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CONTINUOUS LOGIC AND BOREL EQUIVALENCE RELATIONS

ANDREAS HALLBÄCK, MACIEJ MALICKI, AND TODOR TSANKOV

Abstract. We study the complexity of isomorphism of classes of metric structures using methods from
infinitary continuous logic. For Borel classes of locally compact structures, we prove that if the equivalence
relation of isomorphism is potentially Σ0

2, then it is essentially countable. We also provide an equivalent
model-theoretic condition that is easy to check in practice. This theorem is a common generalization of
a result of Hjorth about pseudo-connected metric spaces and a result of Hjorth–Kechris about discrete
structures. As a different application, we also give a new proof of Kechris’s theorem that orbit equivalence
relations of actions of Polish locally compact groups are essentially countable.

§1. Introduction. The notion of Borel reducibility of definable equivalence
relations was introduced in the foundational paper of Friedman and Stanley [16] and
since then, it has become a central part of modern descriptive set theory. In [16], the
authors were interested in one specific kind of equivalence relations—isomorphism
of countable structures—and this still remains one of the best studied facets of the
general theory. This setting allows to use methods from descriptive set theory, Polish
group dynamics, and infinitary logic and their interplay leads to a rich and detailed
theory. It was further developed in the papers of Hjorth–Kechris [24] and Hjorth–
Kechris–Louveau [25], where the Borel orbit equivalence relations of the infinite
symmetric group S∞ were studied in detail. We recommend the book of Gao [17]
as a general reference for the more basic results.

Hjorth’s work on turbulence [22] and many papers by various authors following
it showed that a large class of equivalence relations coming from analysis cannot
be captured by isomorphism of countable structures. This fueled the research on
general orbit equivalence relations of Polish groups, mostly using methods from
dynamics and Baire category. In many cases, proofs were driven by intuition from
discrete model theory but no appropriate model-theoretic framework was available
to formalize these ideas and they were often translated to the language of dynamics.
Two notable examples are the papers of Becker [1] and Hjorth [23] (see also [31]).

However, with the development of continuous logic in recent years, it is now
possible to use model theory directly in this more general setting. The work of Gao
and Kechris [18] and Elliot et al. [15] showed that the class of equivalence relations
reducible to isomorphism of metric structures is exactly the same as those reducible
to an orbit equivalence relation of a Polish group action. A major difference with
the discrete setting is that countable structures can be thought of all having the same
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1726 ANDREAS HALLBÄCK ET AL.

universe (some fixed countable set) and then isomorphism is nothing but the orbit
equivalence relation of the natural action of S∞. This is very convenient for applying
both dynamical and model-theoretic methods. In the continuous setting, this is no
longer possible and two approaches of encoding separable metric structures have
emerged in the literature. The first is encoding them as closed substructures of an
appropriately chosen universal and sufficiently homogeneous structure (for example
the Urysohn metric space). This is the approach taken in [15, 18], where the authors
show that if one restricts the class of subspaces appropriately, one can still recover
isomorphism as the orbit equivalence relation of the isometry group of the Urysohn
space. However, the encoding for achieving this is often cumbersome and the result
is somewhat difficult to work with. An alternative method, closer to the encoding of
discrete structures, was used by Ben Yaacov, Doucha, Nies, and Tsankov in [7]. It is
based on considering the values of the continuous predicates on a countable dense
subset of the structure and recovering the whole structure from this information
by taking the completion. This encoding allows for many interesting topologies on
the space of structures, given by fragments of L�1� , as in the discrete setting. Its
main disadvantage is that one loses the group action, even though some dynamical
methods, most notably a version of the Vaught transform, are still available. In
order to compare the two methods, the reader may consult [7] and the paper of
Coskey and Lupini [12]: each proves a version of the López-Escobar theorem for
the respective encoding.

First-order finitary logic is usually not expressive enough for descriptive set
theoretic applications. Because of Scott sentences and the López-Escobar theorem,
the logic that is usually employed for the study of the isomorphism equivalence
relation of discrete structures is L�1� , which allows for countable conjunctions and
disjunctions. A continuous L�1� logic was first studied by Ben Yaacov and Iovino
in [9] and a continuous logic version of Scott analysis was developed in [7], laying
the foundations for descriptive set theoretic applications.

In the beginning of this paper, we further develop the model theory of continuous
L�1� logic and most notably the topometric structure of the type spaces. Because of
the lack of compactness, there are some additional difficulties when compared with
the usual continuous logic setting. Then, given anL�1� fragmentF and anF-theory
T, we define a topology on the space Mod(T ) of codes for separable models of T. If
� ∈ Mod(T ), we denote byM� the model coded by �. In analogy with the discrete
setting, we identify precisely when an isomorphism class of a model is G� .

Theorem 1.1. Let F be a fragment, T be an F-theory, and � ∈ Mod(T ). Let tF
denote the topology on Mod(T ) given by the fragment F and let [�] denote the set of
models in Mod(T ) isomorphic toM� . Then the following are equivalent:

(i) [�] is Π0
2(tF );

(ii) [�] is tF -comeager in [�]
tF ;

(iii) [�] is tF -non-meager in [�]
tF ;

(iv) M� is F-atomic.

Fragment topologies in a somewhat different setting have been previously
considered by Ivanov and Majcher-Iwanow in [26]. A related topology, the one
generated by the atomic formulas, has also been studied, for example, by Cúth,
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Doležal, Doucha, and Kurka in [10, 11]. If the fragment F is the one of finitary
logic and the theory T eliminates quantifiers, then the two topologies coincide and
this allows us to recover some results of [10, 11] about Banach spaces from our
general theorem (cf. Corollary 4.5).

Next we turn to the study of the situation where the isomorphism equivalence
relation on models of a theory T has low Borel complexity. Recall that if Γ is a
pointclass, X is a standard Borel space, and E is a Borel equivalence relation on X,
then E is called potentially Γ if there is a Polish topology � on X compatible with
its Borel structure such that E ⊆ X 2 is Γ in � × �. E is called essentially countable
if it is Borel reducible to a Borel equivalence relation with countable classes. It
is obvious that an essentially countable equivalence relation is potentially Σ0

2. A
somewhat surprising converse to this for orbit equivalence relations of S∞ is due
to Hjorth and Kechris [24]. One possible proof goes through a third equivalent
model-theoretic condition that is easily verified in practice: isomorphism on a class
of countable structures is essentially countable iff there exists a fragment F such that
for each structure M in the class, there exists a tuple ā ∈Mk such that ThF (M, ā)
is ℵ0-categorical. This theorem easily implies, for example, that isomorphism (on a
Borel class of) of finitely generated discrete structures is essentially countable.

If one wants to generalize the theorem of Hjorth and Kechris to the continuous
setting, some care is needed. First, the result for S∞ as stated above simply fails for
general Polish groups. A simple way to see this is to consider the Banach space �1 as
an F� Polishable subgroup of RN; then the orbit equivalence relation given by the
translation action �1 � RN is F� but is not essentially countable [22, Proposition
3.25]. The corollary about finitely generated structures also spectacularly fails in
the continuous setting: by combining several results in the C∗-algebraic literature
with a theorem of Sabok [32], one sees that isomorphism for singly generated
C∗-algebras is universal for orbit equivalence relations of Polish group actions (cf.
Remark 6.7).

However, a form of the Hjorth–Kechris theorem is still true if one restricts to
isomorphism of locally compact structures. There is also an appropriate model
theoretic condition which is easy to check in applications (and implies the Hjorth–
Kechris one in the discrete setting). We call a type p rigid if for any two realizations
(M, ā), (N, b̄) of p in separable models M and N, we must have that M and N are
isomorphic. Note, however, that the isomorphism need not send ā to b̄: this is what
makes this condition weaker than just saying that p is ℵ0-categorical as a theory.

If T is a theory, we denote by ∼=T the equivalence relation of isomorphism of
models of T. The following is our main theorem.

Theorem 1.2. Let T be a countableL�1� theory such that all of its separable models
are locally compact. Then the following are equivalent:

(i) ∼=T is potentially Σ0
2;

(ii) There exists a fragment F such that for every � ∈ Mod(T ), there is k ∈ N
such that the set

{ā ∈Mk� : tpF ā is rigid}

has non-empty interior inMk� ;
(iii) ∼=T is essentially countable.
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1728 ANDREAS HALLBÄCK ET AL.

This theorem has a number of corollaries. The notion of a pseudo-connected locally
compact metric space was introduced by Gao and Kechris in [18] in order to study
the complexity of isometry of locally compact metric spaces. For example, connected
locally compact spaces and proper metric spaces are pseudo-connected. It is easy
to see that metric structures whose underlying metric space is pseudo-connected
satisfy condition (ii) above (in fact, all types realized in such structures are rigid).
So isomorphism of pseudo-connected metric structures is an essentially countable
equivalence relation. This recovers a theorem of Hjorth, previously conjectured by
Gao and Kechris (see [18, Theorem 7.1]), for the pure metric space case and in fact,
we have used some of the ideas of his proof.

Another well-known result is Kechris’s theorem [28] that orbit equivalence
relations of actions of Polish locally compact groups are essentially countable. This
is also an easy consequence of Theorem 1.2 after an appropriate encoding (cf.
Corollary 7.8).

We expect that the continuous infinitary logic framework we build will find further
applications in descriptive set theory. In view of this, in Section 2, we develop
fairly carefully the theory of type spaces, giving three equivalent definitions for the
metric on them used to define the topometric structure. Section 3 is devoted to a
self-contained proof of the omitting types theorem for L�1� continuous logic (the
theorem is originally due to Eagle [13]). In Section 4, we define the Borel space
of models of a theory and the Polish topologies on it given by fragments of L�1� .
Finally, Sections 5 and 6 contain the proofs of our main results and Section 7 is
devoted to applications.

§2. Fragments of continuous L�1� logic and type spaces.

