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Abstract
The vertical motions and buoyancy variations of the two VEGA super-pressure balloons, flown in the middle cloud
layer of Venus, are discussed. Using data derived from these 1985 nightside flights, estimates are made of the energy
required to operate some alternative balloon platform schemes under consideration for future-proposed Venus-
atmosphere in situ science missions. Despite the dissimilarity of these alternative platform schemes, the energy
inputs required to operate each scheme on the Venus nightside are found to be similar. Estimates of the associated
mass penalties of the associated energy sources are also made. Further investigation of a vertical propulsive assist
scheme is recommended.

Symbols
A actuator area, m2

b ratio of buoyancy to its value at the zero ΔP altitude, B/B0

B buoyant force, N
cP specific heat and constant pressure, J kg−1 K−1

CD drag coefficient
e non-dimensional elasticity parameter defined by Equation (8)
E modulus of elasticity of wall material, Pa
FD drag force, N
g gravitational acceleration at balloon float altitude N kg−1

kP ratio of total propeller (or rotor) power to ideal induced power
L atmospheric lapse rate, K m−1

m mass of gas, kg
M mass of balloon, kg
p ratio of ambient pressure to its value at the zero ΔP altitude, P/P0

P ambient pressure, Pa
r balloon radius, m
R gas constant, J kg−1 K−1

t wall thickness, m; or time, s
T gas temperature, K
v ratio of envelope volume to its value at the zero ΔP altitude, V/V 0

V envelope volume, m3

w vertical wind velocity, ms−1

W work done, J
z altitude, m
γ ratio of specific heats of helium
ζ permeance, kg s−1 Pa−1 m−2

λ scale factor
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υ Poisson ratio of wall material
ρ gas or ambient density, kg m−3

Acronyms
EFA equilibrium float altitude
PAB pressurised anchor balloon
PIB pressurised internal balloon
SPB super-pressure balloon
VPA vertical propulsive assist
ZPB zero-pressure balloon

1.0 Introduction
Some recent proposals for scientific exploration of the cloud layers of Venus call for balloon platforms
(e.g. Refs. [1–5]) capable of flight endurances far greater than offered by descent probes. Of particular
interest is the sampling and measurement of aerosol particles in the middle cloud layer, at 50–65 km alti-
tude, where the ambient pressures and temperatures are comparable to those in Earth’s troposphere and
the existence of microbial life is plausible [1]. Various Venus-balloon mission profiles have been advo-
cated with the most demanding ones specifying the execution of multiple vertical cloud layer traverses
upon command (e.g. Refs. [3, 5]) and/or the achievement of several near-equatorial circumnavigations
with endurances of up to two weeks (e.g. Ref. [5]).

Many different possible Venus atmosphere platform options have been previously outlined [6]. In
this study, four different balloon-type options are considered (Fig. 1):

(i) super-pressure balloon (SPB)
(ii) zero-pressure balloon (ZPB) with a pressurised anchor balloon (PAB)
(iii) ZPB with a pressurised internal ballonet (PIB)
(iv) ZPB with vertical propulsive assist (VPA)

Attention is focused on a mission profile that closely matches the trajectory data derived from the
1985 nightside flights of the VEGA 1 and VEGA 2 balloons [7]. These helium-filled SPBs had inherent
vertical stability that helped them to maintain a near-constant float altitude in an atmosphere with strong
vertical wind gusts. In contrast, the alternative options, ii-iv (above), all need to employ active control
mechanisms and they each require power input implying an associated mass penalty, potentially reducing
the maximum feasible scientific payload mass.

To quantify the energy input needed to control options ii-v (above), it is necessary to quantify
the vertical wind profile in the Venus atmosphere and the buoyancy variation of the VEGA SPBs.
Consequently, in the following section, some general aspects of the modelling of the VEGA balloon
flights are redescribed, and some analytical approximations for the buoyancy variation of VEGA SPBs
are presented. In Section 3 expressions for the work inputs required to operate the compression devices
for the ZPB-PAB and ZPB-PIB options are derived, and energy estimates are obtained. This estimation
task is performed by assuming these platform options each maintain the same nightside flight trajecto-
ries as per the VEGA balloons, i.e. are subject to the exact same derived vertical wind velocity profiles.
In a similar manner, the energy input for the ZPB-VPA option is also estimated and found to be com-
parable with the ZPB-PAB/PIB options. Finally, it is found that the mass penalty associated with the
energy requirement to operate the ZPA-VPA is relatively small compared to the mass saving that could
be achieved, e.g. by adopting a lighter envelope wall.
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Figure 1. Balloon Options, from left to right: SPB; ZPB-PAB; ZPB-PIB: ZPB-VPA.

