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Introduction

In an earlier paper [ l l j we discussed the problem of when an (m, n)-complete
lattice L is isomorphic to an (m, n)-ring of sets. The condition obtained was simply
that there should exist sufficiently many prime ideals of a certain kind, and
illustrations were given from topology and elsewhere. However, in these illus-
trations the prime ideals in question were all principal, and it is desirable to find
and study examples where this simplification does not occur. Such an example is
the lattice Z(X) of all zero-sets of a topological space X; we refer to Gillman and
Jerison [5] for the simple proof that TAX) is a (2, <r)-ring of subsets of X, where
we denote aleph-zero by a.

Lattices of the form Z(X) have occurred recently in lattice theory in a number
of places, see, for example, Mandelker [10] and Cornish [4]. These writers have
used such lattices to provide examples which illuminate a number of results
concerning annihilators and Stone lattices. We also note that, following
Alexandroff, a construction of the Stone-Cech compactification can be given
using ultrafilters on Z(X); the more recent Hewitt realcompactification can be
done similarly, and these topics are discussed in [5]. A relation between these two
streams of development will be given below.

In yet another context, Gordon [6], extending some aspects of the work of
Lorch [9], introduced the notion of a zero-set space (X,2£). This is a structure
abstracted from the system consisting of a set X and the family 2£ of zero-sets of
the functions in a uniformly closed ring of real-valued functions defined on X.
Gordon's axioms naturally embody some of the lattice-theoretic properties of
Z(X) for a topological space X, but as we shall see below, they are more general.

We can now explain the contents of this paper. After listing our notation and
terminology, we give some lattice-theoretic results which are necessary for sub-
sequent analysis, but not without interest separately. We then give some
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186 T. P. Speed [2]

constructions, similar to Urysohn's, of certain functions separating disjoint sets.
They are more delicate than the usual since the family of sets used is closed under
(finite unions and) countable intersections only, and hence the notion of closure
is not available. Also these results enable us to give alternative proofs of some
results of Gordon [6], thus avoiding the use of proximity spaces and the con-
sequent application of Cech's difficult version of Urysohn's lemma, valid for
uniformizable proximity spaces. In §§4,5 we turn to the main task which is find
properties of Z(X) in addition to those which follow from its being a (2, <r)-ring
of sets. Our results include algberaic characterisations of Z(X) for X a compact,
respectively arbitrary, topological space.

To conclude this introduction we gratefully thank Drs. J. W. Baker and
C. J. Knight for listening to, and helpfully commenting upon, early versions of
the material presented below. Also the referee is to be thanked for pointing out
an incorrect result stated in the first version, and for remarks leading to some
shortening of proofs.

1. Notation and terminology

(1.1) Lattice theory. Most of the concepts from lattice theory we need are
defined somewhere in Birkhoff [1], while the more special ones relating to rings
of sets and special prime ideals are discussed in [11]. All our lattices will be assumed
to possess a zero (least element) 0 and unit (greatest element) 1, and all sublattices
will be assumed to contain the same zero and unit. The join and meet operations
are denoted V and A respectively, and thus a lattice can be considered as an
abstract algebra L = (L; V> A.0,1) with carrier L; we use the partial order on L
without comment. Typical elements of L will be denoted a, b, c, d, •••; typical
prime or minimal prime ideals will be denoted w, x, y, •••. We will abbreviate the
term (2, o-)-prime (see [11]) to tr-prime, in accordance with usual practice. A lattice
is said to have enough ideals of a specified type if distinct elements of the lattice
can be separated by ideals of that type. The lattice L is said to be a (2, a)-regular
sublattice of the lattice L' if L is a sublattice of L' such that countable meets of
elements in L' which exist in L' or L exist in both and coincide.

(1.2) Topology. Our general reference in this sphere is Bourbaki [2], while
the reference for the less common concepts used below, such as zeroset, z-filter,
realcompactification etc. is Gillman and Jerison [5]. We will reserve W, X, Y
for topological spaces; generic elements will be denoted by the corresponding
lower case letter; typical subsets will be written A, B, C, •••; typical open sets
G, •••; typical closed sets F, •••.