2.1. L�1� logic. We start by recalling the setting of L�1� continuous logic. We
mostly follow [7]; however, the exposition is simplified by the fact that we do not
need to keep careful track of moduli of continuity. A modulus of continuity is a
continuous function Δ: [0,∞) → [0,∞) satisfying, for all r, s ∈ [0,∞),

• Δ(0) = 0;
• Δ(r) ≤ Δ(r + s) ≤ Δ(r) + Δ(s).

Suppose that Δ is a modulus of continuity and that (X, dX ) and (Y, dY ) are metric
spaces. We say that a map f : X → Y respects Δ if

dY (f(x1), f(x2)) ≤ Δ(dX (x1, x2)) for all x1, x2 ∈ X.

A signature L is a collection of predicate and function symbols and as is customary,
we treat constants as 0-ary functions. Throughout the paper, we assume that L is
countable. To each symbol P is associated its arity nP and its modulus of continuity
ΔP . In addition, if P is a predicate symbol, we associate with it its bound, a compact
interval IP ⊆ R where it takes its values. In a model M, predicate symbols are
interpreted as real-valued functions of the appropriate arity respecting the modulus
of continuity and the bound; similarly for function symbols. There is always a
special binary predicate for the metric, denoted by d. To make sense of the modulus
of continuity for symbols of arity greater than 1, we need to fix a metric on tuples
of elements of the model. By convention, if M is a model with metric d and k ∈ N,
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we equipMk with the metric given by

d (ā, b̄) = max
i
d (ai , bi).

Terms and atomic formulas are defined in the usual way. More general formulas
are recursively defined as explained below; it is important to keep in mind that every
formula has a modulus of continuity and a bound that can be calculated from its
constituents. One can build new formulas using:

Finitary connectives: If φ and 	 are formulas and r ∈ Q, then φ + 	, rφ, and
φ ∨ 	 are again formulas. Here φ ∨ 	 is interpreted as max(φ,	) and we
also define φ ∧ 	 :=– (– φ∨ – 	) = min(φ,	) and φ .– 	 = (φ – 	) ∨ 0. The
constant 1 is also a formula. By the lattice version of the Stone–Weierstrass
theorem (see [27, Theorem 13.12]), these connectives suffice to approximate
any continuous combination of formulas.

Quantifiers: If φ(x, ȳ) is a formula, then supx φ and infx φ are also formulas.
Infinitary connectives: If {φn(x̄) : n ∈ N} are formulas with the same finite set

of free variables x̄ that respect a common continuity modulus and bound, then∨
n φn and

∧
n φn are also formulas. The symbol

∨
is interpreted as a countable

supremum and
∧

is interpreted as a countable infimum. The condition that
we impose ensures that the interpretations of these formulas are still bounded,
uniformly continuous functions.

We denote by L�1�(L) the collection of all formulas obtained as above.
The interpretations of formulas in a structure M are defined in the usual way. We

emphasize again that the interpretation of each formula of arity k is a uniformly
continuous, bounded function Mk → R whose modulus of continuity and bound
can be calculated syntactically from the formula (and thus are the same for all
models). If φ(x̄) is a formula, we will denote by φM the interpretation of φ in M. If
ā ∈Mk , we will often write φ(ā) instead of φM (ā). A sentence is a formula with no
free variables and a theory is a collection of conditions of the form φ = c, where φ
is a sentence and c ∈ R. A condition φ = c is satisfied in a structure M if φM = c.
A structure M is a model of the theory T, denoted byM |= T , if all conditions in T
are satisfied in M.

Definition 2.1. A fragment of L�1�(L) is a countable collection F ⊆ L�1�(L)
that contains all atomic formulas and is closed under finitary connectives,
quantifiers, taking subformulas, and substitution of terms for variables.

The smallest fragment is the finitary fragment L��(L) that contains no infinitary
formulas. If F is a fragment and T is a theory, we will say that T is an F-theory if
all sentences that appear in T are in F .

2.2. Type spaces. Let F ⊆ L�1�(L) be a fragment. The collection of F-formulas
over a fixed (finite or infinite) tuple of variables x̄ form a Riesz space Fx̄ with the
operations given by the finitary connectives defined above. If T is an F-theory, we
have a natural seminorm on this space given by

‖φ‖T = sup{|φ(ā)| :M |= T, ā ∈Mx̄}. (2.1)
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The set {φ : ‖φ‖T = 0} is an ideal in Fx̄ and the completion of the quotient of Fx̄
by this ideal is an archimedean Banach lattice (with unit 1) that will be denoted by
Fx̄(T ). Then we can define the space of approximately realizable types as follows:

Ŝx̄(T ) = {p ∈ Fx̄(T )∗ : p(φ ∨ 	) = p(φ) ∨ p(	) for all φ,	 ∈ Fx̄(T )

and p(1) = 1}.

Ŝx̄(T ) is clearly closed in the weak∗ topology, and therefore a compact space. We
will often write φ(p) or φp instead of p(φ).

The topology on Ŝx̄(T ) is given by pointwise convergence on formulas, i.e., basic
open sets are of the form

�φ < r� := {p ∈ Ŝx̄(T ) : φ(p) < r},
where r ∈ Q and φ is a formula (and dually, �φ > r� = �– φ <– r�). This topology is
usually called the logic topology.

If |x̄| = n, we will also write Ŝn(T ) for Ŝx̄(T ). IfM |= T and ā ∈Mx̄ , the type
of ā is defined by

φ(tp ā) = φ(ā) for all φ ∈ Fx̄(T ).

Sometimes we also write tpF (ā) to specify the fragment if it is not understood from
the context. The set Sx̄(T ) of realizable types (or just types) is defined by

Sx̄(T ) = {tp(ā) :M |= T, ā ∈Mx̄}.
IfF isL�� , then the compactness theorem tells us that every approximately realizable
type is realizable, i.e., Ŝx̄(T ) = Sx̄(T ). For more general fragments, this is usually
not the case. A typical situation in which a type p is not realizable occurs when for
some infinitary formula Φ =

∧
k φk , we have that Φ(p) < infk φk(p). Nonetheless,

we still have the following.

Lemma 2.2. The set Sx̄(T ) is dense in Ŝx̄(T ).

Proof. Recall that the .– operation is defined by x .– y = (x – y) ∨ 0. Suppose
that for some formula φ(x̄) and r ∈ Q the open set �φ < r� ⊆ Ŝx̄(T ) is non-empty.
In particular, there is p ∈ Ŝx̄(T ) such that φ(p) < r. Then

p(r .– φ) = r .– p(φ) > 0,

which implies that ‖r .– φ‖T > 0. By the definition (2.1) of ‖·‖T , this means that
there isM |= T and ā ∈Mx̄ such that φ(ā) < r. �

We will see later in Proposition 3.7 that Sx̄(T ) is a G� set and therefore a Polish
space.

Next we see that the Banach lattice of formulas Fx̄(T ) is isomorphic to the
lattice C (̂Sx̄(T )) of real-valued, continuous functions on Ŝx̄(T ) equipped with the
sup norm. This is just a version of the Yosida representation theorem (see [27,
Section 13]).

Proposition 2.3. The map Γ: Fx̄(T ) → C (̂Sx̄(T )) defined by

Γ(φ)(p) = p(φ)

is an isometric isomorphism of Banach lattices.

https://doi.org/10.1017/jsl.2022.48 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.48


CONTINUOUS LOGIC AND BOREL EQUIVALENCE RELATIONS 1731

Proof. It is clear that Γ is a lattice homomorphism. To see that it is isometric,
note that, using Lemma 2.2,

‖Γ(φ)‖ = sup{|φ(p)| : p ∈ Ŝx̄(T )}
= sup{|φ(p)| : p ∈ Sx̄(T )}
= sup{|φ(ā)| :M |= T, ā ∈Mx̄} = ‖φ‖T .

This implies that Γ is injective and that its image is closed. The image is dense by
the Stone–Weierstrass theorem, so Γ is also surjective. �

Remark 2.4. There is a subtle feature of continuous L�1� logic regarding types
and constants that can sometimes be confusing. In classical L�1� logic, as well as in
finitary continuous logic, if φ(c) is a formula containing a constant symbol c, then
we can replace all occurrences of c by a variable x and still obtain a valid formula
φ(x). In particular, a type in S1(T ) is nothing but a complete theory in the language
expanded by a constant symbol extending T. In continuous L�1� logic, this is no
longer the case. For a simple example, consider the sentence∨

n

(n · ‖c‖ ∧ 1)

in the language of Banach spaces. This sentence evaluates to 1 if c 
= 0 and to 0
if c = 0 in any Banach space. However, replacing c by a variable yields an invalid
formula because it does not respect the equicontinuity rule for infinitary connectives
(and indeed, its interpretation would be discontinuous at 0).

This feature of the logic is what allows to have Scott sentences for structures
of the form (M,a), where the orbit Aut(M ) · a is not closed. Note that if b /∈
Aut(M ) · a, then (M,a) � (M,b). However, if φ(x) is any L�1�-formula and b ∈
Aut(M ) · a, then φM (a) = φM (b). So it is impossible to distinguish (M,a) and
(M,b) by a formula φ(x) in the language of M but it is possible to distinguish
them by a sentence (in an appropriately rich fragment) if the language is augmented
by a constant symbol.

An important feature of type spaces in continuous logic is that, in addition to
the logic topology, they are also equipped with a metric, coming from the metric
on the models, which, in general, defines a finer topology. We recall that a compact
topometric space is a triple (X, �, ∂), where X is a set, � is a compact Hausdorff
topology on X, and ∂ is a metric on X which is �-lower semicontinuous (i.e., the
set {(x1, x2) ∈ X 2 : ∂(x1, x2) ≤ r} is � × �-closed for every r ≥ 0) and such that the
topology defined by ∂ is finer than �. We refer the reader to [4] for the general theory
of topometric spaces.