2.0 Modelling of the vega balloon flights
2.1 Structure of the middle atmosphere of Venus
In the analysis presented below, the composition of the Venus middle atmosphere is treated as having
a simple composition of 96.5% carbon dioxide and 3.5% nitrogen, with a constant gas constant, R ≈

191.4 J kg−1 K−1. The atmosphere is assumed to be in hydrostatic equilibrium, i.e. the change in ambient
pressure, P, with altitude, z, is prescribed by, dP/dz = -ρ∞g, where ρ∞ is the local ambient density. At
latitudes less than 30◦ and within the altitude range of interest, the ambient temperature varies from
about 300 to 350 K and the pressure from about 0.5 to 1.0 bar [8, 9]. Consequently, the ideal gas law is
deemed to be adequate and used throughout. The atmospheric lapse rate, L, in this altitude range is close
to the adiabatic value, i.e. the atmosphere is neutrally stable with L ≈ g/cp. Using g = 8.714 N kg−1 and
cp = 0.88 kJ kg−1 K−1, the adiabatic lapse rate is approximately 10.1 K km−1, a value that is close to the
VEGA measured value, 10.17 K km−1 at 310 K [8], also corroborated by subsequent reports (e.g. Refs.
[9, 10]).

2.2 Some background on the VEGA balloon flights
The primary goal of the VEGA SPBs was to acquire measurements of the Venusian zonal winds via
radio-tracking [7]. They were also both fitted with a 2 kg meteorological payload intended to collect
data on ambient pressure, temperature, cloud particle backscatter, light intensity variations caused by
possible lightning events and the local vertical relative wind velocity measured by an anemometer [11].
The anticipated maximum flight duration of 52 h for each platform was limited by the output of the
primary lithium battery supplying ∼4.5 W to the omni-directional antenna [12, 13]. As it transpired,
both platforms transmitted data over periods of ∼46 h. Ambient pressure, temperature and anemometer
output were recorded every 75.4 s and transmitted in a highly compressed format, although there were
some deliberate gaps when other measured data needed to be transmitted. A large portion of the data
transmitted was retrieved with high confidence, although some data was lost, or was ambiguous [13].

VEGA 1 and VEGA 2 were separately deployed at Venus midnight on 11 and 15 June 1985, at
latitudes ∼7◦ north and ∼6◦ south of the equator, respectively. After separation from the descent probe
and inflation with ∼2 kg of helium gas (from a jettisoned pressure tank) each balloon ascended ∼4 km,
within ∼1 h, to an initial near-equilibrium float altitude of ∼54 km. Both platforms then drifted westward
in the strong zonal winds covering a distance corresponding to ∼109◦ of longitude, before crossing the
dawn terminator after ∼33 h. Over this night period, they descended from an average pressure height
of ∼53.5 to ∼58 kPa with brief vertical excursions associated with derived vertical winds sometimes
exceeding 1 ms−1 [14, 15]. The largest excursion was experienced by VEGA 2, at around 36–42 h, when
it descended to a pressure height as low as ∼88kPa in downward winds with a derived vertical velocity of
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∼3 ms−1, a value that is relatively large compared to those measured in the Earth’s atmosphere (e.g. Refs.
[16–19]). After crossing the dawn terminator, the envelopes of both SPBs would have experienced solar
heating resulting in expansion of the helium gas contained within them. However, since transmissions
ceased soon after, the subsequent flight histories of both VEGA 1 and VEGA 2 are unknown: it is
possible that either, or both, achieved one or multiple circumnavigations, or they may both have been
destroyed shortly after transmission ceased.

2.3 Vertical equation of motion
Following Nastrom [20], the vertical equation of motion of a SPB may be expressed as

(M + kρ∞V)
∂2z

∂2t
= (1 + k) ρ∞V

∂w

∂t
+ B − Mg − FD (1)

where V is the volume of the envelope, w is the vertical (positive, upward) wind velocity, B(z) = ρ∞Vg
is the buoyant force, FD is the quasi-steady drag force, M is the total mass of the balloon including the
gas contained within it and k is the added (also referred to as ‘virtual’ or ‘apparent’) mass coefficient.
For a solid sphere in an accelerated potential (inviscid) flow, k = 0.5. In viscous flows with separation
and a resulting wake, the value of k may deviate substantially from this value [21]; however, 0.5 is used
by Linkin et al [14] to analyse the VEGA flights and assumed herein. The flow around a sphere involves
unsteady vortex shedding, but the drag force is described by the steady-flow expression,

FD = 1

2
ρ∞SCD

(
∂z

∂t
− w

) ∣∣∣∣∂z

∂t
− w

∣∣∣∣ (2)

where CD is the drag coefficient (averaged over a short time period) which is a function of the Reynolds
number, Re, based on the envelope diameter, 2r, and S = πr2. Linkin et al [14] use an approximation
provided by Scoggins [22] for a smooth sphere,

CD = 0.45 − 0.15 tanh

[
log10Re − 5.35

0.15

]
(3)

For subcritical flows, when Re < 100,000, this approximation yields CD ≈ 0.6. For supercritical flows,
when Re > 500,000, CD ≈ 0.3. In the altitude range of interest, the value of the ambient atmospheric
dynamic viscosity is about 1.5 × 10−5 kg m−1 s−1 and for the VEGA balloons with r ≈ 1.7 m, Re ≈

258,000 when the relative flow speed is 1 m s−1, i.e. the flow is transitional.
In order to analyse the vertical motion of any balloon platform, it is necessary to accurately know the

functional dependence of buoyancy on float altitude. For a balloon with a freely extensible envelope,
when the mass of the helium in the balloon is constant (no leakage), the product ρ∞V is invariant and the
buoyancy is approximately constant, see Section 3.1. For a balloon with a non-extensible envelope, the
buoyancy is dependent on ρ∞(z). For the VEGA SPBs, with elastic envelopes, the buoyancy is dependent
on both ρ∞(z) and V (z) as is presented in the next section.