(1.3) General. For subsets A, B of a set X we write A u B, A nB for set
union and intersection respectively, and $A for the complement of A in X. The
empty set is denoted <j). If/: X -> Y is a map, we write fA for the direct image of
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[3] On rings of sets 187

A £ X and f~1B for the inverse image of B c Y; parentheses will only be included
where necessary. The unit interval { f e R : 0 ^ t ^ 1} is denoted [0,1].

2. Some lattice-theoretic results

Our first definition is based on the work of Cornish [4]; see also Kerstan [7]
§6, Definition 2 for a closely related definition.

DEFINITION 2.1. A lattice L is normal if for any pair a, b e L with a A b = 0,
there exists c, deL such that a /\ c = b Ad = 0 and c\/ d = 1.

It is not hard to see that a Hausdorff space X is normal if, and only if, the
lattice F(.Y) of all closed subsets of X is a normal lattice. Further it has been known
for some time that the lattice Z(Z) of all zero-sets of a topological space X is a
normal lattice.

A number of equivalent formulations of 2.1 in the case L a distributive lattice
are given in [4], and although we need none of these, we note the following: a
distributive lattice L is normal if, and only if, every prime ideal contains a unique
minimal prime ideal. This last result is known for Z(X) in the form: a prime
z-filter is contained in a unique z-ultrafilter, ([5] 2.13). We also refer to [4] for
many consequences of normality. For later use we note that any Boolean lattice
is normal.

Another topologically inspired concept we need is that of a G^-element of a
lattice L, and again we note that a similar idea occurs in [7].

DEFINITION 2.2. An element a e L is a Gs in the lattice L if there exists a
sequence {an: n ^ 1} of (not necessarily distinct) elements of L with the following
properties:

(a) a A an — 0 for all n;
(/?) if for b 6 L we have b A an = 0 for all n, then b ^ a.

Our final definition in this section is the following abstraction of the analogous
topological property.

DEFINITION 2.3. A lattice L is perfectly normal if (a) L is normal; and (/?)
every a e L is a Gs.

Clearly a Hausdorff space X is perfectly normal if, and only if, the lattice
F(X) is perfectly normal. Also it is easy to prove ([6] 2.3) that for any topological
space X, the lattice Z(X) is perfectly normal.

We turn to some algebraic consequences of the definitions.

LEMMA 2.4. A lattice L in which every a eh is a Gs is disjunctive.

PROOF: Take a ^ ft inL. By 2.2 (/?) there must exist an n such that a A bn # 0
while by 2.2 (a) b A bn = 0. This proves the result.
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A deeper result which we use frequently below requires the characteristic
property of a minimal prime ideal, Kist [8] viz: a prime ideal x of a distributive
lattice L is minimal if, and only if, for any a ex there exists b$x such that

LEMMA 2.5. Let y be a a-prime ideal in a (2,o)-complete perfectly normal
distributive lattice L. Then y is a minimal prime ideal.

PROOF: Let a ey; we must find b$y such that a A b = 0. Since a is a Gt

there exists a sequence {an: n ^ 1} with properties 2.2 (a), (/?). Thus a A an = 0,
and so normality of L implies the existence of two sequences {cn}, {dn} with:
a A cn = 0 = an A dn and cn\J dn=\ for all n. If, for some M, cn$y, then we are
through. Suppose now that cney for all n; then dn$y for all n, and by the <r-prime
property of y, d = f\ndn £ y. But for all n, an f\d ^ an Adn = 0 and so by 2.2 (/?)
d ^ a which contradicts o e y , d4y-

Hence a A cn = 0 for some cn £ >> and y is minimal.

3. Constructions similar to Urysohn's

In this section we will be working with a (2, <r)-ring of subsets of a set X
satisfying various conditions, and a careful analysis will enable us to extend the
construction of a continuous function separating disjoint closed sets to this
situation. We conclude by giving an alternative, direct, proof of a result of Gordon.