We equip the type spaces Ŝx̄(T ) with a topometric structure as follows. The
topology � is the logic topology defined earlier: namely, pointwise convergence on
formulas. We recall from [7, Section 7] the metric ∂ on Ŝx̄(T ) defined by

∂(p, q) ≤ s ⇐⇒ ∀φ ∈ F
(

inf
ȳ

(
(d (x̄, ȳ) .– s) ∨ |φ(ȳ) – φ(p)|

))q
= 0. (2.2)

This definition is somewhat cumbersome and in [7] it is only verified that ∂ is a
metric on the set of realizable types. We will give an equivalent definition which is
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easier to handle in some situations and, in particular, is obviously symmetric. We
define, for p, q ∈ Ŝx̄(T ),

∂(p, q) < s ⇐⇒ ∀U � p,V � q �-open ∃M |= T, ā, b̄ ∈Mx̄

tp(ā) ∈ U and tp(b̄) ∈ V and d (ā, b̄) < s. (2.3)

Our first task is to reconcile the two definitions.

Proposition 2.5. The metrics defined by (2.2) and (2.3) are equal and (̂Sx̄(T ), �, ∂)
is a compact topometric space.

Proof. For the first two paragraphs of the proof, we denote the metric defined
in (2.2) by ∂ ′. First we check that ∂ ≤ ∂ ′. To that end, suppose that ∂ ′(p, q) ≤ s
and fix � > 0 in order to show that ∂(p, q) < s + �. LetU = �φ < r� � p andV � q
be given. By decreasing �, we may assume that φ(p) < r – �. From the density of
realizable types and (2.2), we know that there existsM |= T and b̄ ∈Mx̄ such that
tp b̄ ∈ V and

M |= inf
ȳ

(
(d (b̄, ȳ) .– s) ∨ |φ(ȳ) – φ(p)|

)
< �,

i.e., there exists ā such that d (ā, b̄) < s + � and |φ(ā) – φ(p)| < �, showing that
tp ā ∈ U and ∂(p, q) < s + �, as required.

Next we show that ∂ ′ ≤ ∂ . Suppose that ∂(p, q) < s in order to show that
∂ ′(p, q) ≤ s . Let φ ∈ F and � > 0 be given. Denote by 	(x̄) the formula on
the right-hand side of (2.2). Using (2.3), find M |= T and ā, b̄ ∈Mx̄ such that
d (ā, b̄) < s , |φ(b̄) – φ(p)| < �, and |	(ā) – 	(q)| < �. It is easy to see now that
	(ā) < �, implying that 	(q) < 2�. As � was arbitrary, this shows that 	(q) = 0 as
desired.

Next we check that ∂ is a metric. It is obvious that ∂(p, p) = 0. Suppose next that
p 
= q in order to show that ∂(p, q) > 0. Let φ be a formula such that φ(p) < 0 and
φ(q) > 1. If ∂(p, q) = 0, by (2.3), for every �, there exist ā, b̄ with d (ā, b̄) < � and
φ(ā) < 0, φ(b̄) > 1, contradicting the uniform continuity of φ.

That ∂ is symmetric follows directly from (2.3). Next we verify the triangle
inequality. Suppose that ∂(p1, p2) < s1 and ∂(p2, p3) < s3 in order to show
that ∂(p1, p3) ≤ s1 + s3. Let U1 = �φ1 < r� � p1 and U3 = �φ3 < r� � p3 be given
�-open sets and let � be arbitrary such that φ1(p1), φ3(p3) < r – �. Let

	1(x̄) = inf
ȳ

(
(d (x̄, ȳ) .– s1) ∨ |φ1(ȳ) – φ1(p1)|

)
,

	3(x̄) = inf
ȳ

(
(d (x̄, ȳ) .– s3) ∨ |φ3(ȳ) – φ3(p3)|

)
.

From (2.2), we know that	1(p2) = 	3(p2) = 0. By Lemma 2.2, there exists a model
M and b̄ ∈Mx̄ such that	1(b̄) < � and	2(b̄) < �. Then there exist ā, c̄ ∈Mx̄ such
that φ1(ā) < r, φ3(c̄) < r, d (ā, b̄) < s1 + �, and d (b̄, c̄) < s3 + �. By the triangle
inequality in M, d (ā, c̄) < s1 + s3 + 2�. Thus tp ā ∈ U1, tp c̄ ∈ U3, and by (2.3)
and the fact that � was arbitrary, we have that ∂(p1, p3) ≤ s1 + s3.

That ∂ is �-lower semicontinuous follows directly from (2.2). We finally check
that the ∂-topology refines �. Let (pi)i be a net that ∂-converges to p. We need
to check that for every formula φ, φ(pi) → φ(p). Let � > 0 be given and let � > 0
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be such that for all models M and ā, b̄ ∈Mx̄ , d (ā, b̄) < � =⇒ |φ(ā) – φ(b̄)| < �.
We have that for all sufficiently large i, there exist M, ā, b̄ ∈Mx̄ such that |φ(pi) –
φ(ā)| < �, |φ(p) – φ(b̄)| < �, and d (ā, b̄) < �, implying that |φ(pi) – φ(p)| < 3�.
This concludes the proof of the proposition. �

Note that ∂(p, q) = ∞ iff there exists a sentence φ such that φp 
= φq (this can
happen when the theory T is not complete). Another important property of the
metric ∂ that follows directly from the definition is that for all M and all ā, b̄ ∈Mx̄ ,
we have that ∂(tp ā, tp b̄) ≤ d (ā, b̄).

We will say that a formula φ(x̄) is 1-Lipschitz if its interpretation φ : Mx̄ → R
is a 1-Lipschitz function for any model M. Equivalently, φ respects the continuity
modulus ΔL defined by ΔL(r) = r. We denote by F1 the collection of 1-Lipschitz
formulas in the fragment F . The following proposition gives yet another useful
equivalent definition for ∂ . A similar formula for the L�� fragment was proved by
Ben Yaacov [4].

Proposition 2.6. (i) Let Δ be a continuity modulus and let φ(x̄) be a
formula. Then φ respects Δ as a formula iff φ respects Δ as a function
(Sx̄(T ), ∂) → R.

(ii) For all p, q ∈ Ŝx̄(T ),

∂F (p, q) = sup
φ∈F1

|φ(p) – φ(q)|.

Proof. (i) For the (⇐) direction, note that for all M |= T and ā, b̄ ∈Mx̄ , we
have

|φ(ā) – φ(b̄)| = |φ(tp ā) – φ(tp b̄)| ≤ Δ(∂(tp ā, tp b̄)) ≤ Δ(d (ā, b̄)).

For the (⇒) direction, fix two types p, q ∈ Sx̄(T ). Let � > 0. Find a model M |=
T and ā, b̄ ∈Mx̄ such that |φ(p) – φ(ā)| < �, |φ(q) – φ(b̄)| < �, and d (ā, b̄) <
∂(p, q) + �. Then

|φ(p) – φ(q)| ≤ |φ(ā) – φ(b̄)| + 2� ≤ Δ(d (ā, b̄)) + 2� ≤ Δ(∂(p, q) + �) + 2�.

Taking � → 0, we obtain the result.
(ii) If φ is a 1-Lipschitz formula, it follows from (i) that |φ(p) – φ(q)| ≤ ∂(p, q).
Next, suppose that ∂(p, q) > s . By (2.2), there exists a formula φ(ȳ) such that

denoting

�(x̄) = inf
ȳ

(d (x̄, ȳ) .– s) ∨ |φ(ȳ) – φ(p)|,

we have �(q) = r > 0. Let

	(x̄) = inf
ȳ
d (x̄, ȳ) ∨ (s/r)|φ(ȳ) – φ(p)|

and note that 	(x̄) is 1-Lipschitz. Note also that if p′ is a realizable type, then
	(p′) ≤ (s/r)|φ(p) – φ(p′)| (by taking ȳ = x̄ in the inf); taking a net of realizable
types p′ converging to p yields that 	(p) = 0. On the other hand, we will check that
	(q) ≥ s . Let � > 0 and let M |= T and ā ∈Mx̄ be such that |	(q) – 	(ā)| < �
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and �(ā) > r – �. Then we see that

	(q) ≥ 	(a) – � ≥ s(r – �)
r

– �,

and letting � → 0, we obtain 	(q) ≥ s . �

§3. Omitting types and atomic models.

3.1. Isolated types and atomic models. If p ∈ Sn(T ) and � > 0, we will denote by
B�(p) the open ∂-ball around p of radius �. A type p ∈ Sn(T ) is called isolated if it
belongs to the �-interior of B�(p) for every � > 0 (or, in other words, if � and the
∂-topology coincide at p). This is equivalent to the formally weaker condition that
B�(p) has non-empty �-interior for every � [7, Lemma 7.4]. A model M is called
atomic if for every n, all n-types realized in M are isolated. We have the following
basic lemma.

Lemma 3.1. The set of isolated types in Sn(T ) is ∂-closed and �-G� .

Proof. Let In = {p ∈ Sn(T ) : p is isolated}. First it is clear that In is G� in �
because by definition, In is exactly the set of points of continuity of the identity map
(Sn(T ), �) → (Sn(T ), ∂) (see, e.g., [29, Proposition 3.6]).

Suppose now that pk
∂−→ p and that pk ∈ In for all k. Let � > 0. Then there

are k and � such that B�(pk) ⊆ B�(p). But by hypothesis, B�(pk) has non-empty
�-interior, and therefore, so does B�(p). By the remark above, this is sufficient to
conclude that p is isolated. �

An important property of atomic models is their uniqueness. The following
standard fact is proved by the usual back-and-forth argument.

Proposition 3.2. Let M and N be separable L-structures and suppose that there is
a fragment F such thatM ≡F N and M and N are F-atomic. ThenM ∼= N .

3.2. Omitting types. The omitting types theorem is a fundamental tool in model
theory and one of the few that do not depend on compactness. The version for
classical L�1� logic is well known. In the continuous setting, the theorem (with a
somewhat different formulation) is due to Eagle [13]. The statement below in the
case for finitary continuous logic is due to Ben Yaacov. We have preferred to include
the proof as we think it is shorter and easier to follow than the one in [13]. We also
use some of the constructions in defining the fragment topologies in the next section.

We fix a fragment F and a countable F-theory T. If Ξ ⊆ Sx̄(T ), we will say that
a modelM |= T omits Ξ if no type in Ξ is realized in M.