The VEGA balloons were not fitted with inertial sensors to determine their vertical displacement.
Consequently, Linkin et al [14] derive z in terms of pressure height and they reduce Equation (1) to the
following approximation,

3

2

dwrel

dt
= −CD

2

3

4r
|wrel| wrel − ΔB

ρ∞V
(4)

where wrel = w + Ṗ/ρ∞g is the relative flow velocity and 	B = B – Mg. When this net excess buoyancy
term is small, the characteristic response time is 4r/CD|wrel |, e.g. ∼15 s when |wrel | =1 ms−1. For vertical
gusts with periods that are more than a magnitude larger than this response time, Equation (4) becomes
a terminal velocity condition where the drag term balances the excess buoyancy term. Since Linkin et al
[14] believed these conditions were satisfied by the VEGA flights they further reduce Equation (4) to

CD

2

3

4r
|wrel| wrel = − ΔB

ρ∞V
(5)
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In order to obtain the vertical wind profile w(t), Linkin et al [14] derive the variation in excess
buoyancy assuming the helium gas temperature is the same as the ambient temperature, i.e. in ther-
mal equilibrium. They also assume a linear loss of helium that is consistent with the gradual fall in
the equilibrium float altitude as evidenced by periods when ΔB =0. Some comments on both these
assumptions are offered in the next sections.

2.4 Buoyancy variation of super-pressure balloon (SPB) with an elastic envelope
Following Linkin et al [14], the envelope of a VEGA-like SPB may be treated as a thin-walled spherical
pressure vessel [24], i.e. the volumetric strain resulting from a differential wall pressure, ΔP (assumed
to be uniform, i.e. the same at any wall location), may be found using a linear approximation,

ΔV

V
= 3 (1 − υ)

ΔP r

2Et
(6)

where E is the Modulus of Elasticity of the envelope wall material, υ is its Poisson Ratio and t is the
wall thickness.

The VEGA SPBs were near-spherical with a nominal volume of about 19.4 m3. The envelope of
each balloon was made from a TeflonTM-coated fabric that stretched significantly when pressurised,
such that during an Earth-based test the increase in volume was estimated to be 1.25 m3 at a differential
pressure of 1 kPa [13]. Using Equation (6) with ΔP = 1 kPa, r ≈ 1.667 m, ΔV/V ≈ 0.0644 and assuming
υ = 0.3, yields Et ≈ 27.2 kNm−1. In the following presentation it will be assumed that this Et value is
constant. When ascending or descending in the Venus atmosphere, the material properties would have
been dependent on ambient temperature variation and consequently the E value may have altered with
altitude, but this alteration is ignored below.

At some ambient pressure, P = P0, the near-spherical envelope of the SPB will be at the zero
super-pressure condition when ΔP = 0, V = V 0 and the envelope has radius r = r0. When the SPB
rises, the ambient atmospheric pressure falls and ΔP > 0. In this super-pressure condition, the following
non-dimensional variables are used to describe the changes in envelope volume, ambient pressure and
temperature: v = V /V 0, p = P/P0 and τ = T /T 0, respectively. Similarly, non-dimensional variables are
used for the temperature and mass of the lifting gas (helium) inside the envelope: θ = TH /TH0 and μ =
mH /mH0, respectively.

Using the ideal gas equation, PH/P0 = μθ /v, Equation (6) may be re-written as

v ≈ 1 + μθ

ev
− p

e
(7)

where e is a non-dimensional elasticity parameter,

e = 2Et

3P0r0 (1 − υ)
(8)

Equation (7) may be rearranged as a quadratic and solved [25] to yield

v ≈
(e − p) +

√[
(e − p)

2 + 4eμθ
]

2e
(9)

For the VEGA balloons in Venus conditions with P0 = 70 kPa [14], e ≈ 0.22.
For the Earth-based ground tests of the VEGA envelopes [14], it is likely that the mass of the inflation

gas in the balloon was increased with θ ≈ 1 and p ≈ 1, such that in one test μ ≈ 1.076 and the resulting
super-pressure increased by the quoted value of ΔP = 1 kPa when P0 ≈ 100 kPa. The use of Equation (7)
with e ≈ 0.155 is then consistent with the measured envelope expansion, v ≈ 1.065. It is also consistent
with the quoted measurement of the envelope diameter of 3.54 m [14] at the quoted pressure difference,
ΔP = 3 kPa, when P0 ≈ 100 kPa, μ ≈ 1.234 and v ≈ 1.197.