THEOREM 3.1. Let H be a (2, a)-ring of subsets of a set X. Then the following
are equivalent:

1) H is a normal lattice.
2) For any A, BeH with AC\B = <f> there exists a function j : X-* [0,1]

such that
(a) f~1FeH for every closed subset F of [0,1];
08) i c / - ' { 0 } , B c / - ' { i } ,

PROOF: 1) implies 2). We will explain the proof backwards thus motivating
the construction. Let A, BeH with A n B = <f> be given. Our aim is to define a
system
(*) <% = {1/(0, F(t): 0 ^ t^ 1} where

(i) $U(t)eH, F(t)eH, O g f g l ;

(ii) ,4 s l/(0),Bc Ct/(1);
(iii) If 0 g t < f' g 1 then 1/(0 £ F(0 <= l/(O-

Then we will see that the well-known procedure of defining a map/: X -* [0,1] by
writing, for xeX:

(**) /(x) = inf{(:xe[/(0}
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gives a function satisfying:

(iv) / - ' p u ] = F(t), f-'tui] = Ct/(O-

Having done this we may take an arbitrary closed subset [0,1] \ U „(<*„, /?„) of [0,1]
and find that

/ " 1 [ 0 ) l ] \ U («„,/?„)
R

= / " ' D {[0,aJu[/iBl]}
n

= n {/-i[o,«ju/-ui]}
n

eH as required.

Thus our function/so constructed satisfies (a) and (/?) of (3.1)2) above.
An so we turn to defining the system <W. To do this we first define a subsystem

&A, where A is the set of binary rationals in [0,1]:

(*)' * A = {U(d), F(8):8eA} where

(i)' $U(8)eH,F(8)eH, «5eA;
(ii)' A s 1/(0), B e Cl/(1);
(iii)' If 0 ̂  8 < 8' S 1 then (7(5) £ F(<5) £

Let us suppose for the moment that ^ A is defined and satisfies (i)', (ii)' and (iii)'.
Then if we write, for 0 g t g 1:

(t) 1/(0 = U t/(<5), F(f) = pi F(S),
i>t 3>t

we clearly obtain a system Ql satisfying (i) and (ii). We check (iii). Take t, t' with
O ^ K I ' ^ 1 ; there exists 5, 8', 3" e A with t < 5 < 5' < 5" < t', and so by (iii)'
and ft)

U(t) s U(S) £ F(S) £ U(8') £ F(d') £ U(5") £ C/(f).

Clearly F(8) £ F(0 £ F(8') follows from (f) and so with the above we obtain

U(t) £ F(S) £ F(0 S F(5') £ t / (O which implies (iii).

Thus our problem reduces to constructing <%A satisfying (i)', (ii)', (iii)'. This is
done inductively, using the representation A = {fc2~m: k = 0,1 , •••,2m; m ̂  0};
we define for m |J 0:

(*)" ^m = {U(k2~m), F(k2-m): 0 ̂  k g, 2m} where

(i)" CU(Jfc2 "") e ff, F(fc2 --) e H, 0 g k g 2m;
(ii)" A £ 1/(0), B £ Ct/(1);
(iii)" If 0 g k < I g 2m then l/(fe2"m) £ F(k2~m) £ [/(/2~m).

Then we put <̂ A = Um^0^m.
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Case m = 0. Put < 0̂ = {1/(0), F(0), 1/(1), F(l)} where

1/(1) = C#, F(l) = X, and

t/(0), F(0) are chosen so that Ct/(0)eH, F(0)eH, and

.4 £ 1/(0) £ f(0) c CB.

This can be done: for A n B = <f> implies, by the assumed normality of H, the
existence of V, FeH with:

AC\V = $, BnF = <f> and V\jF = X.

But these relations imply A £ C î F £ GB and C^ E -f s o that putting C/(0)
= C7 with F(0) = F satisfies our requirements.

