()

to prove Theorem 4.1. We proceed in several steps.
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4.3.1. An equidistribution theorem for the pointwise stabilizers. ~We first establish the
following proposition which shows that either orbits of the pointwise stabilizer are
equidistributed or there is some arithmetic obstruction.

PROPOSITION 4.7. Let (L;i); be a sequence of two-dimensional rational subspaces such

that there exists a prime p for which H]ztl_ (Qp) is strongly isotropic for all i. Let g; € G(R)

and assume that discg (L;) — 0o asi — o00. Then one of the following statements is true.

(1) The packets giH[Iiti (A)SpinQ(Q) are equidistributed in SpinQ(A) / SpinQ(Q) as
[ — o0.

(2)  There exists a rational vector v € Q" \ {0} and lattice elements §; € SpinQ(@) such
that

Qu = ﬂ §71.Li(Q).

The lattice elements, additionally, satisfy that there exist h; € leti (A) such that the
sequence gih;é; is convergent as i — 00.

Proof. We prove the proposition in exactly the same way we proved the first case in
Proposition 3.3; thus, we are brief. Let §; € Spiny, (Q) and a connected Q-group M < G
be as in Theorem 3.2. In particular,

5 'HY 5 <M

and it suffices for equidistribution to verify that M = Spin,. One can see that M strictly
contains §;- lHI;ji 8; for all i by using discg(L;) — oo and repeating the proof of the first
case in Proposition 3.3.

Contrary to the case treated in Proposition 3.3, the groups HEE_ are non-maximal. The
intermediate groups can, however, be understood explicitly: they are of the form HY,
where W is a rational line contained in 5 1.L,~ for all i. For a proof of this fact, we
refer to [EVO08, Proposition 4]; see also the arXiv version of the same paper, where the
authors give an elementary proof in the case n — 2 > 7. This concludes the proof of
the proposition. [

COROLLARY 4.8. Let the notation and the assumptions be as in Proposition 4.7 and
suppose that the second cas