In the remainder of this section, it will be assumed that the SPB does not leak, i.e. μ = 1 and the
gravitational acceleration, g, is invariant with altitude.
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Using the ideal gas equation, the non-dimensional buoyancy is given by b = pv/τ . For an atmo-
sphere with a constant lapse rate, dτ /dz = -L/T 0. Consequently, for slow changes in balloon float altitude
maintaining thermal equilibrium, θ ≈ τ and dθ /dz≈ -L/T 0 also. Assuming atmospheric hydrostatic equi-
librium and employing the ideal gas equation again, as well as the derivatives presented in Appendix A,
yields [25]

db

dz
≈

e

(1 + e)

[ −g

RT0

+ L

T0

]
(10)

Since L < g/R, the buoyancy falls as the SPB rises, i.e. there is a stabilising effect on the vertical
motion and this effect becomes larger as the elasticity parameter, e, increases.

In the case of VEGA 1, when the zero super-pressure condition is assumed to occur at an altitude at
which P0 = 70 kPa, T 0 = 326 K, ρ0 ≈ 1.12 kgm−3 the value of reference buoyancy used to define b is B0

≈ 193 N. Using Equation (10) with e = 0.22, gives db/dz ≈ −2 × 10−5 m−1 and dB/dz ≈ −4 N km−1.
For rapid changes in balloon float altitude, the lifting gas will undergo adiabatic changes in temper-

ature, i.e. θ v(γ -1) = 1, where γ is the ratio of specific heats of the lifting gas and when μ = 1 Equation
(7) becomes

ν ≈ 1 + ν−γ

e
− p

e
(11)

For small changes in volume,

ν ≈

(γ + e + 1 − p)

(γ + e)
(12)

and the derivative of buoyancy with respect to altitude becomes
db

dz
≈

(1 − γ − e) g

(γ + e) RT0

+ L

T0

(13)

If the ratio of specific heats of the lifting gas had the same value as that of the ambient atmosphere,
then when e =0, db/dz = 0. However, the actual value of γ for helium is much larger than that of the
Venus atmosphere (about 1.28). Using e = 0.22 and γ = 5/3, db/dz ≈ −3.5 × 10−5 m−1 and dB/dz ≈

−7 N km−1. This illustrates that the magnitude of the stabilising buoyancy effect is larger in the adi-
abatic case (for all e values), although this effect is time dependent: if the balloon undergoes a rapid
step increase in altitude, then the buoyancy will fall by the amount predicted using Equation (13), but
afterward it will partially rise as the helium temperature increases to the local ambient condition. The
time to reach thermal equilibrium is dependent on the free convective heat transfer rates between the
helium gas and the envelope wall and between the wall and the external atmosphere.

Experimental evidence (Appendix B) suggests that when the bulk gas temperature difference is mod-
elled by a simple exponential, i.e. ΔT = ΔT 0 exp(-t/t0), the time constant of the VEGA helium balloons
(in near still conditions) could have exceeded ∼400 s. VEGA sensors recorded ambient pressure and
temperature data, but the internal helium gas temperature was not recorded. Recognising this limitation,
Linkin et al [14] assume that thermal equilibrium is maintained. Whilst this may be reasonable during
night conditions, after the dawn terminator was passed solar effects may have resulted in excess temper-
atures, i.e. θ > τ . Consequently, the vertical wind data derived after the passing of the dawn terminator
is subject to additional uncertainty.

In the limit of an inextensible envelope, as e → ∞, Equations (10) and (13) both reduce to
db

dz
≈

−g

RT0

+ L

To

(14)

and db/dz ≈ −11 × 10−5 m−1 and dB/dz ≈ −21 N km−1. Although this magnitude of dB/dz is several
times larger than the previous elastic envelope cases presented above, it does not necessarily follow that
an inextensible envelope is preferred, since the altitude range permissible will be determined by the
maximum envelope stress.
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Table 1. Equilibrium Float Altitudes and Helium Loss of VEGA 1

Time/h Ambient pressure /kPa Estimated helium mass /kg % loss of helium
0.5239 53.860 2.0149 0.0%
0.5448 53.809 2.0155 0.0%
0.5658 53.771 2.0163 0.1%
0.5868 53.707 2.0159 0.0%
8.1310 54.637 2.0051 −0.5%
8.4245 54.548 2.0054 −0.5%
32.9648 58.127 1.9673 −2.4%
33.0487 58.127 1.9670 −2.4%
33.0696 58.127 1.9668 −2.4%
33.0906 58.127 1.9670 −2.4%
33.1115 58.077 1.9672 −2.4%

The maximum volume that the SPB may be extended is given by

vmax = 1 + 3(1 − ν)σmax

E
(15)

where σ max is the maximum permissible wall stress including an appropriate safety factor. Using
Equation (7), the maximum buoyancy variation feasible when μ =1 and θ =τ is given by

Δbmax ≈
2σmaxtvmax

P0r0

τ (16)

The failure condition of the VEGA envelopes is not specified, but the lowest ambient pressures
recorded by VEGA 1 and 2 were about 53 kPa, or p ≈ 0.74, when θ = τ ≈ 0.94. At this condition
the envelope volume predicted by Equation (15) is V ≈ 23.1 m3 (corresponding to a diameter of 2r ≈
3.53 m), which is close to the maximum volume recorded in the above-mentioned Earth-based test [13].
Using the same value, Equations (15) and (16) give σ maxt ≈ 2.5 kN m−1 and Δbmax ≈ 0.05, or ΔBmax ≈

11 N. The envelope strain at this condition is ∼7%. Higher strains would likely have been tolerated, i.e.
the VEGA balloons would have likely withstood further expansion.