Now suppose that for some m ^ 1, ^m-i is defined and satisfies (i)", (ii)"
and (iii)", and let us consider °Um. For even k we define U(k2~m), F(k2~m) in the
obvious way. For odd fc^l we note that (iii)" implies:

l/((fc - 1)2-m) £ F((k - l)2-m) £ l/((/c + 1)2-m).

The last inclusion can be written F((k - 1)2-m)n $U((k + l)2-m) = $ and so
we may proceed as for the case m = 0 with F replacing A, C U replacing B, and
find elements V, F of H with

F((fc - l)2"m) E C F E F C u((k + 1)2 -m).

Thus we may put U{kl~m) = C^ and F(fc2"m) = F and satisfy (iii)" thus
completing the inductive step.

And so we have constructed ^A and thus %, and it only remains to prove (iv)
is valid in order to complete the proof of 1) implies 2). Recall the definition (*•) of/.

If f(x) ^ ( for some t e [0,1] then for any 5 e A with 5 > t we have
x e U(S) s F(8) whence x e C\s>, F(S) = F(f).

On the other hand, if x e F(f), then for any 8 e A with 8 > t we may find
<5' e A with 8 > 8' > t and so x sF(8') £ V(8). Thus /(x) < 5 for each 8 > t
whence/(x) ^ /, and we have proved t h a t / ^ p ) , f] = F(i). The other part of (iv)
is proved similarly.

2) implies 1) Let us assume that A n B = <j> for A, B e H. By 2) there exists
/ : .* -> [0,1] such that A£ / " 1 {0} , B s / - i { i } a n d / ^ F e t f for each closed
F £ [ 0 , l ] . If we take F = [0,±] and [ i , l ] we obtain £> = / " 1 [ 0 , i ] eH,
C = / " ^ i , 1] eH such that A n C = ^, B n Z> = 0 and C u Z) = X, as required.

REMARK 3.2. If H = F(X) is the lattice closed subsets of a topology on X
then 3.1 is just Urysohn's lemma. Another special case is when H = Z(X) is the
lattice of all zero-sets of a completely regular (Hausdorff) space X. In this case we
have proved (cf. [5] 1.15) that disjoint zero-sets can be separated by a continuous
function.

https://doi.org/10.1017/S1446788700014208 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014208


[7] On rings of sets 191

Our application of 3.1 is in the following result:

THEOREM 3.3. Let H be a normal (2,a)-ring of subsets of a set X. Then the
following are equivalent for an element AeH:

1) There exists a sequence {An: n ^ 1} of elements of H with the following
properties:

(a) AC\An — ^> for all n;
OS) if for BeH we have B n An = (j> for all n, then B s A.

2) There exists a function f: X ->• [0,1] such that
(a) f~1FeH for every closed subset F of [0,1];
(p) A=f~l{0).

PROOF: 1) implies 2). By 3.1 there exists /„: X-> [0,1] satisfying 2) (a) such
that A c.f~l{Qi) and An £f~* {1}. This uses only 1) (a) and works for all n. Now
consider the element Dnsi /n 'M0} of H; clearly ,4 £ D n ^ i / n ' W . a n d for any n,

n g l n g l

Thus by 1) (/?) ^ 2 fl»j i/«~ H0} a n d i f w e d e f i n e / : A" -> [0,1] by

/ = 2 2-"/n

it is easy to s e e / " 1 ^ } = Hngi /n 1 {0} = A, and Lemma 2.4 of [6] implies that
/ satisfies 2) (a). This completes the proof of the first implication.

2) implies 1). If A =f~1{0} for a function / satisfying 2) (/?), then we may
define An =f~1[l In, 1] for n ^ 1, With this definition

(U = U n̂
nil

and conditions 1) (a), 1) (/?) are readily checked.
The following corollary can easily be proved using the two previous results.