Theorem 3.3 (Omitting types). Let F be a fragment and let T be an F-theory.
Suppose that for every n, we are given a �-meager and ∂-open set Ξn ⊆ Sn(T ). Then
there is a separable modelM |= T that omits all of the Ξn.

Throughout this subsection we fix a fragment F and a theory T as in the theorem.
We will write ≺ to denote elementary substructures with respect to F .

The proof of the theorem depends on two lemmas. To state the first of them
we need to define the space of the types each of whose realizations enumerates a
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countable, dense subset of an elementary substructure. One can easily show that this
is an intrinsic property of the type. More precisely, let x̄ = (x0, x1, ...) be a countably
infinite tuple of variables and, for p ∈ Sx̄(T ), define

p ∈ Sen
x̄ (T ) ⇐⇒ ∀φ ∈ F

(
inf
y
φ(y, x̄)

)p
= inf

j
φp(xj, x̄). (3.1)

We will say that a type p ∈ Sx̄(T ) enumerates a model if p ∈ Sen
x̄ (T ). We have the

following simple lemma that justifies the name.

Lemma 3.4. LetM |= T , ā ∈M� , and let p = tp ā. Then

p ∈ Sen
x̄ (T ) ⇐⇒ {ai : i ∈ �} ≺M.

Proof. This is just a reformulation of the Tarski–Vaught test (see [6, Proposition
4.5]). In [6], it is stated only for finitary continuous logic but the proof works equally
well in the L�1� setting. �

Lemma 3.5. Sen
x̄ (T ) is a dense G� subset of Ŝx̄(T ) in the topology �.

Proof. First note that (3.1) can be rewritten as: for all φ ∈ F and for all r ∈ Q,(
inf
y
φ(y, x̄)

)p
< r ⇐⇒ ∃j φp(xj, x̄) < r. (3.2)

(The important direction is from left to right; the other is automatic for all p.) Let
Uφ,r denote the G� subset of Ŝx̄(T ) defined by (3.2).

If Φ =
∧
k φk is an infinitary formula in F , let

VΦ = {p ∈ Ŝx̄(T ) : Φ(p) = inf
k
φk(p)}.

It is clear that VΦ can be written as: p ∈ VΦ iff for all r ∈ Q,

Φ(p) < r =⇒ ∃k φk(p) < r, (3.3)

which shows that VΦ is a G� set. It is also clear that all realizable types are in VΦ, so
by Lemma 2.2, each VΦ is dense. The proof of the lemma will be complete when we
show that each of the sets Uφ,r is dense and that

Sen
x̄ (T ) =

⋂
φ,r

Uφ,r ∩
⋂
Φ

VΦ. (3.4)

First we check that each Uφ,r is dense. Let �	 < s� ⊆ Ŝx̄(T ) be non-empty open.
By Lemma 2.2, there exists a realizable p with 	(p) < s . Let ā |= p in some model
M. We may assume that

(
infy φ(y, x̄)

)p
< r. Then there exists b ∈M such that

φ(b, ā) < r. Let n be larger than the indices of all variables that appear in φ or 	.
Finally, define p′ = tp(a0, ... , an–1, b, an+1, ...). It is clear that p′ ∈ �	 < s� ∩Uφ,r .

We finally verify (3.4). The ⊆ inclusion being clear, we check the other. Let
p ∈ Ŝx̄(T ) belong to the intersection on the right-hand side. Let ā be a realization of
theL�� part of p in some model N (this means thatφ(ā) = φ(p) for everyφ ∈ L��).
Such a realization exists by the compactness theorem. LetM = {ai : i ∈ N}; we will
check that ā realizes all of p in M (this will imply, in particular, that M is a model
of T). We proceed to prove by induction on formulas that for every formula φ ∈ F ,
φM (ā) = φ(p). This is true by construction for atomic formulas. The induction
step for finitary connectives follows from the definition of the type space. Let now
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φ(x̄) = infy 	(y, x̄). Suppose first that φ(p) < r. As p ∈ U	,r , we have that there
exists j with 	p(xj, x̄) < r. By the induction hypothesis, 	M (aj, ā) < r, and so,
φM (ā) < r. Conversely, suppose that φM (ā) < r. Then there is b ∈M such that
	M (b, ā) < r; as {ai : i ∈ N} is dense in M, this means that there is j such that
	M (aj, ā) < r, and using that p ∈ U	,r , this gives that φ(p) < r, concluding the
argument for quantifiers. The induction step for infinitary connectives follows from
(3.3). This concludes the proof of the lemma. �

For each s ∈ [N]<N, i.e., for each finite sequence of distinct natural numbers, we
define a map 
s : Sen

x̄ (T ) → S|s|(T ) by
(
φ(x0, ... , x|s|–1)

)
s (p)
=

(
φ(xs0 , ... , xs|s|–1

)
)p
.

Lemma 3.6. For each s ∈ [N]<N the map 
s |Sen
x̄ (T ) is an open and continuous

surjection for the topology �.

Proof. Continuity is clear, so we proceed to prove that 
 is surjective and open.
Let p ∈ Sn(T ); let M |= T and ā ∈Mn be such that tp ā = p. By the downward
Löwenheim–Skolem theorem, we may assume that M is separable. Let b̄ be a dense
sequence in M with bi = asi for i < n. Then tp b̄ ∈ Sen

x̄ (T ) and 
s(tp b̄) = p.
To check that 
s is open, let �φ(x̄) < r� be a basic open set in Sen

x̄ (T ). Let
xi0 , ... , xik–1 be all variables that appear in φ and are not among xs0 , ... , xsn–1 . We
claim that


s(�φ < r�) = � inf
xi0
,...,xik–1

φ < r�.

We only check the inclusion ⊇. Let p belong to the right-hand side and let ā be
a realization of p in a separable model M. Then there exist b0, ... , bk–1 in M such
that φ(ā, b̄) < r. Finally, we can complete āb̄ to a dense sequence c̄ such that

s(tp c̄) = p. �

Lemmas 2.2 and 3.6 together give us the following.

Proposition 3.7. For every n, the set of realizable types Sn(T ) ⊆ Ŝn(T ) is dense
G� and therefore a Polish space.

We are finally ready to prove the omitting types theorem.

Proof of Theorem 3.3. Let x̄ be an infinite tuple of variables and consider the
subset A ⊆ Sen

x̄ (T ) defined by

A =
⋃

s∈[N]<N


–1
s (Ξ|s|).

As the preimage of a meager set by an open map is meager, Lemma 3.6 implies that
A is meager. As Sen

x̄ (T ) is Polish, this implies that there is p ∈ Sen
x̄ (T ) \ A. Let ā be

a realization of p and let M = {ai : i ∈ N}. We claim that M omits all of the Ξn.
Suppose not; then there is n, some q ∈ Ξn, and b̄ ∈Mn such that q = tp b̄ ∈ Ξn.
As Ξn is ∂-open, there exists � > 0 such that B�(q) ⊆ Ξn. As ā is dense in M,
there exist s0, ... , sn–1 such that d (b̄, (as0 , ... , asn–1)) < �. Then tp(as0 , ... , asn–1 ) ∈ Ξn,
contradicting the fact that 
s(p) /∈ Ξn. �
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Remark 3.8. We note that the proof above gives the following stronger version
of Theorem 3.3 that will be used in the sequel. Namely, under the assumptions of
the theorem, for comeagerly many � ∈ Sen

x̄ (T ), the model coded by � omits all of
the Ξn.

§4. Topologies generated by fragments. In the next sections, we are going to
discuss the equivalence relation of isomorphism of separable models of a given
theory T. In order to do this, we need to define a suitable Polish topology (or at
least a standard Borel structure) on the set of these models. It is possible to do this
in many different ways but the most convenient one for us will be to use the space
Sen
x̄ (T ) of types enumerating models defined in the previous section—it clearly codes

all the separable models of T. It is worth noting at this point that this space and its
standard Borel structure do not depend on the fragment F that we have chosen; the
topology, however, does: if the fragment has more formulas, then the topology has
more open sets. By Lemma 3.5, this topology is Polish as long as the fragment F
contains all sentences in T. In order to avoid subscripts, it will also be convenient
for us to identify the variable xi with the natural number i. With this convention,
our setting is equivalent to the usual approach in descriptive set theory to consider
structures defined on�. We will denote by Mod(T ) the standard Borel space Sen

x̄ (T )
and by tF the Polish topology on Mod(T ) generated by the fragment F . We will
also denote by Mod(L) the space of all separable structures in the signature L (i.e.,
the space of models of the empty theory).

Recall that if � ∈ Mod(T ), we denote byM� the model enumerated by �, i.e., the
structure {ai : i ∈ N} for any realization ā |= �. We writeM ∼= N if the models M
and N are isomorphic and � ∼= � if M� ∼=M�. We will also denote by [�] = {� ∈
Mod(T ) : � ∼= �} the isomorphism class of �. We will writeM ≡F N if the models
M and N are elementarily equivalent with respect to F , that is, for all sentences
φ ∈ F , we have φM = φN .

Proposition 4.1. Let T be an F-theory, �, � ∈ Mod(T ). ThenM� ≡F M� if and

only if [�]
tF = [�]

tF .

Proof. For any sentence φ ∈ F and r ∈ R, the set {� ∈ Mod(T ) : φ� = r} is
invariant under isomorphism and closed in Mod(T ), so the backward direction is
clear.

Assume now thatM� ≡F M�. Fix φ(x̄) ∈ F , r ∈ R, and u ∈ Nx̄ and suppose that
[�] ∩ �φ(u) < r� 
= ∅. Then

(
inf
x̄
φ(x̄)

)�
=

(
inf
x̄
φ(x̄)

)�
< r,

so there exists b̄ inMx̄� such that φM� (b̄) < r. But this means that there exists � ∈ [�]

such that φ�(u) < r, i.e., [�] ∩ �φ(u) < r� 
= ∅. Thus, [�]
tF = [�]

tF . �

Corollary 4.2. For any � ∈ Mod(T ), ThF (M�) is ℵ0-categorical if and only if
[�] is closed in the topology tF .

