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Abstract

Eaton (1992) considered a general parametric statistical model paired with an improper
prior distribution for the parameter and proved that if a certain Markov chain, constructed
using the model and the prior, is recurrent, then the improper prior is strongly admissible,
which (roughly speaking) means that the generalized Bayes estimators derived from the
corresponding posterior distribution are admissible. Hobert and Robert (1999) proved
that Eaton’s Markov chain is recurrent if and only if its so-called conjugate Markov
chain is recurrent. The focus of this paper is a family of Markov chains that contains
all of the conjugate chains that arise in the context of a Poisson model paired with an
arbitrary improper prior for the mean parameter. Sufficient conditions for recurrence
and transience are developed and these are used to establish new results concerning the
strong admissibility of non-conjugate improper priors for the Poisson mean.
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1. Introduction

There is a well-known connection between the admissibility of statistical estimators and
the recurrence of associated stochastic processes (see, e.g., [2, 4, 9]). Eaton [4] considered a
general parametric statistical model paired with an improper prior distribution for the param-
eter that leads to a proper posterior distribution. Let θ and ν(dθ ) denote the parameter and
the improper prior distribution, respectively. Eaton proved that if a certain Markov chain
(constructed using the model and the prior) is recurrent, then the improper prior is strongly
admissible, which means that the generalized Bayes estimator of every bounded function of θ

is almost-ν-admissible under squared error loss. That is, if g(θ ) is any bounded function of θ

and δ is any estimator of g(θ ) whose mean squared error (MSE) is less than or equal to that of
the generalized Bayes estimator of g(θ ) for all θ , then the set of θs for which the MSE of δ is
strictly less than that of the generalized Bayes estimator has ν-measure 0. (See [5] for an excel-
lent introduction to this theory.) Strong admissibility is a useful property. Indeed, if the prior
ν is strongly admissible, this means that the statistical model and ν combine to yield a formal
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2 J. P. HOBERT AND K. KHARE

posterior distribution that generates (almost) admissible estimators for a large class of func-
tions of θ , which means that we might be willing to endorse ν as a good ‘all purpose’ prior to
use in conjunction with this particular statistical model. It is important to keep in mind through-
out that Eaton’s condition is merely sufficient. In particular, it remains unknown whether or
not transience of Eaton’s Markov chain implies that the prior is not strongly admissible. (See
[4, Section 7] for more on this issue.)

Hobert and Robert [7] showed that Eaton’s Markov chain is recurrent if and only if its
so-called conjugate Markov chain is recurrent (see also [6]). This is a useful result from a
practical standpoint because the conjugate chain is often much easier to analyze than Eaton’s
chain. Here we study a set of Markov chains that contains all the conjugate chains that arise in
the context of a Poisson model paired with an arbitrary improper prior. We now describe this
set of chains.

Let {am}∞m=0 be a sequence of strictly positive real numbers such that, for each i ∈
Z

+ := {0, 1, 2, . . .}, we have
∑∞

j=0 ai+j/j! < ∞. Define bi = (1/i!)∑∞
j=0 ai+j/j!. Now let W =

{Wn}∞n=0 be a time-homogeneous Markov chain with state space Z+ and transition probabilities
given by

pij = P(Wn+1 = j | Wn = i) = ai+j

i!j!bi

for i, j ∈Z
+. The fact that the transition probabilities are all strictly positive implies that the

chain is irreducible and aperiodic. Moreover, since pijbi = ai+j/(i!j!) = pjibj for all i, j ∈Z
+, the

chain is reversible with respect to the sequence {bi}∞i=0. Thus, {bi}∞i=0 is an invariant sequence
for W, i.e. for each j ∈Z

+ we have
∑∞

i=0 pijbi = bj. Because W is irreducible and aperiodic, it
follows that W is positive recurrent if and only if

∑∞
i=0 bi < ∞ (see, e.g., [1, Section 8]). When

this sum diverges, the chain is either null recurrent or transient, and differentiating between
these two possibilities in specific examples can be quite challenging. This is our focus. We
now provide a simple example.

If we take am = m!/2m+1, then, for fixed i,

∞∑
j=0

ai+j

j! =
∞∑

j=0

(i + j)!
2i+j+1j! ,

which converges (ratio test). Now,

∞∑
i=0

bi =
∞∑

i=0

1

i!
∞∑

j=0

ai+j

j! =
∞∑

i=0

1

i!
∞∑

j=0

(i + j)!
2i+j+1j! =

∞∑
n=0

(1

2

)n+1 n∑
i=0

(
n

i

)
=

∞∑
n=0

1

2
= ∞.

We conclude that the Markov chain W corresponding to am = m!/2m+1 is either null recurrent
or transient. We will return to this example several times throughout the paper.

We now describe the connection between the Markov chain W and the decision-theoretic
study of improper priors for a Poisson mean. Suppose that X is a Poisson(λ) random vari-
able; that is, λ > 0 and P(X = x | λ) = (e−λλx/x!)1Z+ (x), where 1A(·) is the indicator function
of the set A. Set R

+ = (0, ∞) and let ν : R
+ →R

+ be such that
∫
R+ ν(λ) dλ = ∞ and∫

R+ λxe−λν(λ) dλ < ∞ for all x ∈Z
+. Under these conditions, ν(λ) can be viewed as an

improper prior density for the parameter λ that yields a proper posterior density given by

π (λ | x) = e−λλxν(λ)

x!mν(x)
1R+(λ),
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where, of course, mν(x) := (1/x!) ∫
R+ λxe−λν(λ) dλ. We associate with each such improper

prior ν(·) a Markov chain �ν = {�ν
n}∞n=0 with state space Z

+ and transition probabilities
given by

P(�ν
n+1 = j | �ν

n = i) =
∫
R+

P(X = j | λ)π (λ | i) dλ

= 1

i!j!mν(i)

∫
R+

λi+je−2λν(λ) dλ (1.1)

for i, j ∈Z
+. This is the conjugate chain mentioned above. As is typical, it is less complex than

Eaton’s chain, which has a continuous state space, R+, and Markov transition density given by

k(v | u) =
∞∑

x=0

π (v | x)P(X = x | u) = e−u−vν(v)
∞∑

x=0

(uv)x

(x!)2mν(x)
.

