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have ,  and  and so, by the open mouth
theorem, it follows that  as required.

F′F = E′X F′C = E′Y ∠F′ < ∠E′
BE > XY > CF
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107.13 An interesting generator of Archimedean circles

A very simple but, we think, very hard to prove, Proposition 1 for
Archimedean circles (see [1, 2, 3]) led us to an interesting generalisation,
and unexpectedly not so hard to prove, Proposition 2.

Proposition 1: From a point  on a circle with centre  and diameter  we
drop the perpendicular  to  such that , . From  we
draw the tangents , , to these circles and the perpendicular from
meets the line  at the point . The symmetric circles relative to ,
namely  and  that are tangent to the line  and internally tangent to
the circles with diameters ,  are Archimedean circles i.e.

P O AB
PC AB AC = 2a CB = 2b P

PQ PR O
CP X XO

I (r) J (r) QR
AB XO

r =
ab

a + b
.

If  is the external centre of similitude (Figure 1) of the circles with
diameters  then the inversion with pole  and power
transforms the circles with diameters  and maps to itself the circle

 that passes through , . Hence the inverse of  lies on the circle
 and the circle with diameter  and hence this point is , which

means that the line  passes through  (Figure 1).

S
AC, CB S SA · SB = SC2

AC, CB
P (PC) Q R Q
P (PC) CB R

QR S
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FIGURE 1

So in order to prove Proposition 1 it is sufficient to prove for the circle
 the more general Proposition 2 belowJ (r)

Proposition 2: From a point  on a circle with centre  and diameter  we
drop the perpendicular  to  such that , . On the
extension of  we take an arbitrary point  and from the external centre of
similitude of the circles with diameters ,  we draw a line
perpendicular to . The circle  that is tangent to the line  and
internally tangent to the circles with diameters ,  is an Archimedean
circle i.e.

P O AB
PC AB AC = 2a CB = 2b

CP N
AC CB L

NO X (r) L
AB NO

r =
ab

a + b
.

Proof: If  is the centre of Cartesian coordinates and  is the axis of
abscissas then (Figure 2) we have the points , ,

 and the midpoints of , , , . If
is the external centre of similitude of the circles with diameters ,  and

 then from  or  we get .

Let  be the circle with diameter  and  be the circle that is
internally tangent to the circles ,  and to the line .

O AB
A (−a − b, 0) B (a + b, 0)

C (a − b, 0) AC CB O1 (−b, 0) O2 (a, 0) S (S1, 0)
AC CB

a < b
O1 − S1

O2 − S1
=

a
b

−b − S1

a − S1
=

a
b

S1 =
a2 + b2

a − b
Y (r1) NO X (r)

Y (r1) O (a + b) L
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FIGURE 2

Let  be the intersection of  with  and  the orthogonal projection
of  on . It is obvious that ,  and if

 that , . The points ,  are on the
circle with diameter , so the power of  gives  or

K L ON M
X ON XY = r1 − r OX = a + b − r

OK = d OM = d + r MY = r1 − r − d K C
SN O ON · OK = SO · OC

2dr1 = a2 + b2. (1)
The Pythagorean theorem gives

OX2 − XY2 = OM2 − MY2

or

(a + b − r)2 − (r1 − r)2 = (d + r)2 − (r1 − r − d)2

or

(a + b)2 − 2r (a + b) = 2dr1

or

a2 + b2 + 2ab − 2r (a + b) = a2 + b2

or

r =
ab

a + b
and here ends the proof.

Note: Since  the line  intersects the circles ,
with diameters ,  or is tangent to them because the distance  of
from the line  is

ON ≥ OP = a + b L O1 (a) O2 (b)
AC CB d1 O1

L

d1 =
O1S · OK

OS
= (−b +

a2 + b2

b − a ) b − a
ON

=
a (a + b)

ON
≤ a.
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Special Cases
i) If  then the line  is tangent to the circles with diameters .N ≡ P L AC, CB

ii) If  then Proposition 1 and Proposition 2 cannot hold because the
line  is parallel to ,  and the perpendicular from  to  coincides
with . In this case from (1) we conclude that, given the point  on the
perpendicular bisector of  not inside the circle, the line  must be parallel
to  at a distance  and can be constructed as follows. The
semicircle with diameter , where  is the midpoint of , meets the
segment  at , (Figure 3) and on the circle with diameter  we take a
point  such that . The parallel from  to  is the required line .

a = b
L AB C ≡ O O L
CP N

AB L
AB d = 2a2 / ON

O1B O1 AO
ON M ON

T OT = OM T AB L

So we have the following:

T
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FIGURE 3

Proposition 3: From a point  on the perpendicular bisector of a diameter
 of the circle , we draw a parallel line  to  at a distance

, (constructed as above). Then the circle which is tangent to
the line  and tangent internally to the circles with diameters  is an
Archimedean circle with  relative to the congruent circles with
diameters , .

N
AB O (2a) L AB
d = 2a2 / ON

L AB, ON
r = 1

2a
AO OB
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