Proof. If ThF (M�) is ℵ0-categorical, then [�] = {� :M� ≡F M�}, which is a
closed set. The converse follows from Proposition 4.1. �
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Theorem 4.3. Let F be a fragment, let T be an F-theory, and let � ∈ Mod(T ).
Then the following are equivalent:

(i) [�] is Π0
2(tF );

(ii) [�] is tF -comeager in [�]
tF ;

(iii) [�] is tF -non-meager in [�]
tF ;

(iv) M� is F-atomic.

Proof. (i) ⇒ (ii) ⇒ (iii). This is clear.
(iii) ⇒ (iv). Suppose thatM� is not atomic and let T ′ = ThF (M�). Then there

exists n ∈ N and a type p0 ∈ Sn(T ′) realized inM� which is not isolated. By

Theorem 3.3 and Remark 3.8, for comeagerly many � ∈ Mod(T ′) = [�]
tF ,M�

omits p0, implying that � � �.
(iv) ⇒ (i). By the uniqueness of atomic models (Proposition 3.2), a model M

is isomorphic to M� iff M is an F-atomic model of T ′ = ThF (M�). Let
In ⊆ Sn(T ′) be the set of isolated types. It follows from Lemma 3.1 that In is
G� and that for every n and every model M, the set {ā ∈Mn : tp ā ∈ In} is
closed. Thus we have

� ∈ [�] ⇐⇒ ∀u ∈ N<N tp�(u) ∈ I|u|,
which is clearly a G� condition. �

A different, coarser topology tqf on the space of models Mod(T ) often considered
in the literature is the one generated by the atomic formulas (rather than all formulas
in a certain fragment). Then in order to ensure that this topology is Polish, one
usually restricts to ∀∃-theories, i.e., theories axiomatized by conditions of the form

sup
x̄

inf
ȳ
φ(x̄, ȳ) ≤ 0

with φ a quantifier-free finitary formula. This topology is harder to handle
theoretically because of the lack of quantifiers and its heavy dependence on the
choice of signature but is easier to compute with in practice. Fortunately, in some
common situations, the topology tqf coincides with the topology t0 generated by
the fragment L��(L): namely, when the theory T is model-complete. Recall that an
L��-theory is model-complete if every embedding between models of T is elementary.
Equivalently, every formula is equivalent to a formula of the form inf ȳ 	(x̄, ȳ) with
	 quantifier-free (see, e.g., [3, Corollary A.5]). In particular, if a theory eliminates
quantifiers, it is model-complete. We have the following corollary of Theorem 4.3,
which gives a characterization of G� isomorphism classes in the topology tqf in the
space of models of a model-complete theory.

Corollary 4.4. Let T0 be a ∀∃-theory and let T ⊇ T0 be an L��(L)-theory. Let
� ∈ Mod(T ) and consider the statements:

(i) [�] is G� in (Mod(T0), tqf);
(ii) M� is an atomic model of its L��-theory.
Then (i) ⇒ (ii) and if T is model-complete, we have equivalence.

Proof. (i) ⇒ (ii). As the topology t0 is finer than tqf , we have that [�] is a G�
set in t0, so we can apply Theorem 4.3.
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(ii) ⇒ (i). We will show that the topologies tqf and t0 coincide on Mod(T ).
Let {� : φ�(u) < r} be a basic open set in t0, where φ is an L�� formula and
u ∈ Nk . By model-completeness of T, there exists a quantifier-free formula
	(x̄, ȳ) such that

φ(b̄) = inf
ȳ
	(b̄, ȳ), for allM |= T, b̄ ∈Mk.

Thus,

φ�(u) < r ⇐⇒ ∃v ∈ Nk 	�(u, v) < r,

and the latter is clearly an open condition on � in tqf .
Thus (Mod(T ), tqf) is Polish and therefore a G� subset of (Mod(T0), tqf).

Now Theorem 4.3 implies that [�] is G� in (Mod(T ), t0) and thus Polish in
both t0 and tqf . Therefore [�] is G� in Mod(T0). �

As an illustration of these ideas, we explain how to recover some results from
the recent papers [10, 11] of Cúth, Doležal, Doucha, and Kurka. We consider the
signature of Banach spaces with function symbols for addition and multiplication by
scalars and a predicate symbol for the norm. Let T0 be the theory of Banach spaces
(this is a universal theory because a substructure of a Banach space in this signature is
still a Banach space). Some examples ofℵ0-categorical Banach spaces are the Gurarij
space and Lp([0, 1]) for 1 ≤ p <∞. Moreover, the Gurarij space and Lp([0, 1]) for
p 
= 4, 6, 8, ... eliminate quantifiers. The ℵ0-categoricity and quantifier elimination
for the Gurarij space follow from its homogeneity and the Ryll-Nardzewski theorem.
For Lp, it follows from Henson [19] that Lp is ℵ0-categorical as a Banach lattice
and it is again a consequence of the Ryll-Nardzewski theorem that a reduct of
an ℵ0-categorical structure is ℵ0-categorical. For quantifier elimination for Lp, for
p 
= 4, 6, ..., see [20, Example 3.18] and [30]. Finally, it is an unpublished result of
Henson that theLp Banach spaces are model-complete for all p ≥ 1. We are grateful
to Ward Henson for explaining to us the subtleties of the model theory of the Lp

spaces and providing the references. See also [5] for more details.

Corollary 4.5 (Theorem 3.1 in [11] and Theorem 3.4 in [10]). The isometry
classes of the Gurarij space and Lp for p ≥ 1 are G� sets in (Mod(T0), tqf).

Proof. We can apply Corollary 4.4 but as pointed out by the referee, there is an
alternative proof available in this case: because of model completeness, the theories
are ∀∃-axiomatizable and ℵ0-categoricity implies that their models are exactly the
isometry classes of the spaces under consideration. (To see that model-complete
theories are ∀∃-axiomatizable, one can apply the usual argument from classical
logic: it follows from the definition that they are inductive and the proof of Tarski’s
theorem that inductive theories are ∀∃-axiomatizable goes through.) �

Remark 4.6. The results in [10, 11] are more detailed. For example, they show
in addition that these isomorphism classes are G�-complete.

Remark 4.7. The setup in [10, 11] is slightly different from ours. They consider
a countable-dimensional vector space V over Q and they parametrize separable
Banach spaces by pseudo-norms on V (cf. [11, Definition 1.1]). If 〈e1, e2, ...〉 is a
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basis for V and we denote by P the Polish space of pseudo-norms on V with the
topology inherited from RV , we can define a map Φ: Mod(T0) → P by

‖
n∑
i=1

aiei‖Φ(�) = ‖
n∑
i=1

aixi‖�,

where a1, ... , an ∈ Q, (xi)i denote the variables of the type �, and ‖·‖� denotes as
usual the evaluation of the corresponding quantifier-free formula at �. The image of
Φ is the collection of all pseudo-norms ‖·‖ such that {e1, e2, ...} is dense in (V, ‖·‖)
and it is easy to see that Im Φ is dense G� in P . Moreover, Φ is a homeomorphism
between (Mod(T0), tqf) and its image. As a matter of fact, in [10, Theorem 3.4] the
space P∞ of infinite-dimensional spaces is considered; however it is a G� subset
of P .

§5. The isomorphism equivalence relation: the general case. Recall that if Γ is a
pointclass, a Borel equivalence relation E on a standard Borel space X is called
potentially Γ if there exists a Polish topology � on X compatible with the Borel
structure such that E is in Γ with respect to the topology � × �. Recall that, for a
countable L�1�(L)-theory T, ∼=T denotes the equivalence relation of isomorphism
on Mod(T ).

The main results of the next two sections are generalizations to the metric setting
of two theorems of Hjorth and Kechris [24] that characterize smooth and essentially
countable isomorphism relations. The first one works for arbitrary metric structures
and is just a combination of the characterizations of atomic and ℵ0-categorical
structures from the previous section and the well-known fact that an equivalence
relation is smooth iff it is potentially Π0

2 iff it is potentially closed.
We start by recalling a consequence of the metric version of the López-Escobar

theorem from [7]: if X ⊆ Mod(L) is Borel and invariant under isomorphism, then
there exists a sentence φ ∈ L�1�(L) such that p ∈ X iff φp = 0.

Theorem 5.1. Let T be a countable L�1�(L)-theory. Then the following are
equivalent:

(i) ∼=T is smooth;
(ii) There exists a fragment F such that for every � ∈ Mod(T ), the theory

ThF (M�) is ℵ0-categorical;
(iii) There exists a fragment F such that for every � ∈ Mod(T ),M� is F-atomic.

Proof. (i) ⇒ (ii). Let Y be a Polish space and let f : Mod(T ) → Y be a
Borel mapping such that � ∼= � if and only if f(�) = f(�). Let {Un}n∈N be a
countable basis for Y. Then

� ∼= � ⇐⇒ ∀n
(
� ∈ f–1(Un) ⇔ � ∈ f–1(Un)

)
.

Now, eachf–1(Un) is an invariant Borel set, so by the López-Escobar theorem
cited above, for each n ∈ N, there are L�1�(L)-sentences φn and 	n such
that f–1(Un) = Mod(φn = 0) and f–1(X \Un) = Mod(	n = 0). Let F be
the fragment generated by {φ0, 	0, ...}. Then in the Polish topology tF , each
isomorphism class is closed. Corollary 4.2 then implies that for each � ∈
Mod(T ), ThF (M�) is ℵ0-categorical.
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(ii) ⇒ (iii). This follows from Corollary 4.2 and Theorem 4.3.
(iii) ⇒ (i). By Theorem 4.3, for any � ∈ Mod(T ), [�] is G� in the topology tF .

Then [17, Theorem 6.4.4] implies that ∼=φ is smooth. Alternatively, ThF (M�)
is a complete isomorphism invariant for �. �

Next we aim to characterize Σ0
2 isomorphism classes. We will make use of this in

the next section.
For the proof of the next lemma, we will need Vaught transforms in the space

Mod(T ) as developed in [7]. For a separable structure M, we let

D(M ) =
{
ȳ ∈MN : {yi : i ∈ N} is dense inM

}
.

