NOTES 155

have $F'F = E'X$, $F'C = E'Y$ and $\angle F' < \angle E'$ and so, by the open mouth theorem, it follows that $BE > XY > CF$ as required.

Acknowledgement

I am very grateful to the Editor for his many suggestions that greatly improved the exposition.

References

- 1. T. L. Heath (editor), *The thirteen books of the elements* (Books I and II), Dover (2000).
- 2. R. S. Millman and G. D. Parker, *Geometry a metric approach, with models*, (2nd edn), Springer, New York (1999).
- 3. A. Berele and J. Goldman, *Geometry: theorems and constructions*, Prentice Hall, New Jersey (2001).

e-mail: *mowhajja1234@gmail.com, mowhajja@yahoo.com*

107.13 An interesting generator of Archimedean circles

A very simple but, we think, very hard to prove, Proposition 1 for Archimedean circles (see [1, 2, 3]) led us to an interesting generalisation, and unexpectedly not so hard to prove, Proposition 2.

Proposition 1: From a point P on a circle with centre O and diameter AB we drop the perpendicular *PC* to *AB* such that $AC = 2a$, $CB = 2b$. From *P* we draw the tangents PQ, PR, to these circles and the perpendicular from O meets the line \mathbb{CP} at the point X. The symmetric circles relative to XO , namely $I(r)$ and $J(r)$ that are tangent to the line QR and internally tangent to the circles with diameters AB, XO are Archimedean circles i.e.

$$
r = \frac{ab}{a+b}.
$$

If S is the external centre of similitude (Figure 1) of the circles with diameters AC, CB then the inversion with pole S and power $SA \cdot SB = SC^2$ transforms the circles with diameters AC , CB and maps to itself the circle $P(PC)$ that passes through Q, R. Hence the inverse of Q lies on the circle $P(PC)$ and the circle with diameter CB and hence this point is R, which means that the line QR passes through S (Figure 1).

156 THE MATHEMATICAL GAZETTE

So in order to prove Proposition 1 it is sufficient to prove for the circle *J* (*r*) the more general Proposition 2 below

Proposition 2: From a point P on a circle with centre O and diameter AB we drop the perpendicular PC to AB such that $AC = 2a$, $CB = 2b$. On the extension of \mathbb{CP} we take an arbitrary point N and from the external centre of similitude of the circles with diameters AC, CB we draw a line L perpendicular to NO. The circle $X(r)$ that is tangent to the line L and internally tangent to the circles with diameters AB, NO is an Archimedean circle i.e.

$$
r = \frac{ab}{a+b}.
$$

Proof: If O is the centre of Cartesian coordinates and AB is the axis of abscissas then (Figure 2) we have the points $A(-a - b, 0)$, $B(a + b, 0)$, and the midpoints of AC, CB, $O_1(-b, 0)$, $O_2(a, 0)$. If is the external centre of similitude of the circles with diameters AC , CB and then from $\frac{S_1}{S_2} = \frac{a}{r}$ or $\frac{S_1}{S_1} = \frac{a}{r}$ we get $S_1 = \frac{a}{r}$. Let $Y(r_1)$ be the circle with diameter NO and $X(r)$ be the circle that is internally tangent to the circles $Y(r_1)$, $O(a + b)$ and to the line L. *C* (*a* − *b*, 0) and the midpoints of *AC*, *CB*, $O_1(-b, 0)$, $O_2(a, 0)$. If $S(S_1, 0)$ *AC CB* $a < b$ then from $\frac{O_1 - S_1}{O_1 - S_1}$ $O_2 - S_1$ $=\frac{a}{b}$ $-b - S_1$ $a - S_1$ $= \frac{a}{b}$ we get $S_1 = \frac{a^2 + b^2}{a - b}$ $Y(r_1)$ be the circle with diameter *NO* and $X(r)$

Let K be the intersection of L with ON and M the orthogonal projection of X on ON. It is obvious that $XY = r_1 - r$, $OX = a + b - r$ and if $OK = d$ that $OM = d + r$, $MY = r_1 - r - d$. The points *K*, *C* are on the circle with diameter *SN*, so the power of *O* gives $ON \cdot OK = SO \cdot OC$ or

$$
2dr_1 = a^2 + b^2. \tag{1}
$$

The Pythagorean theorem gives

$$
OX^2 - XY^2 = OM^2 - MY^2
$$

or

$$
(a + b - r)^{2} - (r_{1} - r)^{2} = (d + r)^{2} - (r_{1} - r - d)^{2}
$$

or

$$
(a + b)^2 - 2r(a + b) = 2dr_1
$$

or

$$
a^2 + b^2 + 2ab - 2r(a + b) = a^2 + b^2
$$

or

$$
r = \frac{ab}{a+b}
$$

and here ends the proof.