COROLLARY 3.4. Let H be a (2, a)-ring of subsets of X. Then the following are
equivalent:

1) H is a perfectly normal lattice.
2) For every AeH there exists a function f: X -* [0,1] such that:

(a) f~1FeH for every closed subset F of [0,1];
OS) A=f-i{<S).

In the terminology we are using, a zero-set space is a pair (X, 2£) where X is a set
and i f is a perfectly normal (2, (r)-ring of subsets of A' which separates points of X.
With any such space Gordon associates the set S(X, 3?) of all functions/: X -> R
such tha t / " 1 / " £ 2£ for every closed subset F of R; such functions are called zero-
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set functions. The lemma ([6] 2.4) used in the previous proof shows that S(X, 2T) is
a uniformly closed ring of functions on X; also S(X, 2T) separates points of X and
contains the constant functions.

We give a new proof of [6] 3.5 viz:

THEOREM 3.5. Let (X, 2£~) be a zero-set space and S(X, 2T) the family of all
zero-set functions on X. Then

PROOF. By 3.4 every A e 2£ is the zero-set of a suitable function of S(X, 2T);
if feS(X,&) then Z( / ) = f~1{0}e 2T and the proof is complete.

4. The lattice Z (X) for X compact

It is well known that a completely regular space X is compact if, and only if,
every z-ultrafilter is fixed. However, as in the case of the ring C(X), the notion of
fixed (resp. free) is not a lattice-theoretic invariant and so we must proceed
slightly differently. At this point also, our treatment begins to diifer from that in [6]
since we only haye the lattice Z(Z) and not X itself.

The main result of this section is given a proof independently of the discussion
in the next section, although it can also be derived from results there. We do this
because the simplications which occur when X is compact allow quite different
techniques to be used.

THEOREM 4.1. Let L be a lattice. Then the following are equivalent:
1) L is isomorphic to the lattice Z(X)for a compact space X.
2) (a) L is a (2,a)-complete lattice;

(P) Every minimal prime ideal o /L is a-prime;
(y) L is perfectly normal.

The space X of 1) is NOT unique up to homeomorphism.

PROOF. 1) implies 2). We will show that for any compact space X the lattice
Z(X) has properties 2) (a), (/J), (y); these are obviously lattice invariants and so the
implication will be proved. But we have already noted the validity of (a), (y) for X
general, and (/?) follows since every minimal prime ideal of Z(X) is exactly those
elements not belonging to a particular fixed ultrafilter ux = { a e Z ( I ) : x e o } ,
where x e X i s unique. Clearly such a minimal prime is <7-prime, completing the
proof.

2) implies 1) Suppose we are given a lattice L satisfying (a), (/?), (y) of 2). Let
X denote the set of all minimal prime ideals of L, and equip X with the topology
whose closed sets are intersections of the sets in L' = {Xa:aeL} where for
a<=L, Xa = {xeX: a£x}. We will prove that X so defined is a compact
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(Hausdorff) space, and that the family of all zero-sets of X is exactly L', a lattice
which will be shown to be isomorphic to L.

We prove this last remark first. Condition 2) (y) together with Lemma 2.5
above implies that L is disjunctive, and so by a result which is well known (see
e.g. [8]) a -»Xa is bijective. It can be readily checked that for a, b e L, Xa u Xb

= Xavb, and since the ideals in X are all ff-prime, we find that for {an: n jS 1}
L>f)n^i Xan = Xa where a = A n g i an. The latter exists, of course, by 2) (a).

The proof that X, so topologised, is a compact (Hausdorff) space given (in a
dual form) in [4] Theorem 7.3 hence we omit it.