D(M ) is clearly aG� set inMN, and therefore a Polish space. If � ∈ Mod(T ), denote
by 
 : D(M�) → [�] the surjective map given by

φ
(y)(u) = φM� (y(u0), ... , y(un–1)) for all φ ∈ F , u ∈ Nn, y ∈ D(M�). (5.1)

In order to describe open sets in D(M ), it will be convenient to have a pseudo-
metric defined on tuples of elements of M of different length. For m, n ≤ � with
min(m, n) < � and ā ∈Mm, b̄ ∈Mn, we define

d (ā, b̄) = max{d (ai , bi) : i < min(m, n)}.

ForM |= T , r > 0, and u ∈ N<N, let BD(M )
r (u) = {y ∈ D(M ) : d (y, u) < r}.

The quantifiers ∃∗ and ∀∗ mean as usual “for non-meagerly many” and “for
comeagerly many,” respectively. For A ⊆ Mod(T ), u ∈ N<N, and k > 0, we define
the sets A� and A�u,k by

� ∈ A� ⇐⇒ ∃∗y ∈ D(M�) 
(y) ∈ A;

� ∈ A�u,k ⇐⇒ ∃∗y ∈ BD(M )
1/k (u) 
(y) ∈ A.

For a Polish space X and a Baire measurable function f : X → R, we define
inf∗x∈X f(x) by

inf∗
x∈X
f(x) < s ⇐⇒ ∃∗x ∈ X f(x) < s, for s ∈ R.

For a Borel subset A ⊆ Mod(T ) and k ∈ N, define the function U ∗k
A : Mod(T ) ×

Nk → R by

U ∗k
A (�, u) = inf∗

y∈D(M�)
�A(
(y)) ∨ kd (y, u).

Here �A denotes the characteristic function of A. Note also that
(
∀∗y ∈ BD(M�)

1/k (u) 
(y) ∈ A
)
⇐⇒ U ∗k

A (�, u) ≥ 1. (5.2)

The main significance of the function U ∗k
A is that it can be captured by a formula.

More precisely, the following holds.

Theorem 5.2 [7, Theorem 6.3]. Let T be a countable L�1�(L) theory, let A ⊆
Mod(T ) be a Borel subset, and let k ∈ N. Then there exists an L�1�(L) formula
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φA,k(x̄) with k free variables such that

U ∗k
A (�, u) = φ�A,k(u), for all � ∈ Mod(T ), u ∈ Nk.

The statement of [7, Theorem 6.3] uses a slightly different metric on tuples from
our d for the definition of U ∗k

A but the proof is still valid.
We are finally ready to state our next lemma, which allows us to represent invariant

Σ0
2 sets for an arbitrary Polish topology on Mod(T ) as Σ0

2 sets for a topology of the
form tF for a fragment F in a uniform way.

Lemma 5.3. Let F be a fragment and let T be a countable F-theory. Let t be a
Polish topology on Mod(T ) whose open sets are Borel subsets of Mod(T ). Then there
exists a fragment F ′ ⊇ F such that for every Σ0

2(t)-setA ⊆ Mod(T ), every u ∈ N<N,
and k > 0, we have that A�, A�u,k ∈ Σ0

2(tF ′). In particular, if ∼=T is potentially Σ0
2,

then there exists a fragment F ′ ⊇ F such that every isomorphism class is Σ0
2(tF ′).

Proof. Let B be a countable basis of closed sets for the topology t, so that every
t-closed set is an intersection of elements ofB. LetF ′ be the fragment generated byF
and the formulas {φB,k : B ∈ B, k ∈ N} as given by Theorem 5.2. Let nowA ∈ Σ0

2(t)
be arbitrary and let An,m for n,m ∈ N be such that An,m ∈ B and A =

⋃
n

⋂
m An,m.

Then we have

� ∈ A�u,k ⇐⇒ ∃∗y ∈ BD(M�)
1/k (u) ∃n ∀m 
(y) ∈ An,m

⇐⇒ ∃n ∃∗y ∈ BD(M�)
1/k (u) ∀m 
(y) ∈ An,m

⇐⇒ ∃n ∃u′ ∈ N<N
(
dM� (u′, u) ≤ 1/k and

∃k′ ∈ N ∀∗y ∈ BD(M�)
1/k′ (u′) ∀m 
(y) ∈ An,m

)

⇐⇒ ∃n ∃u′ ∈ N<N
(
dM� (u′, u) ≤ 1/k and ∃k′ ∀m φ�

An,m,k′
(u′) ≥ 1

)
.

As both sets {� : d�(u′, u) ≤ 1/k} and {� : φ�
An,m,k′

(u′) ≥ 1} are tF ′-closed, we get

that A�u,k ∈ Σ0
2(tF ′).

Next we prove the statement in the final sentence of the lemma. Suppose that ∼=T
is potentially Σ0

2. Then there exists a Polish topology t on Mod(T ) such that ∼=T is
Σ0

2 in t × t. In particular, every isomorphism class [�] is Σ0
2(t). On the other hand,

[�]� = [�], so we can apply the main statement of the lemma to find the desired
fragment F ′. �

The following definition is important for characterizing Σ0
2 isomorphism classes.

Definition 5.4. Let F be a fragment and let T be an F-theory. We will say that a
type p ∈ Sk(T ) is rigid if whenever (M, ā) and (N, b̄) are two realizations of p with
M and N separable, thenM ∼= N .

Proposition 5.5. Let F be a fragment, let T be an F-theory, and let � ∈ Mod(T ).
Suppose that [�] is a Σ0

2 set in tF . Then there exists k > 0 such that the set

{ā ∈Mk� : tpF (ā) is rigid}

has non-empty interior inMk� .
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Proof. Let [�] =
⋃
n An, where eachAn is a closed set in tF . WriteM =M� and

let 
 : D(M ) → [�] be the map defined by (5.1). By the Baire category theorem, there
exists n0 ∈ N such that 
–1(An0 ) has non-empty interior. For brevity, put A = An0 .
We may assume that 
–1(A) contains an open set U of the form

U = {y ∈ D(M ) : d (y, ā0) < r}

for some k ∈ N and ā0 ∈Mk . We claim that for every ā ∈ Br(ā0), tpF ā is rigid.
Indeed, fix such an ā and let (N, b̄) ≡F (M, ā) with N separable. We will find

an enumeration z ∈ D(N ) such that 
(z) ∈ 
(U ) ⊆ A ⊆ [�], which will imply that
N ∼=M . Choose z ∈ D(N ) arbitrary such that z|k = b̄. Now given n ∈ N, a formula
φ(x0, ... , xn–1) ∈ F , and � > 0, we need to find y ∈ D(M ) such that d (y, ā0) < r
and |φM (y|n) – φN (z|n)| < �. We may assume that n ≥ k, φ ≥ 0, and φN (z|n) = 0.
We have

(
inf x̄ φ(b̄, xk, ... , xn–1)

)N
= 0. As (M, ā) ≡F (N, b̄), this implies that there

exists ē ∈Mn–k such that φM (āē) < �. Now it is enough to take y|n = āē and
prolong it arbitrarily. �

We finish with a lemma that says that the collection of rigid types is not too
complicated.

Lemma 5.6. Let F be a fragment, let T be an F-theory, and suppose that the
equivalence relation ∼=T is Borel. Then for every k ∈ N, the set

{p ∈ Sk(T ) : p is rigid}

is Π1
1.

Proof. Let u = (0, ... , k – 1) and note that for p ∈ Sk(T ),

p is rigid ⇐⇒ ∀�, � ∈ Mod(T ) tpM� u = tpM� u = p =⇒ M� ∼=M�
and isomorphism being Borel, the latter condition is clearly Π1

1. �

§6. The isomorphism equivalence relation: locally compact structures. The follow-
ing is our main theorem about the complexity of isomorphism of locally compact
structures and this section is devoted to its proof.

Theorem 6.1. Let T be a countable L�1�(L) theory such that all of its separable
models are locally compact. Then the following are equivalent:

(i) ∼=T is potentially Σ0
2;

(ii) There exists a fragment F such that T is an F-theory and for every � ∈
Mod(T ), there is k ∈ N such that the set

{ā ∈Mk� : tpF ā is rigid}

has non-empty interior inMk� ;
(iii) ∼=T is essentially countable.

If M is a structure and F is a fragment, let

ΘF
n (M ) = {p ∈ Sn(ThF (M )) :M realizes p}.

If F is understood, we will often omit it from the notation.
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If (Z, d ) is a metric space, z0 ∈ Z, and r > 0, we denote by

Br(z0) = {z ∈ Z : d (z, z0) < r} and B ′
r(z0) = {z ∈ Z : d (z, z0) ≤ r}

the open and closed balls with center z0 and radius r, respectively. If Z is in addition
locally compact, denote

�Z(z0) = sup{r ∈ R : Br(z0) is compact} = sup{r ∈ R : B ′
r(z0) is compact}.

If there is no danger of confusion, we will usually omit the subscript Z in �Z . If
� ∈ Mod(T ) for some theory T, we will often write �� instead of �Mk

�
for some

Cartesian power k that is understood from the context.
The next lemma collects some basic facts about type spaces of theories with locally

compact models.

Lemma 6.2. Let F be a fragment, let T be an F-theory, and let M be a separable,
locally compact model of T. Let Φ: (Mn, d ) → (Sn(T ), ∂) be defined by Φ(ā) =
tpF ā. Then the following hold:

(i) Φ is a contraction for the metrics d onMn and ∂ on Sn(T );
(ii) If ā ∈Mn and r < �(ā), then Φ(B ′

r(ā)) = B ′
r(Φ(a)). In particular,B ′

r(tp ā) ⊆
Θn(M ) and B ′

r(tp ā) is ∂-compact;
(iii) If Br(ā) is an open ball with r ≤ �(ā), then Φ(Br(ā)) = Br(Φ(ā)). In

particular, Φ is an open mapMn → (Sn(T ), ∂);
(iv) The set Θn(M ) is open in (Sn(T ), ∂) and the space (Θn(M ), ∂) is locally

compact and separable.