Clearly, the transition probabilities in (1.1) are strictly positive, which implies that the chain is
irreducible and aperiodic. Moreover,

P(�ν
n+1 = j | �ν

n = i)mν(i) = P(�ν
n+1 = i | �ν

n = j)mν(j)

for i, j ∈Z
+. Hence, �ν is reversible with respect to the sequence {mν(i)}∞i=0. The impropriety

of ν(·) implies that
∑∞

i=0 mν(i) = ∞, so �ν is either null recurrent or transient. It follows
from results of [4, 7] that if �ν is null recurrent, then the prior ν is strongly admissible under
squared error loss. Here is the connection: the chain �ν is a member of the general class of
chains described above with

am =
∫
R+

λme−2λν(λ) dλ.

This connection provides motivation for the development of techniques for differentiating
between null recurrence and transience of W when W is not positive recurrent, i.e., when∑∞

i=0 bi diverges.
Let’s now look at a particular family of improper priors for λ that lead to proper posteriors.

Take ν(λ) = λα−1e−βλ for α > 0 and β ∈ ( − 1, 0]. This is basically an improper gamma den-
sity, i.e. for α > 0 and β ∈ ( − 1, 0], we have

∫
R+ λα−1e−βλ dλ = ∞. The resulting posterior

density is proper since, for any x ∈Z
+,∫

R+
λxe−λν(λ) dλ =

∫
R+

λx+α−1e−λ(β+1) dλ < ∞.

Under this improper gamma prior, the posterior density is a (proper) gamma density, which is
why the priors in this family are called conjugate priors. (Warning: The word ‘conjugate’ is
used in two different ways in this paper; one applies to priors and the other to Markov chains.)
Again, the associated Markov chain �ν is a special case of the Markov chain W, and the
corresponding sequence {am}∞m=0 is given by

am =
∫
R+

λme−2λν(λ) dλ =
∫
R+

λm+α−1e−(2+β)λ dλ = 
(m + α)

(2 + β)m+α
.

When α = 1 and β = 0, we have am = m!/2m+1, which is precisely the example discussed
earlier in this section. It is known that the Markov chain �ν is null recurrent when β = 0 and
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4 J. P. HOBERT AND K. KHARE

α ∈ (0, 1], and is transient otherwise. So improper conjugate priors taking the form ν(λ) =
λα−1, α ∈ (0, 1], are strongly admissible. These priors are improper due to their heavy right
tails. When α = 1 we recover the so-called flat prior, which is constant on R

+, and when α ∈
(0, 1) the right tail decreases to 0 at a rate dictated by α, with smaller values of α leading to a
faster decrease. The result concerning the stability of �ν was established in [7], which showed
that when ν is conjugate, �ν can be represented as a branching process with immigration.
The null recurrence/transience results then follow easily from classical theorems in branching
process theory. Unfortunately, when ν is non-conjugate, the branching process representation
of �ν breaks down, and differentiating between null recurrence and transience is much more
difficult. In fact, not much is known about the strong admissibility of improper non-conjugate
priors for λ.

Remark 1.1. Now suppose that, instead of a single observation from the Poisson(λ) distribu-
tion, we have an independent and identically distributed (i.i.d.) sample of size n, and we want to
know if ν(λ) is strongly admissible in this new situation. Since the sum of these Poisson random
variables is a sufficient statistic, we can base our inference on the sum, which also has a Poisson
distribution. In fact, a straightforward calculation shows that the conjugate Markov chain for
this problem is exactly the same as that corresponding to the case of a single observation
with prior ν(λ/n)/n. Hence, if the latter chain is recurrent, then ν(λ) is strongly admissible in
the i.i.d. sample case. For example, if ν(λ) = λα−1e−βλ, then ν(λ/n)/n = n−1(λ/n)α−1e−βλ/n,
which is just a slightly different conjugate prior (the factor of n−α plays no role). Since β = 0
if and only if β/n = 0, the conjugate priors that we identified as strongly admissible for the
single-observation case remain so for the i.i.d. sample case, which is not surprising.

Our main contribution is the development of general conditions that can be used to ascertain
whether W (characterized by the sequence {am}∞m=0) is recurrent or transient. In particular, we
prove that a sufficient condition for transience of W is

∞∑
n=1

(n!)2

n3/2a2n
+

∞∑
n=1

n!(n + 1)!
n3/2a2n+1

< ∞,

and that a sufficient condition for recurrence of W is

∞∑
n=1

[
n−1∑
i=0

∞∑
j=n

ai+j(j − i)

i!j!

]−1

= ∞.

These conditions are applicable to all W, but they are most useful in situations where
∑∞

i=0 bi =
∞. In the context of our statistical problem, we show that our sufficient conditions are sharp
enough to correctly characterize all of the �νs associated with improper conjugate priors,
which suggests that they ought to be useful in differentiating between null recurrence and
transience when improper non-conjugate priors are used, and we demonstrate that this is indeed
the case. Of course, as mentioned above, transience of �ν does not tell us anything about ν

(beyond the fact that Eaton’s theory cannot be used to establish the strong admissibility of ν).
Therefore, in the context of our statistical problem, the sufficient condition for transience is
clearly much less useful than the sufficient condition for recurrence.

We develop these sufficient conditions for recurrence and transience by leveraging a branch
of classical Markov chain theory that is based on connections between reversible Markov
chains (on countable state spaces) and electrical networks (see, e.g., [3, 13]). Our work is
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analogous to that of [8], which developed a sufficient condition for strong admissibility of
improper priors for a geometric success probability.

The remainder of this paper is organized as follows. In Section 2, we introduce random
walks on networks and explain how they are related to our Markov chain W. Section 3 con-
tains our development of the sufficient condition for transience, which is based on a result
from [11]. In Section 4, a result from [12] is employed to develop the sufficient condition for
recurrence. We apply our results in Section 5. There it is shown that certain members of the
family of improper (non-conjugate) inverse gamma priors are strongly admissible, and that the
logarithmic prior ν(λ) = log(1 + λ) is strongly admissible. Finally, Section 6 contains some
closing remarks about our results.