It should be noted that to avoid envelope bursting, a SPB may be fitted with relief valve such that
when ΔP exceeds a predetermined threshold value, the lifting gas is vented. In practise, helium leakage
rate increases when ΔP increases and the assumption that μ ≈ 1 is no longer valid. Note: no distinction
is made herein between leakage by diffusion through the envelope wall and leakage through pinholes.

2.5 Leakage of the VEGA SPBs
The VEGA SPBs would have lost helium gas that leaked through their envelopes during their flights. To
estimate the loss rate, Linkin et al [14] assume that during ‘Equilibrium Float Altitude’ (EFA) periods,
lasting at least 150 s, there is no appreciable relative drag force, i.e. the anemometer confidently recorded
a relative wind velocity magnitude of 0 ms−1. The resulting decline in EFA for VEGA 1, as defined by
the historic increase in ambient pressure, is shown in Table 1, along with an estimate of the helium
mass based on the assumptions of thermal equilibrium and neutral buoyancy. This decline is reasonably
matched with analytical predictions that assume that the helium leakage rate is given by

ṁH = 4πr2ζ
[
ΔP + gr (ρ∞ − ρH)

]
(17)

In the case of VEGA 1, a fixed value of permeance, ζ ≈ 6ζ 0, where ζ 0 = 1 ×10−12 kg s−1 Pa−1 m−2,
results in about 2.4% loss of the initial helium mass, which offers a good match with the measured
decrease in the EFA over 33 h prior the crossing of the dawn terminator. Note: Linkin et al [14] report
the loss to be 3% to 4 % over the entire mission of ∼46 h.
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In the case of VEGA 2, a lower value of ζ ≈ 1.3ζ 0 results in good match with EFA periods for
the first 14 h of flight, but a step increase to ζ ≈12ζ 0 is required to obtain a reasonable match with
EFA periods over the remainder of its nightside flight, resulting in a loss of helium of about 2.6%. It
is difficult to physically explain what could cause such a step increase in leakage rate. Unfortunately,
relevant VEGA 2 data were lost during the period that this step increase event may have occurred.
There is no evidence of any strong vertical winds: immediately before and after this possible event,
the atmosphere was relatively quiescent, although there was an increase in w(t) fluctuations after 16
h of flight. Another speculative possibility that has been suggested [26] is that VEGA 2 encountered
‘drizzle’ during this latter period resulting in envelope weight increase; however, currently there is no
reliable evidence that precipitation occurs in the middle cloud layer, nor is there sufficient collaborative
evidence that any significant deposition and retention of cloud aerosol particles/droplets onto such a
body is possible.

2.6 Buoyancy variation of VEGA 1 and 2
To determine the buoyancy variation of VEGA 1 and VEGA 2, ASCII files for recorded ambient pressure
and temperature were downloaded from the NASA Planetary Data System [27]. Linear interpolations
made in these files during periods of data drop-out were accepted. The following numerical procedure
was adopted:

(1) The local ambient density values were calculated using the ideal gas law.
(2) The gradient dP/dz was deduced using the hydrostatic equation as described above.
(3) The gradient dz/dt was calculated between 75.4 s time intervals and z determined by integration

over these time steps.
(4) The value of P0 = 70 kPa [14] was assumed as the zero-pressure condition. It followed that

T 0 = 323 K for VEGA 1 and 321 K for VEGA 2, in order that the starting helium mass was
mH ≈ 2 kg [14].

(5) The starting helium temperature was assumed to equal the ambient temperature, and thermal
equilibrium was assumed thereafter.

(6) The envelope volume was calculated using Equation (9) with e = 0.22, except at altitudes where
super-pressure was lost, i.e. when p >1, v = μθ /p.

(7) Using the ideal gas law, the helium pressure, PH =P0μθ /v, and differential pressure (or super-
pressure), ΔP = PH - pP0, were calculated.

(8) The leak rate was calculated using Equation (17) and the ζ values quoted in the previous section.
The mass of helium residing in the envelope was then calculated by integration over 75.4 s time
intervals, and this mass value was used to perform steps (6 and 7) above by iteration.

(9) The net buoyancy was calculated using a platform mass (without helium) of 18.807 kg for VEGA
1 and 19.175 kg for VEGA 2 [14].