And so it remains to prove that L is exactly the family of all zero-sets of X.
Now X is normal and so it is enough to prove that L is exactly the set of all closed
Ga-subsets of X. But every a e L is a Gs and this is easily seen to imply

= U X
an,

proving that Xa is a Ga-subset, by definition, closed, of X. This proves half of
what is required, and to complete the proof we take an arbitrary closed Ga-subset
F of X. By definition, there is a sequence Mn of subsets of L, and a subset B £ L
such that

n xb = F = n ( u &
i t B ng l UeiW,

We concentrate on the right-hand equality first. Since F is compact, for any n ^ 1
there is a finite subset mn £ Mn such that

where an = Aaemn
a- T h u s w e s e e t h a t

f| *6 = F = PI (X_.
b e B n£ 1

Now each XOn is compact, and so for each n there is a finite subset Bn £ J5
such that

-Xfc,, = ( l Xb £ U-̂ o,>

where bn = A&eflA Putting these results together gives

F = ( l u-̂ un 2 ( I X6n 2 ( l X6 = F,
n21 ngl 6eB

whence F = Dn>i -^*. = -̂ *> where b = f\nilbn, and in this last step we have
used the fact that b -*• Xb is a (2, cr)-homomorphism. The proof is now complete.

An interesting byproduct which will be explained in the next section is the
following:
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COROLLARY 4.2. Let Y be a pseudocompact topological space. Then there is a
compact space X such that Z(Y) and Z(X) are lattice isomorphic.

PROOF. Putting together 5.8(b) and 5.14 of [5] we find that for Y
pseudocompact Z(Y) satisfies (4.1) 2) (/?) and so the result follows.

In particular, the corollary shows that non-homeomorphic pseudocompact
spaces can have isomorphic lattices of zero-sets. We will see that this cannot
happen when the spaces are both realcompact. Finally, we note that the space X
in 4.2 can be taken to be PY, or any space Y ^ X ^ pY.

5. The lattice Z(X) for a general X

In this section we characterise the lattice Z{X) algebraically, for a general
topological space X. We begin with a reduction, relying heavily upon results
from [5].

PROPOSITION 5.1. For every topological space X there exists a completely
regular space Y and a continuous map x of X onto Y such that the map:

Zr(g) -> ZA(g o T)

is an isomorphism of Z(Y) onto Z{X).

PROOF. See [5] 3.9. The details are easy, and omitted.

The next stage of our reduction is again similar to the ring case.

PROPOSITION 5.2. For every completely regular space X there exists a
realcompact space vX and a continuous map x of X into vX such that the map:

a -» clvXa

is an isomorphism of Z(X) onto Z(ixY)).

PROOF. See [5] 8.8.

From now on we will suppose, where appropriate, that X is realcompact.
As a first attack on our characterisation problem we abstract the lattice-theoretic
properties of a zero-set structure.

DEFINITION 5.3. A lattice L is a z-lattice if

(a) L is (2, <r)-complete;
(P) L has enough a-prime minimal prime ideals;
(y) L is perfectly normal.

For any topological space X the lattice Z(X) is a z-lattice. To see this we need
only check (/?) as (a) and (y) of 5.3 have already been noted. Now for any xeX
the family j x = {aeZ(X): x$a} is easily seen to be a a-prime ideal of Z(X) and
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there are certainly enough of these ideals to distinguish elements of TAX). Thus (/?)
will be satisfied if we show that all the <7-prime ideals jx are minimal. But this
follows from 2.5 above; alternatively a direct proof can be given.

We will see below that although not every z-lattice is isomorphic to a lattice
Z(X), such a lattice can be embedded as a sublattice of Z(X) for a suitable X in a
particularly precise manner, which it is convenient to formulate separately. For
any z-lattice L (possibly with superscripts) we denote by XL, or just X if no
ambiguity is possible, (with the same superscripts) the set of all a-prime minimal
prime ideals of L; for a e L we write X\ = X, = {x e XL: a $ x}.

DEFINITION 5.4. A z-lattice L is said to be a z-sublattice of the z-lattice L',
equivalently, L' is a z-extension of L, if

(a) L is a (2,<r) regular sublattice of L ' ;
(fi) the map x ' - > x ' H L i s a bijection from X' onto X;
(y) for any beL',X'b= f]{X'a: aeL,a^b}.

We will see that the property of being a z-sublattice is transitive, a fact needed
below.