2. Random walks on networks

In this section, we define a weighted random walk on a network, and show that a slightly
altered version of the Markov chain W can be represented as such. This representation facili-
tates our analysis of W because W and the altered version have the same recurrence/transience
properties.

A network is a pair N = [G, c], where G is a simple connected graph with countable vertex
set V(G) and edge set E(G), and c is a function with domain E(G) and range R+. For e ∈ E(G),
c(e) is called the conductance of the edge e. If v and w are vertices of G that are connected by
an edge, then we write v ∼ w and denote the edge connecting v and w by evw. For v ∈ V(G),
let c(v) =∑

w:v∼w c(evw). A weighted random walk on N is a Markov chain S = {Sn}∞n=0 with
state space V(G) whose transition probabilities are given by

P(Sn+1 = w | Sn = v) =
⎧⎨
⎩

c(evw)/c(v) if v ∼ w,

0 otherwise.

In words, if the chain is currently at the vertex v, then its next move is to one of the vertices
that share an edge with v according to probabilities that are proportional to the conductances
of those edges. Since

P(Sn+1 = w | Sn = v)c(v) = c(evw) = P(Sn+1 = v | Sn = w)c(w)

for all (v, w) ∈ V(G) × V(G), the chain S is reversible with respect to the sequence {c(v)}v∈V(G).
The graph G is simple so it has no self loops. Hence, the Markov chain S cannot make

transitions from a vertex in G back to the same vertex. The Markov chain W, however, can
make transitions from any point in Z

+ back to the same point. It follows that W cannot be
represented exactly as a weighted random walk on a network. This is why we must consider a
slightly altered version of W that we now describe. Let H be the graph with vertex set Z+ and
an edge joining any two distinct vertices. (We are using H instead of G here because we wish to
preserve the generality of the network N = [G, c].) Let i and j be any two distinct points in Z

+
and define the conductance as d(eij) = pijbi = ai+j/(i!j!). Now let T = {Tn}∞n=0 be the weighted
random walk on the network M = [H, d], which has transition probabilities given by

P(Tn+1 = j | Tn = i) = d(eij)

d(i)
= pijbi∑

j �=i pijbi
= pij

1 − pii

for all i �= j. These are also the transition probabilities of the Markov chain W̃ = {W̃n}∞n=0
obtained from the chain W by removing repeated values, and, moreover, W is recurrent if
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6 J. P. HOBERT AND K. KHARE

and only if W̃ is recurrent (see [8, Section 2] for details). Therefore, T is recurrent if and only
if W is recurrent, so we can study the stability of W indirectly by studying T .

3. A condition for transience of W

In this section, we develop a sufficient condition for the transience of W by employing a
result from [11]. Consider again our generic network N = [G, c] from the previous section.
If a ∈ V(G), a flow from a to ∞ is a real-valued function θ defined on V(G) × V(G) such
that θ (v, w) = 0 unless v ∼ w, θ (v, w) = −θ (w, v) for all v, w ∈ V(G), and

∑
w∈V(G) θ (v, w) =

0 if v �= a. The flow is called a unit flow if
∑

w∈V(G) θ (a, w) = 1. The energy of the flow is
defined by

E(θ ) = 1

2

∑
(v,w):v∼w

θ2(v, w)

c(evw)
.

Theorem 3.1. (Lyons [11].) The weighted random walk on the network N = [G, c] is transient
if and only if, for some a ∈ V(G), there exists a unit flow from a to ∞ having finite energy.

In our application of this result, we will be concerned with the particular network M =
[H, d] defined in the previous section. We now describe a novel technique for converting cer-
tain partitions of Z

+ into flows from 0 to ∞. Let {Bk}∞k=0 denote a partition of Z
+ where

B0 = {0}. We assume without loss of generality that all sets in the partition are non-empty. We
assume further that the partition is ‘monotone’ in the sense that if i ∈ Bk and j ∈ B� with k < �,
then i < j. Now define a function θ : Z+ ×Z

+ →R as follows:

θ (i, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|B1|
|Bk||Bk+1| if i ∈ Bk, j ∈ Bk+1,

−|B1|
|Bk−1||Bk| if i ∈ Bk, j ∈ Bk−1,

0 otherwise.

We claim that θ is a flow. The anti-symmetry of θ , i.e. θ (i, j) = −θ (j, i), follows immediately
by construction. Now suppose that k ≥ 1 and that i ∈ Bk. Then we have

∞∑
j=0

θ (i, j) =
∑

j∈Bk−1

θ (i, j) +
∑

j∈Bk+1

θ (i, j) = −|B1|
|Bk−1||Bk| |Bk−1| + |B1|

|Bk||Bk+1| |Bk+1| = 0.

Hence, θ is a flow. Further,

∞∑
j=0

θ (0, j) =
∑
j∈B1

θ (0, j) = |B1|
|B0||B1| |B1| = |B1| > 0.

Therefore, we can make the flow a unit flow from 0 to ∞ by choosing B1 = {1}. We call any
flow constructed using the above technique a partition flow. Here is our main result regarding
the transience of the Markov chain W.

Proposition 3.1. The Markov chain W (characterized by the sequence {am}∞m=0) is transient if

∞∑
n=1

(n!)2

n3/2a2n
+

∞∑
n=1

n!(n + 1)!
n3/2a2n+1

< ∞. (3.1)
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Proof. Let θ denote the unit partition flow from 0 to ∞ based on the following partition:
B0 = {0}, B1 = {1}, and Bk = {(k − 1)2 + 1, . . . , k2} for k ≥ 2. Note that |Bk| = 2k − 1 for k ≥
1. We will show that (3.1) implies that the energy of this flow is finite, which in turn implies
transience by Theorem 3.1. We can express the energy of our flow as follows:

E(θ ) = 1

2

∞∑
i=0

∞∑
j=0

i!j!θ (i, j)2

ai+j
= 1

2

∞∑
n=1

1

an

n∑
i=0

i!(n − i)!θ (i, n − i)2

=
∞∑

n=1

1

an

	n/2
∑
i=0

i!(n − i)!θ (i, n − i)2,

where the last step uses the anti-symmetry of θ , and 	·
 denotes the floor of the argument. Now
fix n ≥ 50 and fix a non-negative integer i < n/2. Suppose that i ∈ Bk. Then θ (i, n − i)2 �= 0 if
and only if n − i ∈ Bk+1. It follows from the definition of Bk and Bk+1 that, in such a case,

n = i + (n − i) ≤ k2 + (k + 1)2 = 2k2 + 2k + 1.