The deduced variation of net buoyancy, B - Mg, over the nightside flight of VEGA 1 SPB is shown in
Fig. 2. After the first EFA period attained at ∼2.8 h, it can be seen that VEGA 1 then experienced some
excess buoyancy fluctuations of up to ∼7.5 N at 4–6 h, but the fluctuations are mostly less than ∼2 N,
thereafter, during the remainder of the flight.

In the case of VEGA 2, the first EFA period is reached about 4 h into the flight. The subsequent trajec-
tory was relatively undisturbed over the next 11 h, but some strong vertical downdrafts were experienced
thereafter resulting in buoyancy spikes up to ∼4 N, Fig. 3. For both VEGA 1 and 2, the root-mean-square
of the excess buoyancy from the first EFA up to 33 h is ∼1.3 N.
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Figure 2. Historic variation of VEGA 1 net buoyancy.
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Figure 3. Historic variation of VEGA 2 net buoyancy.

3.0 Investigation of alternative balloon options
3.1 Zero-pressure balloon (ZPB)
In the following subsections various alternative balloon options are briefly described and first order
expressions are derived for the work required to bring about controlled buoyancy changes. Since these
alternatives all involve ZPBs, it is first worthwhile noting the following assumption.

So-called ZPBs have a variable pressure differential across the envelope wall, but they have zero
excess pressure at the base. When they are in thermal equilibrium with the ambient atmosphere and no
venting occurs, the buoyancy of a ZPB does not change with altitude since,

B = ρVg = RHTH

RT

P

PH

mHg ≈

RHTH

RT
mHg (18)

This simple thermal equilibrium condition is assumed in Sections 3.2 to 3.4. For rapid altitude
changes adiabatic effects would result in temporal ZPG buoyancy variation, see Section 2.4

3.2 ZPB with pressurised anchor balloon (PAB)
For the ZPG-PAB scheme shown in Fig. 1, the change in weight resulting from the compression of
external atmospheric gases into the non-extensible anchor balloon, from an initial state ‘1’ to state ‘2’,
may be written as

gΔm = [m2 − m1] g = [ρ2 − ρ1] VAg (19)

where VA is the volume of the anchor balloon.
Initially, it may be assumed that the gas in the anchor balloon has the same temperature as the

surrounding ambient atmosphere at the float altitude, i.e. T1 = T∞.
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After an incremental adiabatic (isentropic) compression, when the change in anchor gas temperature,
ΔT � T 1, the change in weight can be expressed as

gΔm = [
(T2 / T1)

n − 1
]

m1g ≈ nm1gΔT/T1 (20)

where n = 1/(γ ∞-1) and γ ∞ is the ratio of specific heats of the ambient atmosphere. Similarly, the work
input required to bring about this incremental adiabatic compression is given by

ΔW = mcν [T2 − T1] ≈ nm1RΔT (21)

where cv = nR is the specific heat at constant volume and R is the gas constant of the surrounding
atmosphere.

Combining Equations (20) and (21), it follows that

ΔW ≈ RT1Δm = RT∞Δm (22)

Assuming no recovery of useful work occurs during incremental expansions (when gas is transferred
from the anchor balloon back to atmosphere), the total work input required to bring about a sequence of
N incremental compressions at varying float altitudes with different ambient temperatures, Ti, may be
written as

Wtotal =
∑N

i=0
RTiΔmi (23)

The actual energy input required would be somewhat larger since the pumping device used to perform
the compressions would have an efficiency that is less than 100%.

3.3 ZPB with pressurised internal ballonet (PIB)
For the ZPG-PIB scheme shown in Fig. 1, the change in buoyancy is determined by the change in volume
of the freely extensible balloon brought about when the lifting gas (hydrogen or helium) is transferred
to and from the ballonet, which is assumed to be non-extensible. The change in buoyancy between state
‘1’ and state ‘2’ is given by

ΔB = ρ∞ [V2 − V1] g (24)

where ρ∞ denotes the density of the ambient atmosphere at the float altitude.
Similarly, as shown in previous section, the incremental work done to pump the lifting gas into the

ballonet adiabatically is

ΔW ≈ RHTHΔm (25)

Since the change in mass of the lifting gas in the freely extensible balloon, Δm, is the product of the
change in volume and its density, ρH , and the difference in ballonet gas and ambient temperatures will
be small, it follows that the increment in work to bring about an equivalent change in buoyancy ΔB =
g	m is

ΔW ≈ (ρH/ρ∞) RHTHΔB/g ≈ RT∞ΔB/g (26)

Again, assuming that no useful work is recovered during incremental expansions, the total work input
required to perform N sequential incremental compressions is

Wtotal =
∑N

i=0
RTiΔBi/g (27)

This result implies that to bring about a sequence of matching magnitude |B − Mg| variations, the
ZPG-PAB scheme (previous section) and the ZPG-PIB scheme (this section) require approximately the
same total work input. Note: it’s possible the PIB scheme has a weight advantage over the PAB scheme,
since the PIB does not need to be exposed to the acidic Venus atmosphere.
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Table 2. Energy estimates of balloon options matching flight profiles of VEGA 1/2

Matching Pump or motor Energy input Average
Option flight profile efficiency required/MJ power/W
ZPB-PAB/PIB VEGA-1 80% 4.2 4.0
ZPB-VPA VEGA-1 80% 4.2 4.0
ZPB-PAB/PIB VEGA-2 80% 3.4 3.3
ZPB-VPA VEGA-2 80% 5.4 5.1

3.4 ZPB with vertical propulsive assist (VPA)
Another way to bring about changes in altitude, or to counter vertical winds, is to employ a vertical
thrusting propeller (or ducted fan) that is positioned below the payload [28].