Note: Since $ON \ge OP = a + b$ the line *L* intersects the circles $O_1(a)$, $O_2(b)$ with diameters AC , CB or is tangent to them because the distance d_1 of O_1 from the line L is

$$
d_1 = \frac{O_1 S \cdot OK}{OS} = \left(-b + \frac{a^2 + b^2}{b - a}\right) \frac{b - a}{ON} = \frac{a(a + b)}{ON} \leq a.
$$

<https://doi.org/10.1017/mag.2023.27>Published online by Cambridge University Press

Special Cases

i) If $N \equiv P$ then the line L is tangent to the circles with diameters AC, CB.

ii) If $a = b$ then Proposition 1 and Proposition 2 cannot hold because the line L is parallel to AB , $C \equiv O$ and the perpendicular from O to L coincides with CP . In this case from (1) we conclude that, given the point N on the perpendicular bisector of *AB* not inside the circle, the line *L* must be parallel to AB at a distance $d = 2a^2 / ON$ and can be constructed as follows. The semicircle with diameter O_1B , where O_1 is the midpoint of AO, meets the segment ON at M, (Figure 3) and on the circle with diameter ON we take a point T such that $OT = OM$. The parallel from T to AB is the required line L.

So we have the following:

Proposition 3: From a point N on the perpendicular bisector of a diameter AB of the circle $O(2a)$, we draw a parallel line L to AB at a distance $d = 2a^2 / ON$, (constructed as above). Then the circle which is tangent to the line L and tangent internally to the circles with diameters AB , ON is an Archimedean circle with $r = \frac{1}{2}a$ relative to the congruent circles with diameters AO, OB.

References

- 1. Archimedes, *The works of Archimedes*, Dover Publications Inc., Mineola, NY, 2002 (reprint of the 1897 edition and the 1912 supplement, Edited by T. L. Heath).
- 2. F. M. van Lamoen, *Online catalogue of Archimedean circles*, see http://home.kpn.nl/lamoen/wiskunde/Arbelos/Catalogue.htm

NOTES 159

3. C. W. Dodge, T. Schoch, P. Y. Woo and P. Yiu, Those ubiquitous Archimedean circles, *Math. Mag*., **72** (1999) pp. 202-213.

Published by Cambridge University Press on *I. Zanna 27,* behalf of The Mathematical Association *Thessaloniki 54643, Greece*

10.1017/mag.2023.27 © The Authors, 2023 NIKOLAOS DERGIADES e-mail: *ndergiades@yahoo.gr* QUANG HUNG TRAN *High school for Gifted students, Hanoi University of Science, Vietnam National University at Hanoi, 182 Luong The Vinh, Thanh Xuan, Hanoi, Vietnam* e-mail: *hungtq@vnu.edu.vn*

In the Pipeline for July 2023

Groups, conics and recurrence relations *A. F. Beardon*

The repayment of financial debt: some mathematical considerations

How effective is the efficiency gap? *Thomas Q. Sibley*

Yet more characterisations of parallelograms

The lost boarding pass problem: converse results

On the circumradius of an integer triangle

Developing new picture proofs that the sums of the first odd integers are squares

A graph related to the Euler function *φ Nima Ghanbari,*

Approximating Lipschitz and continuous functions by polynomials; Jackson's theorem

What makes a good maths teacher? *Tony Gardiner,*

John Stubbs and Jacob Adetunji Mowaffaq Hajja and Panagiotis T. Krasopoulos Shohei Kubo, Toshio Nakata and Naoki Shiraishi

Emrys Read

Chris Sangwin and Fenner Stanley Tanswell

Saeid Alikhani G. J. O. Jameson

Chris Tew

10.1017/mag.2023.28 © The Authors, 2023

Published by Cambridge University Press on behalf of The Mathematical Association