Continuing, since i ∈ Bk, we have i ≥ k2 − 2k + 2 and
√

i > k − 1. Hence,

n ≤ 2k2 − 4k + 4 + 6(k − 1) + 3 < 2i + 6
√

i + 3 < 2i + 6
√

n/2 + 3 < 2i + 6
√

n.

It follows that θ (i, n − i) �= 0 ⇒ i > n/2 − 3
√

n. We see that n − i ∈ Bk+1 implies that n <

2(k + 1)2. Thus, 50 ≤ n < 2(k + 1)2, which implies that k > 4 and

θ (i, n − i) = 1

|Bk||Bk+1| = 1

(2k − 1)(2k + 1)
≤ 1

2(k + 1)2
<

1

n
.

Using the facts just established, we have, for n ≥ 50,

	n/2
∑
i=0

i!(n − i)!θ (i, n − i)2 ≤ 1

n2

	n/2
∑
i=	n/2−3

√
n


i!(n − i)!

≤ 1

n2

	n/2
∑
i=	n/2−3

√
n


	n/2 − 3
√

n
!(n − 	n/2 − 3
√

n
)!

≤ 4
√

n

n2
	n/2 − 3

√
n
!(n − 	n/2 − 3

√
n
)!. (3.2)

The penultimate inequality follows from the fact that i!(n − i)! is a decreasing function of i for
0 ≤ i ≤ 	n/2
. We now look to bound the product of factorials in the last line of (3.2).

Let hn = 	n/2 − 3
√

n
/n ∈ (0, 1). Then

n/2 − 3
√

n − 1

n
≤ hn ≤ n/2 − 3

√
n

n
. (3.3)

It follows that

4hn(1 − hn) ≤
(

1 − 6√
n

)(
1 + 6√

n
+ 2

n

)
≤ 1 − 36

n
+ 2

n
≤ 1 − 34

n
. (3.4)
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8 J. P. HOBERT AND K. KHARE

Recall Stirling’s approximation:

√
2πn

(
n

e

)n

< n! <
√

2πne2

(
n

e

)n

.

Now fix n even. Using Stirling’s approximation in conjunction with (3.3) and (3.4), we have

	n/2 − 3
√

n
!(n − 	n/2 − 3
√

n
)!
(n/2)! (n/2)! ≤ 2n+1e2

√
hn(1 − hn)hnhn

n (1 − hn)n(1−hn)

≤ 2n+1e2
√

hn(1 − hn)hn/2−3
√

n−1
n (1 − hn)n/2+3

√
n

= 2e2

√
1 − hn

hn

(
4hn(1 − hn)

)n/2
(

1 − hn

hn

)3
√

n

≤ 2e2

√
1 − hn

hn

(
1 − 34

n

)n/2(1 + 6/
√

n + 2/n

1 − 6/
√

n − 2/n

)3
√

n

.

(3.5)

Now recall that if {un} and {vn} are sequences of real numbers such that un → ∞ and vn → v
for some v ∈R, then (

1 + vn

un

)un

→ ev

as n → ∞. Hence, (1 − 34/n)n/2 → e−17 and

(
1 + 6/

√
n + 2/n

1 − 6/
√

n − 2/n

)3
√

n

→ e36.

Combining this with the fact that hn → 1
2 , we have, for large enough even n,

	n/2 − 3
√

n
!(n − 	n/2 − 3
√

n
)!
(n/2)!(n/2)! ≤ 4e21.

It then follows from (3.2) that, for large enough even n,

	n/2
∑
i=0

i!(n − i)!θ (i, n − i)2 ≤ 16e21

n3/2
(n/2)!(n/2)!. (3.6)

Using Stirling’s approximation again, we have, for large enough odd n,

1

((n − 1)/2)!((n + 1)/2)! ≤ 2nen

π
√

n2 − 1
(n − 1)−(n−1)/2(n + 1)−(n+1)/2

= 2nenn−n

π
√

n2 − 1

√
n − 1

n + 1

(
1 − 1

n2

)−n/2

≤ 2
2nenn−n

πn
. (3.7)
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The last expression in (3.7) is precisely twice the Stirling-based upper bound for

1

(n/2)!(n/2)!
for n even that we used to get (3.5). Therefore, proceeding exactly as in the n even case, we
find that, for large enough odd n,

	n/2
∑
i=0

i!(n − i)!θ (i, n − i)2 ≤ 32e21

n3/2
((n − 1)/2)!((n + 1)/2)!. (3.8)

Combining (3.6) and (3.8), it’s clear that E(θ ) < ∞ if

∞∑
n=1

(n!)2

n3/2a2n
+

∞∑
n=1

n!(n + 1)!
n3/2a2n+1

< ∞,

which completes the proof. �

Here is an easy extension of Proposition 3.1.

Corollary 3.1. Let W and W′ be Markov chains defined by the sequences {am}∞m=0 and
{a′

m}∞m=0, respectively. Suppose that {am}∞m=0 satisfies (3.1), which implies that W is transient.
If there exists a C > 0 such that a′

m ≥ Cam for all m ∈Z
+, then W′ is also transient.