The shaft power required to bring about a thrust force, FT , is well approximated by simple momentum
theory

Ẇp = kpf FTui = kpf

√
F3

T

2ρ∞A
(28)

where kp ≈ 1.8 accounts for the propeller profile power and A is the so-called ‘actuator area’, which is
the same as the projected propeller disk area and f is factor that accounts for vertical relative wind [23].
In this presentation, it will simply be assumed f = 1.2 in both ascending and descending relative flows,
which is consistent herein with a propeller diameter of ∼0.5 m [23].

The total energy input required to bring about a sequence of N impulses, FTi Δti, that match a
prescribed sequence is

Wtotal =
N∑

i=0

ẆpΔti (29)

Like the previous schemes the actual energy input required would be somewhat larger since the motor
driving the propeller/fan would have an efficiency less than 100%.

3.5 Comparison of power requirements of alternative schemes
Using the historic variations of the buoyancy of VEGA 1 (Fig. 1), the equivalent total work needed to
maintain the exact same flight profile may be estimated for ZPB-PAB, ZPB-PIB and ZPB-VPA schemes
using Equations (23), (27) and (29), respectively. To make these estimates, it was assumed that the values
of envelope radius and drag coefficient (used in Equation (5)) are the same for each scheme.

Table 2 lists the total energy input for these options over the flight period 4–33 h.
Assuming a primary lithium battery is used, then specific energies of 250–500 W h kg−1 could be

realised [29, 30], i.e. the extra battery mass required for all the actively controlled platform options could
be as little as ∼0.5–1 kg.

The VEGA SPB envelope had a mass of ∼12 kg, or mass per unit area of ∼0.35 kg m−2. The ZPB
envelopes are subject to lower stresses after inflation and could potentially be made of a lighter material.
Hall et al [31] also quote the use of an envelope material with 0.173 kg m−2 for an SPB which would offer
a saving of ∼6 kg. These cursory estimates suggest that all the options in Table 2 are at least feasible.

The ZPB-PAB scheme has been previously tested in the Earth atmosphere [32] and PIB schemes
have been previously investigated [33] but the ZPA-VPA scheme has not received similar attention.
Consequently, it is recommended that the ZPA-VPA scheme receives further attention.

https://doi.org/10.1017/aer.2023.105 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.105


The Aeronautical Journal 1115

4.0 Discussion
The comparison in the previous section was made under the assumption that each of the alternative
options shown in Fig. 1 match the exact same excess buoyancy variation predicted for either VEGA 1 or
VEGA 2. Exact matching was invoked with the intention that the alternative options experience the same
predicted vertical winds, i.e. the same vertical dynamics. However, different control strategies could be
adopted to potentially reduce the energy inputs required. Models of the vertical wind spectrum at all
altitudes along the flight trajectory would be needed to derive these strategies, but such a comprehensive
data set is not yet available. The assumption that these alternatives all have the same drag coefficient and
same envelope size for a prescribed gondola mass may also be questioned. For the ZPB-PAB scheme
this assumption may be optimistic since the PAB would increase the drag. On the other hand, the drag
coefficient of the ZPG could be substantially lower in downward relative flows since sphere-plus-tail-
cone configurations have lower drag than a sphere [34].

Buchanan et al [2] propose several different balloon missions with nominal durations of ∼1 week.
One scientific motivation for such long endurance is the possible discovery of diurnal variations in
atmospheric chemistry and/or cloud particle properties. However, the vertical dynamics of SPBs on
the dayside of Venus is poorly constrained: the assumption of thermal equilibrium to derive vertical
wind velocities during the daytime is subject to doubt. As stated earlier (Section 2.2), the fate of the
VEGA balloons is open to speculation. It’s possible that may they achieved multiple circumnavigations.
Alternatively, around midday, they may have been either over-expanded during persistent ascents or
they may have first suffered envelope melting when descending to much lower altitudes. In other words,
daytime flight poses an unknown risk. Given that solar photovoltaics could be used to augment to daytime
power demands, a SPB-VPA scheme (not included in Fig. 1) could have some merit providing additional
vertical control assurance to mitigate the risk of excessive altitude departures resulting in possible early
destruction.

The use of a VEGA-sized balloon, even with a lighter envelope (as suggested in the previous section)
would limit the feasible payload to ∼2 kg. While this would seem overly restrictive it should be noted
that an autofluorescing nephelometer proposed for a single cloud traverse descent probe [35] has a
predicted mass of ∼1 kg. To perform more comprehensive measurements offering greater science return,
larger payloads are needed (e.g. Ref. [2, 5, 36]), or fleets of similar-sized (or smaller) balloons could be
employed [37]. Buchanan et al [2] invoke gondola masses of ranging from ∼23 to ∼145 kg, resulting in
the need for much larger balloon envelopes. The scaling of the dynamic equations was not considered
in Section 2.3, but the characteristic response time of larger balloons will be somewhat longer.