LEMMA 5.5. / / L is a z-sublattice ofh', and L ' is a z-sublattice o/L", then
L is a z-sublattice of L".

PROOF. Clearly (a) and (/?) are true so we need only prove (y). Let b e L. We
will show that

is true, and then the fact that for any c e L"

will complete the proof. Now suppose that x" e X" is such that a $ x' for all a e L
with a ^ b. Then a$x" nL = x' say, for all a e L such that a ^ b, and so b i x',
since L' is a z-extension of L. Thus we have proved b $ x" and the equality (*) is
proved.

The following results is the main step in our characterisation theorem.

THEOREM 5.6. Let L be a z-lattice. Then X = X1' is a realcompact space,
and L is isomorphic to a z-sublattice of the z-lattice Z(X).

PROOF. We give X the topology whose closed subsets are intersections of
sets in LI = {Xa: aeL}. Exactly as in 4.1 above we can prove that L is isomorphic
to L' where L' is the set L' under the operations of finite set-union and countable
set-intersection; the isomorphism is a (2, a)-homomorphism.

https://doi.org/10.1017/S1446788700014208 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014208


196 T. P. Speed [12]

Thus L' is a z-lattice, and so the results of §3 above will apply. We prove that
X is completely regular. Take a point xeX and a closed set F = C\{Xa'- aeM}
not containing x. Then there is Xa £ F with x £ Xa; since a in L and hence Xa in
L' is aG(,XE Xb with XaC\Xh = <j> for a suitable b e L. By Theorem 3.1 there is a
continuous function/: Z -> [0,1] with/(x) = 1 a n d / - 1 ^ } 2 F. Now Corollary
3.4 shows that every element of L is a zero-set of X and so L £ Z(X). Before we
show that L' is a z-sublattice of Z(X) it will be necessary to prove that X is real-
compact. Let r\ be a real z-ultrafilter on AT; then y = {aeZ(X): a £r\} is a cr-prime
minimal prime ideal on Z(X), and so j ' = y nL ' is a cr-prime ideal of L'. Lemma
2.5 implies that y' is in fact a minimal prime ideal, and so y' = x for some unique
xeX. Now the intersection of all the zero-sets in r\ is, by the definition of the
topology, an intersection of all the zero-sets of the form Xa in t] and this intersection
contains x; thus X is realcompact by [5] 5.15.

Having now established that L is isomorphic to the sublattice L' of the lattice
Z(X) where X is a realcompact space, our proof is completed by proving that
Z(X) is a z-extension of L'. This is really quite easy once we observe that the
z-lattice Z(X) has a space XZ(X) of cr-prime minimal prime ideals which is
canonically homeomorphic to X under the map x -> jx = {aeZ(X): x$a}.
Referring to 5.4 we see that (a) is valid, (/}) follows from Lemma 2.5 and the
preceding remark, and (y) simply expresses the fact that every zero-set in X (more
precisely, its homeomorph XZ{X)) is closed and hence an intersection of the basic
closed sets in L (more precisely, their copies inside XZ(X)). Thus the theorem is
proved.

It might have been hoped that in the previous construction, L' actually
coincides with Z(X), but as already observed, this is not generally so. After
examining an example which validates this assertion we formulate and prove the
maximality property possessed by lattices Z(X), and our main characterisation
theorem quickly follows.

EXAMPLE 5.7. Consider the z-lattice B = B[0,1] of all Borel subsets of [0,1].
Then B is a z-sublattice of the power set P = P[0,1].

PROOF. TO see this we also need to refer to F = F[0,1], the z-lattice of all
closed sets (= zero-sets) of [0,1] with the usual topology. Before the assertion
can be proved we need to describe the cr-prime minimal prime ideals of each of
F, B, and P. Since [0,1] is compact those of F are all fixed, i.e. of the fovmjx nF
where jx — {a e P: x $ a], for x e [0,1]. Also the non-measurability of the cardinal
of [0,1] implies that the cr-prime minimal prime ideals of P are all of the form jx

for x E [0,1]. Now all three of F, B and P are perfectly normal and so Lemma 2.6
implies that every cr-prime minimal prime ideal of B is of the form jx n B for some
x e [0,1]. This last result is also a consequence of 8.4 [6].