Recall that the improper conjugate prior for the Poisson parameter λ takes the form ν(λ) =
λα−1e−βλ for α > 0 and β ∈ ( − 1, 0]. Again, [7] used a highly specialized branching process
argument to show that the corresponding Markov chain, �ν , is null recurrent when β = 0 and
α ∈ (0, 1], and is transient otherwise. We now demonstrate that Proposition 3.1 can be used
to reproduce the transience part of this result. We consider two different cases that lead to
transience:

1. α ∈ (0, 1] and β ∈ ( − 1, 0);

2. α > 1 and β ∈ ( − 1, 0].

As shown in Section 1, �ν is a special case of the chain W generated by the sequence {am}∞m=0
given by

am = 
(m + α)

(2 + β)m+α
.

We begin with case I. Results in [15] imply that, for every s > 0,

lim
x→∞


(x + s)

xs
(x)
→ 1. (3.9)

It follows that there exists N = N(α) such that

1


(n + α)
≤ 2

nα(n − 1)!
for all n > N. Hence, for n > N,

(n!)2

n3/2a2n
= (n!)2(2 + β)2n+α

n3/2
(2n + α)
≤ 2(2 + β)2n+α(n!)2

n3/2(2n)α(2n − 1)! = 22−α(2 + β)2n+α(n!)2

n1/2nα(2n)! .

https://doi.org/10.1017/jpr.2024.13 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.13


10 J. P. HOBERT AND K. KHARE

From the inequality (
2n

n

)−1

≤ e
√

πn

22n
, (3.10)

it follows that, for n > N,

(n!)2

n3/2a2n
≤ e

√
π22−α(2 + β)2n+α

22nnα
.

Note that r := [(2 + β)/2]2 ∈ (0, 1), and hence
∑∞

n=1 rn/nα < ∞, which implies that

∞∑
n=1

(n!)2

n3/2a2n
< ∞.

A very similar argument shows that the second summation in (3.1) is also finite. This takes
care of case I. We now consider case II in which α > 1 and β ∈ ( − 1, 0]. According to (3.9),
for any α > 1 there exists N = N(α) such that, for all n > N,

1


(n + α)
≤ 2

nα−	α

(n + 	α
)
= 2

nα−	α
(n + 	α
 − 1)! ≤ 2

nα−1n! .

Hence, for n > N,

(n!)2

n3/2a2n
≤ 2(2 + β)2n+α(n!)2

n3/2(2n)α−1(2n)! ≤ 22n+α+1(n!)2

n3/2(2n)α−1(2n)! .

Applying (3.10), it follows that, for n > N,

(n!)2

n3/2a2n
≤ 4e

√
π

nα
,

and since α > 1, it follows immediately that

∞∑
n=1

(n!)2

n3/2a2n
< ∞.

A very similar argument shows that the second summation in (3.1) is also finite. This takes
care of case II. Therefore, as claimed, Proposition 3.1 is sharp enough to identify all of the
transient versions of �ν when ν is an improper conjugate prior.

Remark 3.1. The unit flow from 0 to ∞ that [8] used to prove their transience result is actually
a partition flow based on the partition in which B0 = {0}, B1 = {1}, and Bk = {2k−1, . . . , 2k −
1} for k ≥ 2. We have a proof (not presented herein) that this flow cannot work in our case. In
particular, it can be shown that it is impossible to use the flow from [8] in conjunction with
Theorem 3.1 to produce a condition for transience of W that reproduces the results of [7] for
conjugate priors.
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4. A condition for recurrence of W

In this section, we develop a sufficient condition for the recurrence of W by applying a
result from [12] to the Markov chain T . In order to state the theorem from [12], we must
introduce a few new concepts. Recall our generic graph G and consider forming a new graph
by subdividing an edge of G. That is, we add vertices u1, . . . , un−1 to G and then replace an
edge e in G between the vertices v and w with edges e1, . . . , en, where e1 connects v to u1, ek

connects uk−1 to uk for 2 ≤ k ≤ n − 1, and en connects un−1 to w. A network Ñ = [G̃, c̃] is said
to be a refinement of the network N = [G, c] if the graph G̃ can be obtained by subdividing
some of the edges of G and if, whenever e ∈ E(G) is replaced by edges e1, . . . , en ∈ E(G̃),

n∑
i=1

c̃(ei)
−1 = c(e)−1. (4.1)

Let U = {Un}∞n=0 be a partition of V(G) such that, whenever |m − n| ≥ 2, there is no edge
connecting a vertex in Um and a vertex in Un. We call such a partition an N-constriction. Let
τN

a (Un) denote the probability that the weighted random walk on N starting at a eventually
reaches a vertex in the set Un. Let En be the set of edges connecting a vertex in Un−1 to a
vertex in Un.

Theorem 4.1. (McGuinness [12].) Let N = [G, c] be a network and let a ∈ V(G). Then the
weighted random walk on N is recurrent if and only if there exists a refinement Ñ = [G̃, c̃] of
N having an Ñ-constriction U = {Un}∞n=0 such that a ∈ U0, τ Ñ

a (Un) = 1 for all n ∈ {1, 2, . . . },
and

∑∞
n=1

(∑
e∈En

c̃(e)
)−1 = ∞.

Here is our result concerning the recurrence of W.

Proposition 4.1. The Markov chain W (characterized by the sequence {am}∞m=0) is recurrent if

∞∑
n=1

[
n−1∑
i=0

∞∑
j=n

ai+j(j − i)

i!j!

]−1

= ∞. (4.2)

Proof. We begin by describing a refinement of M = [H, d], call it M̃ = [H̃, d̃]. For all i, j ∈
Z

+ such that i + 1 < j, we add vertices vn
ij for n = i + 1, . . . , j − 1. The edge eij is replaced by

en
ij for n = i + 1, . . . , j, where ei+1

ij connects i to vi+1
ij , ej

ij connects vj−1
ij to j, and en

ij connects

vn−1
ij to vn

ij for n = i + 2, . . . , j − 1. For all i, j ∈Z
+ such that i + 1 = j, we add no new vertices

to H, but eij is renamed ej
ij. The new conductance is defined as

d̃(en
ij) = ai+j(j − i)

i!j!
for every i, n, j ∈Z+ with i < n ≤ j. It follows that, for every i, j ∈Z+ with i < j,

j∑
n=i+1

d̃(en
ij)

−1 = i!j!
ai+j(j − i)

j∑
n=i+1

1 = i!j!
ai+j

= d(eij)
−1.