If it is assumed that the VEGA balloons, are scaled-up by a linear factor λ, then at simplest the
buoyancy variation would scale with λ3. To maintain constant specific energy, the actuator disk area of
the VPA scheme (Fig. 1) described in Section 3.4 would also need to scale with λ3. Since this appears
to be plausible, e.g. for λ ≈ 2–3, it is also plausible that the similar energy result presented in Table 2,
would still apply for the larger payloads envisaged, (e.g. Ref. [2, 5, 36]). The VPA scheme may have
other advantages:

(i) From a science standpoint it also pays to sample larger quantities of cloud particles and conse-
quently the integral of |wrel | becomes important. In the case of the VPA scheme, larger fluxes of
particles (and more particle deposition) could be achieved by diverting some of the flow induced
by the propeller or fan into the sampling device.

(ii) Active propulsion might be used to maintain yaw control to help facilitate precision directional
control of the communication antenna.

Direct use of VEGA data to analyse the balloon options presented above does not offer any guarantee
of predictive accuracy for any future mission. Aside from the fact that the weather profiles encountered
by the VEGA balloons are likely to be strongly related to their flight latitudes (noting also that VEGA-2
overflew the Aphrodite Terra), Venus atmospheric conditions may have long term periodic changes [38].
Nevertheless, the approach offered herein is recommended to augment future studies.
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5.0 Conclusion
The two VEGA balloons that floated in the Venus atmosphere in 1985 had near-spherical elastic
envelopes offering inherent vertical stability with a weak, near-linear, corrective force of ∼4 N per
kilometre displacement from the equilibrium float altitude. This passive stabilising property permitted
them both to achieve successful night flights lasting ∼34 h despite the relatively strong vertical gusts they
encountered. The vertical pressure-height oscillations resulted in the root-mean-square excess buoyancy
variation of ∼1.3 N prior to the crossing of the dawn terminator.

Several alternative, actively controlled, balloon options shown in Fig. 1 could theoretically match the
exact same buoyancy variation profile over the same night-time period. The energy required to operate
each of these options, to achieve the matching profile, is not widely dissimilar and all appear to be viable
from cursory first-order mass estimates. Little attention has been spent on the vertical propulsive assist
option shown in Fig. 1 and hence it is recommended this option is investigated alongside others.
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Appendix A. Derivatives of v and b
The partial derivatives of v with respect to p = P/P0 and θ = T/T 0 are,

∂v

∂p
= −v

(2ve − e + p)
(A1)

∂v

∂θ
= 1

(2ve − e + p)
(A2)

The non-dimensional buoyancy, b = pv/τ , and its partial derivatives are:

∂b

∂τ
= −pv

τ 2
(A3)
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∂b

∂θ
= p

τ (2ve − e + p)
(A4)

∂b

∂p
= v (2ve − e)

(2νe − e + p)
(A5)

When p ≈1, v ≈ 1 and τ ≈ 1, the above derivatives reduce to:
∂b

∂τ
≈−1 (A6)

∂b

∂θ
≈

∂v

∂θ
≈

1

(1 + e)
≈ − ∂v

∂p
(A7)

∂b

∂p
≈

e

(1 + e)
(A8)

The total derivatives of v and b with respect to, z, are
dv

dz
= ∂v

∂p

dp

dz
+ ∂b

∂θ

dθ

dz
(A9)

db

dz
= ∂b

∂p

dp

dz
+ ∂b

∂τ

dτ

dz
+ ∂b

∂θ

dθ

dz
(A10)

Appendix B. Laboratory experiment with helium-filled latex balloon
A latex rubber meteorological balloon with a diameter of about 1.6 m was filled with a mixture of about
85% helium, 15% air. The mixture was heated internally by passing a direct current through a centrally
mounted 1.5 � resistor, using an externally mounted 12 V battery, i.e. the power input was about 96 W.
The variation of buoyancy of the assembly was measured in a small (air filled) room. After the power
supply was switched on, the excess buoyancy and the deduced temperature of the mixture plateaued at
about 0.15 N and 2 K above the initial conditions, respectively. When the power supply was switched
off, the buoyancy decay matched an exponential expression, b = exp(-t/t0), where t0 ≈ 400 s. The VEGA
balloon envelopes were somewhat larger than the one used for this simple test. Scaling laws for external
free convection suggest that time constant would become larger as balloon radius increases. On the other
hand, the external heat transfer for the VEGA balloons would have been dictated by forced convection,
possibly reducing the time constant. Whatever the modification, introducing a thermal lag such that the
internal gas temperature at time t + t0 equals the ambient temperature at time t, does not substantially
alter the excess buoyancy histories of VEGA 1 and 2, shown in Fig. 2 and 3, respectively.
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