Proof. (i) This is clear.
(ii) Let p ∈ Sn(T ) be such that ∂(p, tp ā) ≤ r. Then by the definition (2.2) of ∂ ,

there is a sequence (b̄i)i∈N of elements of B ′
r(ā) such that for every F-formula φ,

φM (b̄i) → φ(p) and lim supi→∞ d (b̄i , ā) ≤ r. Let b̄ be a limit point of the b̄i . Then
b̄ |= p and d (b̄, ā) ≤ r, as required.

(iii) Let Br(ā) be an open ball around ā with r < �(ā). Using (ii), we have that

Φ(Br(ā)) = Φ(
⋃
r′<r

B ′
r′(ā)) =

⋃
r′<r

Φ(B ′
r′(ā)) =

⋃
r′<r

B ′
r′(Φ(ā)) = Br(Φ(ā)).

We conclude by observing that, as M is locally compact, the sets {Br(ā) : ā ∈
Mn, r < �(ā)} form a basis for the topology ofMn.

(iv) This follows from (iii) and the fact that the open, continuous image of a
locally compact space is locally compact. �

For a fixed �-open set U ⊆ Sn(T ) and � > 0, define the following equivalence
relation RU,�(M ) on U ∩ Θn(M ):

pRU,� q ⇐⇒ ∃p0, ... , pk ∈ U p0 = p and pk = q and ∀i < k ∂(pi , pi+1) < �.

Note that each RU,�-class is ∂-open, so by Lemma 6.2, there are only countably
many of them.

Lemma 6.3. Let M be locally compact. Then for every p ∈ Θn(M ), there exist a

basic �-open U and � > 0 such that [p]RU,�
∂

is ∂-compact and contained in Θn(M ). In

particular, [p]RU,�
�

is �-compact and [p]RU,�
� ⊆ Θn(M ).
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Proof. Use Lemma 6.2 to find � > 0 such thatB ′
2�(p) is∂-compact and contained

in Θn(M ). Then the �-topology and the ∂-topology coincide onB2�(p) and therefore
there exists a basic �-open U ⊆ Sn(T ) such that p ∈ U and U ∩ B2�(p) ⊆ B�(p).
This implies that [p]RU,� ⊆ B�(p). As B ′

�(p) is �-closed, we obtain that [p]RU,�
� ⊆

B ′
�(p) ⊆ Θn(M ). Furthermore, [p]RU,�

�
, being a ∂-closed subset of the ∂-compact

set B ′
�(p), is ∂-compact and therefore also �-compact. �

Lemma 6.4. Let T be a countable L�1�(L) theory such that all of its separable
models are locally compact, and let k ∈ N. Then the following maps are Borel:

(i) Mod(T ) × Nk → R, (�, u) �→ ��(u);
(ii) Mod(T ) × Nk × R+ → K(Sk(T )), (�, u, r) �→ B ′

r(tp� u) if r < ��(u) and ∅,
otherwise. HereK(Sk(T )) denotes the collection of �-compact subsets of Sk(T )
equipped with the Vietoris topology.

Proof. (i) We consider for simplicity of notation the case k = 1. For r ∈ R+, we
have

��(u) > r ⇐⇒ ∃r′ > r BM�
r′ (u) is totally bounded

⇐⇒ ∃r′ > r ∀� > 0 ∃v0, ... , vm–1 ∈ N ∀w ∈ N

d�(u,w) < r′ =⇒ ∃i < m d�(vi , w) < �,

and this is clearly Borel (the quantifiers on r′ and � can be taken over the rationals).
(ii) We need to check that for any basic �-open U ⊆ Sk(T ), the set

W = {(�, u, r) ∈ Mod(T ) × Nk × R+ : r < ��(u) and B ′
r(tp� u) ∩U 
= ∅}

is Borel. Let U = �φ < s� for some formula φ. We have that

(�, u, r) ∈W ⇐⇒ r < ��(u) and ∃s ′ < s ∀r′ > r Br′(tp� u) ∩ �φ < s ′� 
= ∅
⇐⇒ r < ��(u) and ∃s ′ < s ∀r′ > r ∃v ∈ Nk

d�(u, v) < r′ and φ�(v) < s ′,

which is clearly Borel. The left to right direction of the first equivalence is clear. To
go from right to left, suppose that the right-hand side holds. For n ∈ N, let pn ∈
Br+1/n(tp� u) be such that φ(pn) < s ′. It follows from Lemma 6.2(ii) that �(tp� u) ≥
��(u) > r, so we may assume that the sequence pn ∂-converges to some p. Then
φ(p) ≤ s ′ < s and ∂(p, tp� u) ≤ r, so p ∈ B ′

r(tp� u) ∩U . The second equivalence
follows from Lemma 6.2(iii). �

Lemma 6.5. Suppose that T is a theory satisfying item (ii) of the statement of
Theorem 6.1. Then ∼=T is Borel.

Proof. Fix a fragment F satisfying the condition in item (ii) of Theorem 6.1.
We will show that

M� ∼=M� ⇐⇒ ∀k ∀u ∈ Nk ∀r < ��(u) ∃v ∈ Nk tp� v ∈ B ′
r(tp� u), (6.1)

where the types are taken with respect to F . Suppose first that M� ∼=M� and let
f : M� →M� be an isomorphism. Let k, u, and r be given. Then any v ∈ f(Br(u))
works because tp� v = tp� f–1(v).
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Now suppose that the right-hand side of (6.1) holds. Let k be such that

{ā ∈Mk� : tp ā is rigid}

has non-empty interior in Mk� . Let u ∈ Nk and r < ��(u) be such that for all ā ∈
B ′
r(u), tp� ā is rigid. It follows from Lemma 6.2 that every p ∈ B ′

r(tp� u) is realized
inM� and is rigid. The hypothesis implies that some p ∈ B ′

r(tp� u) is realized inM�.
Thus M� and M� realize a common rigid type, so they must be isomorphic. This
concludes the proof of (6.1).

Finally, it follows from Lemma 6.4 that the condition in the right-hand side of
(6.1) is Borel. �

Proof of Theorem 6.1. (i) ⇒ (ii). This follows from Lemma 5.3 and
Proposition 5.5.

(ii) ⇒ (iii). By a well-known result of Kechris (see [21, Lemma 5.2]), in order
to prove that ∼=T is essentially countable, it suffices to produce a standard
Borel space Y and a Borel map Ψ: Mod(T ) → Y such that the image of each
isomorphism class is countable and the images of different classes are disjoint.
Let Y =

⊔
k K(Sk(T )) and define Ψ as follows: for a given � ∈ Mod(T ),

choose k ∈ N and u ∈ Nk such that p = tp� u is rigid, choose a basic �-open
U ⊆ Sk(T ) and a rational � > 0 such that Lemma 6.3 holds for p, and set
Ψ(�) = [p]RU,�

�
. We check that this can be done in a Borel way. First, by

Lemma 6.5, the equivalence relation ∼=T is Borel. Now Lemma 5.6 implies
that the set

W = {(�, u) ∈ Mod(T ) × N<N : tp� u is rigid}

is Π1
1 and by assumption, each section W� for � ∈ Mod(T ) is non-empty.

Then by number uniformization [29, Theorem 35.1], there exists a Π1
1 set

W∗ ⊆W such that for all � ∈ Mod(T ), there is a unique u ∈ N<N such that
(�, u) ∈W∗. If for u ∈ N<N, we denoteWu∗ = {� : (�, u) ∈W∗}, we have that
Mod(T ) =

⊔
u∈N<NWu∗ . As each of the setsWu∗ is Π1

1 and Mod(T ) is Borel,
this implies that each Wu∗ is Borel. Thus W∗ is the graph of a Borel map
Φ: Mod(T ) → N<N such that tp� Φ(�) is rigid for all � ∈ Mod(T ). Write
u = Φ(�), k = |u|, and p = tp� u. Next, for Lemma 6.3 to hold, we need that
2� < ��(u) and U ∩ B ′

2�(p) ⊆ B ′
�(p). Thus � and U can also be chosen in a

Borel way by Lemma 6.4. Finally, note that [p]RU,�
�

= U ∩ B�(p)
�

and this is
again Borel. Indeed, for a �-open V ⊆ Sk(T ), we have

U ∩ B�(p)
� ∩ V 
= ∅ ⇐⇒ B�(p) ∩U ∩ V 
= ∅

⇐⇒ ∃v ∈ Nk d�(u, v) < � and tp� v ∈ U ∩ V,

and this is a Borel condition.As there are only countably many choices for
k, U, and �, RU,� has only countably many classes, and for isomorphic M
and N, Θk(M ) = Θk(N ), we obtain that the image of each isomorphism class
is countable. Suppose now that Ψ(�) = Ψ(�) for some �, � ∈ Mod(T ). This
implies that there exists k ∈ N and ā ∈Mk� such that p = tp ā is rigid and
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p ∈ Ψ(�) = Ψ(�) ⊆ Θ(M�). In particular, M� realizes p and by rigidity, we
must haveM� ∼=M�.

(iii) ⇒ (i). This is obvious. �

We conclude this section with two remarks comparing Theorem 6.1 to the
analogous result of Hjorth and Kechris about discrete structures and showing with
examples that natural modifications of Theorem 6.1 fail.

Remark 6.6. One may ask whether it is possible to replace the notion of a rigid
type in Theorem 6.1 with the requirement that the type (considered as a theory)
has an atomic model. (Indeed, this is the condition used by Hjorth and Kechris in
the discrete case.) We first note that in classical logic, every rigid type admits an
atomic model. This is simply because if p is rigid, then Sn(p) is countable for every
n and in every countable Polish space, isolated points are dense. However, this fails
in continuous logic as can be seen from the following example. Let G denote the
Gurarij Banach space. This is the Fraı̈ssé limit of finite-dimensional Banach spaces
and it is ℵ0-categorical in the L�� fragment. Then there exists a four-dimensional
subspace E ⊆ G such that the theory of G with parameters for E does not admit
an atomic model (see [8, Example 6.6]). For us, this means that if ē ∈ G4 is a basis
for E, then tp ē does not admit an atomic model. However, this type is rigid because
Th(G) is ℵ0-categorical. We do not know a similar example for locally compact
structures but strongly suspect that one exists (allowing arbitrary fragments).