Thus, (4.1) is satisfied. (We note that this refinement is similar to that used in [8, Section
3], but our conductances are not the same as those used in [8].) Now let U0 = {0} and, for
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n ∈ {1, 2, . . . }, let Un = {n} ∪ {vn
ij : i < n < j}. It follows from the definition of H̃ that every

edge in E(H̃) with one end in Un has its other end in Un−1 or Un+1. Therefore, U = {Un}∞n=0
is an M̃-constriction. Moreover, 0 ∈ U0 and a straightforward argument in [8, p. 1220] applies
directly to our situation and shows that τ M̃

0 (Un) = 1 for all n ∈ {1, 2, . . . }. Now, for every n ≥ 1
we have ∑

e∈En

d̃(e) =
n−1∑
i=0

∞∑
j=n

d̃(en
ij) =

n−1∑
i=0

∞∑
j=n

ai+j(j − i)

i!j! .

The result now follows immediately from Theorem 4.1. �

Remark 4.1. Recall that W is positive recurrent if
∑∞

i=1 bi < ∞, and is null recurrent or tran-
sient otherwise. Proposition 4.1 is applicable regardless of the value of

∑∞
i=1 bi, but its real

value resides in cases where this sum diverges.

Here is the analogue of Corollary 3.1.

Corollary 4.1. Let W and W′ be Markov chains defined by the sequences {am}∞m=0 and
{a′

m}∞m=0, respectively. Suppose that {am}∞m=0 satisfies (4.2), which implies that W is recurrent.
If there exists a C > 0 such that a′

m ≤ Cam for all m ∈Z
+, then W′ is also recurrent.

Remark 4.2. Corollary 4.1 can be viewed as a generalization of a result in [6] that holds in
the context of the Poisson problem. Indeed, let ν(λ) be a prior such that the corresponding
�ν is (null) recurrent. Suppose that ν′(λ) is another prior for which ν′(λ) = g(λ)ν(λ), where

g : R+ →R
+ is bounded. Then, together, [6, Theorems 4 and 8] imply that �ν

′
is also (null)

recurrent. Here is the connection with Corollary 4.1. If ν′(λ) = g(λ)ν(λ) where g ≤ C, then
ν′(λ) ≤ Cν(λ) and

a′
m =

∫
R+

λme−2λν′(λ) dλ ≤ C
∫
R+

λme−2λν(λ) dλ = Cam,

which is precisely the condition in Corollary 4.1. Of course, Corollary 4.1 is more general.
Firstly, even if ν′/ν is unbounded, it is still possible that a′

m ≤ Cam for all m. Secondly,
Corollary 4.1 holds for general sequences, a′

m and am, not only those associated with the
Poisson problem.

We now demonstrate that the results in this section can be can be used to show that the
Markov chain �ν corresponding to the improper conjugate prior with β = 0 and α ∈ (0, 1] is
null recurrent. Again, the sequence {am}∞m=0 associated with this conjugate prior is given by
am = 
(m + α)/2m+α . Because 
(x) is an increasing function for x ≥ 2, it follows that, for any
m ≥ 2 and any α ∈ (0, 1),


(m + α)

2m+α
< 21−α 
(m + 1)

2m+1
.

Consequently, if we could use Proposition 4.1 to prove recurrence when β = 0 and α = 1, then
it would follow immediately by Corollary 4.1 that we also have recurrence when β = 0 and
α ∈ (0, 1). This is our plan. Assume now that β = 0 and α = 1 so that am = m!/2m+1. When we
write Z ∼ NB(r, p), we mean that the random variable Z has a negative binomial distribution
with parameters r ∈ {1, 2, . . . } and p ∈ (0, 1), and

P(Z = z) =
(

r + z − 1

z

)
pr(1 − p)z1Z+(z).
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Recall that E(Z) = r(1 − p)/p. We have

∞∑
j=n

ai+j(j − i)

i!j! =
∞∑

j=n

ai+jj

i!j! −
∞∑

j=n

ai+ji

i!j!

=
∞∑

j=n

j(i + j)!
i!j!2i+j+1

− i
∞∑

j=n

(i + j)!
i!j!2i+j+1

= (i + 1)
∞∑

k=n−1

(i + k + 1)!
(i + 1)!k!2i+k+2

− i
∞∑

j=n

(i + j)!
i!j!2i+j+1

= (i + 1)
∞∑

k=n−1

(
i + k + 1

k

)
2−i−k−2 − i

∞∑
j=n

(
i + j

j

)
2−i−j−1

= (i + 1)P(Zi+2 ≥ n − 1) − iP(Zi+1 ≥ n),

where Zi ∼ NB
(
i, 1

2

)
for i ∈ {1, 2, . . . }. Now let U ∼ NB

(
i + 1, 1

2

)
, V ∼ NB

(
1, 1

2

)
, and assume

U and V are independent. Then U + V ∼ NB
(
i + 2, 1

2

)
. For every n ≥ 2 and 0 ≤ i ≤ n − 1, we

have, by Markov’s inequality,

∞∑
j=n

ai+j(j − i)

i!j! ≤ i + 2

n − 1
+ i(P(U + V ≥ n − 1) − P(U ≥ n)). (4.3)

Since U ≥ n implies that U + V ≥ n − 1, it follows by the independence of U and V that

P(U + V ≥ n − 1) − P(U ≥ n) = P(U + V ≥ n − 1, U < n)

= P
(�n−1

k=0 {V ≥ n − 1 − k, U = k})

=
n−1∑
k=0

P(U = k)P(V ≥ n − 1 − k)

=
n−1∑
k=0

(
i + k

k

)
2−i−k−12−(n−k−1)

=
n−1∑
k=0

(
i + k

k

)
2−i−n

=
(

i + n

n − 1

)
2−i−n.
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The last step follows from a repeated application of the fact that
(n

r

)+ ( n
r−1

)= (n+1
r

)
(Pascal’s

identity), and noting that
( i

0

)= (i+1
0

)
. Combining this with (4.3) we have

∞∑
j=n

ai+j(j − i)

i!j! ≤ i + 2

n − 1
+ i

(
i + n

n − 1

)
2−i−n

= i + 2

n − 1
+ n

i

i + 1

(
i + n

n

)
2−i−n

≤ i + 2

n − 1
+ 2n

(
i + n

n

)
2−i−n−1

= i + 2

n − 1
+ 2nP(U′ = i),

where U′ ∼ NB
(
n + 1, 1

2

)
. Hence, for any n ≥ 2,

n−1∑
i=0

∞∑
j=n

ai+j(j − i)

i!j! ≤
n−1∑
i=0

(
i + 2

n − 1
+ 2nP(U′ = i)

)

≤ (n + 1)(n + 2) − 2

2(n − 1)
+ 2n

≤ 2(n + 2) + 2n.