Turning now to proving that B is a z-sublattice of P we note that 5.4 (a) is
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obviously true, (/?) has already been remarked upon, and so only (7) remains. But
each singleton {x} belongs to B and so (y) is easily seen to be equivalent to

[0,l]\fe = D [0,1] \{x}, fee: [0,1];
xeb

where the sets in the right-hand intersection are all in B. Thus B is a proper
z-sublattice of P.

Our next result shows that a zero-set lattice Z(X) can never be a proper
z-sublattice of a z-lattice, and this is the point where we can see why Gordon's
results [6] differ in some respect from the usual topological ones. Simply put, his
zero-set structures are more general than those which can arise in the topological
context, and so a result such as: a product of pseudo-compact zero-set spaces is
pseudo-compact, can be valid in the former while failing in the latter. Put another
way, z-lattices such as the B of 5.7 can never arise as Z(X) for a topological space
X. We note that if this could happen, results of Mandelker [10] imply that X
would be at least a P-space!

THEOREM 5.8. Suppose X and Y are realcompact spaces and that Z{Y) is
isomorphic to a z-sublattice L ofZ(X). Then Z(Y) is isomorphic to Z(X).

PROOF. We prove that X and Y are homeomorphic under the stated as-
sumptions. It is easy to see that the space of cr-prime minimal prime ideals of
Z{X) topologised as in 5.6 is canonically homeomorphic to X; we denote it X*
with points ŷ  = {a eZ(X): x$a). Similarly forZ(Y). Thus we have the following
diagram, where L = {Xzm: aeL} and Z' = {Xfm:beZ(X)}:

Z(7) ^ L s Z (X)

I I \
L ' c Z ' £ Z(X*)

where all the maps which are not inclusions are isomorphisms; the vertical maps
are as in the construction 5.6 and the diagonal map is defined using the homeo-
morphism x -> j x .

Now (5.4) (j3) states that the map

is a bijection; by construction it is continuous from X* onto XL. We show that it
is a closed map. A typical closed subset F of X* is of the form

F= n x*
b=B

where B £ Z(X). Condition (5.4) (y) states in this context that for each beZ(X),
X* = H {X*: aeL, a^b} whence
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F= fl X*
at A

where A £ L. But now we may apply the bijection above, and we find that
F -* rioe^-^a' a closed subset of XL. Thus X* is homeomorphic to XL and so we
deduce that X is homeomorphic to Y. Finally we complete the proof by noting
that the lattice of zero-sets of a topological space is a topological invariant.

We can now finish off with the characterisation theorem.

THEOREM 5.9. The following are equivalent for a lattice L.

1) L is isomorphic to Z(X) for a topological space X.
2) (a) L is (2,a)-complete;

(/0 L has enough a-prime minimal prime ideals;
(y) L is perfectly normal;
(5) L is isomorphic to every z-extension L ' o/L.

PROOF. 1) implies 2). Properties (a), (j?) and (7) have already been observed
Suppose that Z(X) is a z-sublattice of a z-lattice L'. Noting that we may suppose
X is realcompact by 5.2, we have the following diagram:

Z(X) £ L'

I I
Z' <= L" S Z(XL)

where the vertical maps are isomorphisms as in the construction of 5.6, and the
horizontal maps are inclusions. By the transitivity of the property of being a
z-sublattice, Z ' is a z-sublattice of Z(XL') isomorphic to Z(X), and so Z(Z) ^ L'
follows from 5.8.

2) implies 1). We have already proved that if L satisfies 2) (a), (j8), (y), L is
isomorphic to a z-sublattice L' of Z(X) for a completely regular space X, and so
by (<5) we may conclude that L s Z(X).
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