Remark 6.7. Another easy consequence of the Hjorth–Kechris result is that
isomorphism of finitely generated discrete structures is an essentially countable
equivalence relation. This also fails in the continuous setting as can be seen by
combining several results from the literature as follows. Thiel and Winter [34,
Theorem 3.8] have proved that separable, Z-stable C∗-algebras are singly generated
and Toms and Winter [35, Theorem 2.3] have shown that approximately divisible,
separable C∗-algebras are Z-stable. It follows from the proof of the main theorem in
[14] that separable, simple, AI algebras are approximately divisible, and finally,
Sabok [32] has proved that the isomorphism relation for separable, simple AI
algebras is bi-reducible with the universal equivalence relation given by a Polish
group action. By combining all of this, we conclude that isomorphism for singly
generated C∗-algebras is universal for orbit equivalence relations of Polish group
actions.

§7. Pseudo-connected metric structures and a theorem of Kechris. In this section,
we use some basic model theory and Theorem 6.1 to deduce a generalization of a
theorem of Hjorth about pseudo-connected locally compact metric spaces. We also
show how to apply this to recover a theorem of Kechris about orbit equivalence
relations of actions of locally compact Polish groups.

We recall from [18] the definition of a pseudo-connected space. Let (Z, d ) be a
locally compact metric space. We define a reflexive, transitive relation E∗ on Z by

x E∗ y := ∃z0, z1, ... , zn ∀i = 0, ... , n – 1

d (zi , zi+1) < �(zi) and z0 = x and zn = y, (7.1)
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and we let E be the symmetrization of E∗:

x E y ⇐⇒ x E∗ y and y E∗ x.

The pseudo-component of z ∈ Z, denoted by C [z], is its E-equivalence class and we
call Z pseudo-connected if it has only one pseudo-component. Examples of pseudo-
connected locally compact metric spaces are the connected spaces and the proper
metric spaces (spaces where every closed ball is compact).

Remark 7.1. Our model-theoretic setting is limited to bounded structures, so,
strictly speaking, the example of proper metric spaces does not fall into our
framework. It is possible to treat unbounded structures in several ways. One is
to replace the distance predicate d by infinitely many predicates {dn}n∈N defined
by dn = d ∧ n (and take d1 as the “official” distance used to define the moduli of
continuity). Then one needs to add the axiom

inf
x,y

∨
n

1 ∧ (n – dn(x, y)) = 1,

which states that d (x, y) is finite for all points x, y.
Another possibility is to replace the metric d by d ′ = d/(1 + d ) which is bounded

by 1. Then the condition of being proper is replaced by the condition that every closed
ball of radius less than 1 is compact and the new space is still pseudo-connected.
Note that both encodings preserve the equivalence relation of isomorphism.

Recall that if M is a model and A ⊆M , the algebraic closure of A is defined by

aclA :=
⋃

{D ⊆M : D is L��-definable from A and compact}.

See [6, Section 9] for the definition of definable sets and more details on the algebraic
closure operator. We will only use the notion of algebraic closure for the finitary
fragment L�� , so that all results of [6] apply.

We have the following basic fact about pseudo-components.

Proposition 7.2. Let M be a locally compact metric structure and let a ∈M .
Then C [a] ⊆ acl a.

Proof. Let b ∈M and r < �(b). We will show that the compact ball B ′
r(b) is

definable from b. We will apply [6, Proposition 9.19(2)] to the predicate d (x, b) .– r.
If the condition (2) is not verified, there exists � > 0 such that for every n there
exists a point bn with d (bn, b) < r + 1/n and d (bn, B ′

r(b)) ≥ �. As r < �(b), we may
assume that bn → b′ but then d (b, b′) ≤ r and d (b′, B ′

r(b)) ≥ �, contradiction.
Now the conclusion of the proposition follows from the definition (7.1) and the

transitivity of the algebraic closure operator (see [6, Proposition 10.11(2)]). �

Proposition 7.3. Let F be a fragment and let T be an F-theory such that all
models of T are pseudo-connected. Then for every model M |= T and every c ∈M ,
the theory ThF (M, c) is ℵ0-categorical.

Proof. Suppose that (N, b) ≡F (M, c). In particular, (N, b) ≡L�� (M, c), so
there exists a model K andL��-elementary embeddingsf : M → K and g : N → K
with f(b) = g(c). We have from Proposition 7.2 that M = acl c and similarly, as
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N |= T , N is also pseudo-connected, so N = acl b. By [6, Corollary 10.5], we have
that

f(M ) = aclf(b) = acl g(c) = g(N ),

so g–1 ◦ f is an isomorphismM → N sending b to c. �

Corollary 7.4 (cf. [18, Theorem 5.7]). Let L be a signature, let F be a fragment
of L�1�(L), and let T be an F-theory such that all models of T are pseudo-connected.
Let c be a constant symbol that does not appear in L. LetT ′ be the theory T considered
in the expanded language L ∪ {c}. Then the equivalence relation of isomorphism on
Mod(T ′) is smooth.

Proof. This follows from Proposition 7.3 and Theorem 5.1. �

The next result is a generalization of a theorem of Hjorth [18, Theorem 7.1].

Corollary 7.5. Let T be a theory such that all of its models are pseudo-connected.
Then ∼=T is essentially countable.

Proof. This follows from Proposition 7.3 and Theorem 6.1. �

Remark 7.6. Corollary 7.5 also holds if one replaces “are pseudo-connected”
with “have finitely many pseudo-components.” Indeed, if C1, ... , Cn are the pseudo-
components of a structure M, then

∏
i Ci is open in Mn and for every ā ∈

∏
i Ci ,

we have thatM = acl ā, so the same argument works.

As another application of the results from the previous section, we present a new
proof of a theorem of Kechris from [28], stating that orbit equivalence relations
induced by continuous actions of locally compact Polish groups are essentially
countable. First, we need a way of encoding group actions as metric structures.

Let Z be a compact metrizable space and let G ≤ Homeo(Z) be a closed, CLI
subgroup. (Recall that a Polish group is CLI if its left uniformity is complete
iff its right uniformity is complete. All Polish locally compact groups are CLI.)
Denote by α the action G � Z. We will reduce the orbit equivalence relation Eα to
isomorphism of metric structures with underlying space (G, d ), where d is a fixed,
right-invariant, compatible metric on G.

Define the metric du on Homeo(Z) by

du(h1, h2) = sup{�(h1 · z, h2 · z) : z ∈ Z}, (7.2)

where � is some fixed compatible metric on Z bounded by 1. Note that du restricts
to a compatible, right-invariant metric on G and therefore the metrics du and d are
uniformly equivalent.

Let {zi}i∈N be a dense sequence in Z. Let Δ be a modulus of continuity such
that every unary predicate on G which is 1-Lipschitz with respect to du respects Δ
with respect to d. Let L be the language consisting of the metric d and the unary
predicates {Pi}i∈N respecting Δ. Let T be the theory consisting of the Scott sentence
of the metric space (G, d ). For each z ∈ Z, define an L-structureM (z) with universe
(G, d ) and predicates defined on G by

Pzi (h) = �(h · z, zi).
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As each Pzi is 1-Lipschitz with respect to du , it respects Δ, so M (z) is a valid
L-structure which is also a model of T. Also, the predicates Pzi code z uniquely: if
Pzi (1G ) = Pz

′
i (1G) for all i, then z = z ′.

Proposition 7.7. The mapZ → Mod(T ) given by z �→M (z) is a Borel reduction
from Eα to isomorphism of models of T.

Proof. One easily checks that the map G → G , h �→ hg is an isomorphism
M (z) →M (g · z).

Conversely, suppose that f : M (z) →M (z ′) is an isomorphism and let h0 =
f(1G ). Then

Pzi (1G ) = Pz
′
i (h0) = Ph0·z

′

i (1G ) for all i,

whence z = h0 · z ′. �

Corollary 7.8 [28]. Let G � X be a Borel action of a locally compact Polish
group G on a Polish space X. Then its orbit equivalence relation is essentially countable.

Proof. Let F (G) denote the space of closed subsets of G. It carries a compact
Polish topology with basic open sets of the form

{F ∈ F (G) : F ∩U1 
= ∅, ... , F ∩Un 
= ∅, F ∩K = ∅},

where U1, ... , Un ⊆ G are open and K ⊆ G is compact. There is a natural action
G � F (G) by left translation and it is well-known that the action G � F (G)N is
universal for Borel actions of G [2, Theorem 2.6.1]. Thus it suffices to prove that the
orbit equivalence relation of this action is essentially countable.

Let d ′ be any proper, right-invariant, compatible metric on G (see [33]) and let
d = d ′/(1 + d ′), so that d is right-invariant and (G, d ) is pseudo-connected and
bounded. The actionG � F (G)N gives an embedding of G as a closed subgroup of
Homeo(F (G)N). Let the language L and the theory T be defined as in the discussion
preceding Proposition 7.7. By Proposition 7.7, the orbit equivalence relation of the
actionG � F (G)N is Borel reducible to isomorphism of models of T. As T contains
the Scott sentence of (G, d ), all models of T are pseudo-connected, so we can apply
Corollary 7.5 to deduce that ∼=T is an essentially countable equivalence relation.
This concludes the proof. �

Acknowledgments. We would like to thank Itaı̈ Ben Yaacov and Michal Doucha
for useful discussions and Ward Henson for providing references concerning the
model theory of Banach spaces. We are also grateful to the anonymous referee
for a careful reading of the paper, useful suggestions, and providing a reference.
Research on this paper was partially supported by the ANR project AGRUME
(ANR-17-CE40-0026) and the Investissements d’Avenir program of Université de
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