Finally, we have
∞∑

n=2

[
n−1∑
i=0

∞∑
j=n

ai+j(j − i)

i!j!

]−1

≥
∞∑

n=2

1

4n + 4
= ∞,

which implies that the Markov chain is (null) recurrent by Proposition 4.1. Therefore, as
claimed, our results are sharp enough to identify all of the null recurrent versions of �ν when
ν is an improper conjugate prior.

5. Examples

5.1. Improper inverse gamma priors

Consider another family of improper priors for λ that lead to proper posteriors. Take ν(λ) =
λγ−1e−θ/λ for γ ≥ 0 and θ > 0. This is an improper inverse gamma density, i.e. for γ ≥ 0 and
θ > 0 we have

∫
R+ λγ−1e−θ/λ dλ = ∞. The resulting posterior density is proper since, for any

x ∈Z
+, ∫

R+
λxe−λν(λ) dλ =

∫
R+

λx+γ−1e−λ−θ/λ dλ < ∞.

In fact, the posterior density is generalized inverse Gaussian. When we write V ∼ GIG(φ, a, b),
we mean that φ ∈R, a, b > 0, and the random variable V has density

f (v) = aφ/2

2bφ/2Kφ(
√

ab)
vφ−1e−av/2−b/2v1R+(v),
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where Kφ is the modified Bessel function of the second kind. So the posterior is GIG(x +
γ, 2, 2θ ). We now investigate the stability of the Markov chains �ν associated with this new
family of priors. Fix γ ∈ [0, 1] and θ > 0. The ratio of this improper inverse gamma prior to
the improper conjugate prior with α = 1 and β = 0 is

λγ−1e−θ/λ

λ1−1
= λγ−1e−θ/λ,

which is bounded. Hence, it follows from Corollary 4.1 (or the results in [6]) that the associated
�ν is null recurrent. So improper inverse gamma priors taking the form ν(λ) = λγ−1e−θ/λ,
γ ∈ [0, 1] and θ > 0, are strongly admissible. Just like the conjugate priors, these priors are
improper due to their heavy right tails. When γ = 1, the prior increases from 0 to 1 as λ

increases. When γ ∈ [0, 1), the prior is unimodal, converging to 0 at the origin and at ∞, and
achieving its maximum when λ = θ/(1 − γ ). Note that when γ = 0, the right tail decreases
like 1/λ, a rate not attained by any of the improper conjugate priors.

Now assume that γ > 1 and θ > 0. We have

am =
∫
R+

e−2λλmν(λ) dλ = 2θ (m+γ )/2Km+γ (
√

8θ )

2(m+γ )/2
.

A standard bound for the ratio of Bessel functions (see, e.g., [14, Theorem 1]) gives us

Kν(2
√

2θ )

Kν−1(2
√

2θ )
>

(ν − 1)√
2θ

. (5.1)

Assume m ≥ 2. Repeated application of (5.1) leads to the inequality

Km+γ (2
√

2θ ) >
(m + γ − 1)(m + γ − 2) · · · (2 + γ − 	γ 
)K2+γ−	γ 
(2

√
2θ )

(2θ )(m+	γ 
−2)/2
.

Define

g(γ, θ ) = 2(4+γ−	γ 
)/2θ (γ−	γ 
+2)/2K2+γ−	γ 
(2
√

2θ )


(2 + γ − 	γ 
)
.

So, for m ≥ 2, we have

am > 2(4+γ−	γ 
)/2θ (γ−	γ 
+2)/2 (m + γ − 1)(m + γ − 2) · · · (2 + γ − 	γ 
)K2+γ−	γ 
(2
√

2θ )

2m+γ

= g(γ, θ )
(m + γ − 1)(m + γ − 2) · · · (2 + γ − 	γ 
)
(2 + γ − 	γ 
)

2m+γ

= g(γ, θ )

(m + γ )

2m+γ
.

Hence, for m ≥ 2, am > Ca′
m where {a′

m}∞m=0 is the sequence associated with the conjugate prior
with α = γ > 1 and β = 0. It follows from Corollary 3.1 that �ν is transient whenever γ > 1
and θ > 0. We conclude that it is not possible to use the results of [4] to establish the strong
admissibility of the improper inverse gamma prior when γ > 1 and θ > 0.

https://doi.org/10.1017/jpr.2024.13 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.13


16 J. P. HOBERT AND K. KHARE

5.2. A logarithmic improper prior

Recall that the flat prior, i.e. the conjugate prior with α = 1 and β = 0, is strongly admis-
sible, but any conjugate prior with α > 1 leads to a transient �ν . This suggests that it might
be interesting to consider the improper prior ν(λ) = log(1 + λ) since it is increasing, but it
increases slower than any conjugate prior with α > 1 and β = 0. We now use Proposition 4.1
to show that �ν corresponding to ν(λ) = log(1 + λ) is recurrent, which implies that this prior
is strongly admissible. We start by noting that

am =
∫
R+

λme−2λ log(1 + λ) dλ = m!
2m+1

E( log(1 + X)),

where X ∼ Gamma(m + 1, 2). Thus, by Jensen’s inequality,

am <
m!

2m+1
log

(
(m + 3)/2

)
<

m!
2m+1

log(m + 3).

Thus, by Proposition 4.1, the Markov chain �ν corresponding to the logarithmic prior is
recurrent if

∞∑
n=1

(
n−1∑
i=0

∞∑
j=n

(i + j)!(j − i) log(i + j + 3)

2i+j+1i!j!

)−1

= ∞.

As we did previously, let U ∼ NB
(
i + 1, 1

2

)
, V ∼ NB

(
1, 1

2

)
, and assume U and V are

independent. Recall that U + V ∼ NB
(
i + 2, 1

2

)
. Fix n ≥ 2. We have

∞∑
j=n

(i + j)!(j − i) log(i + j + 3)

2i+j+1i!j!

=
∞∑

j=n

j(i + j)! log(i + j + 3)

2i+j+1i!j! − i
∞∑

j=n

(i + j)! log(i + j + 3)

2i+j+1i!j!

= (i + 1)
∞∑

k=n−1

P(U + V = k) log(i + k + 4) − i
∞∑

j=n

P(U = j) log(i + j + 3)

= (i + 1)E
[

log(i + U + V + 4)1{U+V≥n−1}
]− iE

[
log(i + U + 3)1{U≥n}

]
.

Using Jensen’s inequality, we have

E
[

log(i + U + V + 4)1{U+V≥n−1}
]≤E

[
log(i + U + V + 4)

]≤ log(2i + 6).

Hence,

∞∑
j=n

(i + j)!(j − i) log(i + j + 3)

2i+j+1i!j!

≤ log(2i + 6) + i
(
E
[

log(i + U + V + 4)1{U+V≥n−1}
]−E

[
log(i + U + 3)1{U≥n}

])
. (5.2)
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Now, since {U + V ≥ n − 1} = {U ≥ n} � (�n−1
k=0 {V ≥ n − 1 − k, U = k}), it follows that

E
[

log(i + U + V + 4)1{U+V≥n−1}
]−E

[
log(i + U + 3)1{U≥n}

]
=E

[(
log(i + U + V + 4) − log(i + U + 3)

)
1{U≥n}

]

+
n−1∑
k=0

E
[

log(i + U + V + 4)1{V≥n−1−k,U=k}
]
. (5.3)

Now, by the independence of U and V and Jensen’s inequality, we have

E
[(

log(i + U + V + 4) − log(i + U + 3)
)
1{U≥n}

]
=E

[
E
[(

log(i + U + V + 4) − log(i + U + 3)
)
1{U≥n} | U

]]
≤E

[(
log(i + U +E(V) + 4) − log(i + U + 3)

)
1{U≥n}

]
=E

[(
log(i + U + 5) − log(i + U + 3)

)
1{U≥n}

]
=E

[
log

(
1 + 2

i + U + 3

)
1{U≥n}

]

≤ log

(
1 + 2

i + n + 3

)
≤ 2

i + n + 3
, (5.4)

where the last inequality follows from the fact that log(1 + x) ≤ x for x > 0. Again using the
independence of U and V , we have

n−1∑
k=0

E
[

log(i + U + V + 4)1{V≥n−1−k,U=k}
]

=
n−1∑
k=0

E
[

log(i + k + V + 4)1{V≥n−1−k,U=k}
]

=
n−1∑
k=0

E
[

log(i + k + V + 4)1{V≥n−1−k}
]
P(U = k)

=
n−1∑
k=0

( ∞∑
s=n−1−k

log(i + k + s + 4)2−s−1

)
P(U = k)

=
n−1∑
k=0

( ∞∑
t=0

log(i + n + t + 3)2−t−1

)
2−(n−k−1)

P(U = k)

=E[ log(i + n + V + 3)]
n−1∑
k=0

(
i + k

k

)
2−i−n
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≤ log(i + n + 4)
n−1∑
k=0

(
i + k

k

)
2−i−n

= log(i + n + 4)

(
i + n

n − 1

)
2−i−n, (5.5)

where the penultimate inequality is Jensen’s, and the last line follows from the argument
based on Pascal’s identity that was used in the previous section. Let U′ ∼ NB

(
n + 1, 1

2

)
. By

combining (5.2), (5.3), (5.4), and (5.5), we obtain

n−1∑
i=0

∞∑
j=n

(i + j)!(j − i) log(i + j + 3)

2i+j+1i!j!

≤
n−1∑
i=0

(
log(2i + 6) + 2i

i + n + 3
+ i log(i + n + 4)

(
i + n

n − 1

)
2−i−n

)

≤ n log(2n + 6) + 2n + 2n log(2n + 4)
n−1∑
i=0

(
i + n

i

)
2−i−n−1

≤ n log(2n + 6) + 2n + 2n log(2n + 4)P(U′ ≤ n − 1)

≤ 5n log(2n + 6).

Thus,

∞∑
n=4

(
n−1∑
i=0

∞∑
j=n

(i + j)!(j − i) log(i + j + 3)

2i+j+1i!j!

)−1

≥
∞∑

n=4

1

5n log(2n + 6)
≥ 1

10

∞∑
n=4

1

n log(n)
= ∞.

Therefore, as claimed, �ν corresponding to ν(λ) = log(1 + λ) is (null) recurrent, and this prior
is strongly admissible.

6. Discussion

An obvious question concerning our two sufficient conditions is as follows: Does there
exist a gap between them, i.e. are there chains that satisfy neither of the conditions? While
we strongly suspect that there do exist examples of W that don’t satisfy either of the sufficient
conditions, we have yet to come across one. In particular, note that every version of W analyzed
in this paper does satisfy one of the two conditions. We leave the existence/non-existence of a
gap as an open problem.

It might be possible to extend our work on the Poisson problem to the multivariate case.
Specifically, suppose that instead of observing a single observation from the Poisson distri-
bution, we observe multiple independent Poisson random variables with different means. We
could then consider prior distributions for the corresponding vector of unknown means and
attempt to use Eaton’s [4] theory to develop conditions for strong admissibility. There has
been some work on this problem [10], but, as far as we know, the associated conjugate chain
has not been analyzed.
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