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Abstract

In this paper, the procedure of the clinical measurement of blood pressure
is modelled by the application of a uniform pressure band to a long,
homogeneous, isotropic cylinder. The deformations are assumed to be in-
finitesimal, and transform methods are used to analyse the resulting equations.
The inversion of the resulting transforms is carried out numerically. It is
shown that, in spite of the fairly crude assumptions of the model, the actual
load on the artery may be markedly different from that applied to the surface,
leading to inaccuracies in the measured blood pressure. The parameter of
importance is shown to be the ratio of pressure band width to arm diameter.

1. Introduction

On of the most common diagnostic procedures in clinical medicine is the
measurement of blood pressure by direct, non-invasive means, of which by far
the most common relies on the phenomenon of Korotkoff sounds, probably
produced by a condition of dynamic instability of the brachial artery (Anliker
and Raman [1]). The instability is the result of the application of a band of
pressure to the outer surface of the upper arm by means of a pneumatic cuff,
and the applied pressures at the onset and disappearance of the sounds are
taken as estimates of the systolic and diastolic pressures respectively.

In the usual clinical situation, a standard width cuff is used for all patients,
and the measured pressures compared with previous values. On the basis of
this comparison, an estimate is made of the state (high or low) of the blood
pressure. Except in a subjective sense, no account is taken of the difference
between patients, particularly with respect to arm size; i.e. the effect of the
tissue interposed between the point of application of the pressure and the
artery itself is, in all cases, taken to be the same.

In this paper, a simple model of the situation is developed, and, in spite of
the fairly crude assumptions involved, it is shown that the actual load at the
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artery position may depend quite significantly on the ratio of cuff length to arm
diameter.

2. The model and its analysis

The upper arm is modelled by a long circular cylinder, the material of
which is homogeneous and isotropic, no provision being made for the existence
of a centrally located bone (although such provision couid be inciuded with an
attendant increase in algebraic complexity). As well, the presence of the artery
itself is ignored; a measure of the load on the artery is taken to be the radial
stress at a point near the centre of the cylinder. The application of the
pressurized cuff is assumed to be equivalent to the application of a band of
normal stress over a section of the curved surface of the cylinder, the normal
stress elsewhere on the surface being zero. The surface is assumed to be
everywhere free of shear stress, and deformations are taken to be axisymmet-
ric. Since flesh is almost incompressible, the Poisson’s ratio v of the material is
given the value 0.45.

In view of the assumptions made, the validity of applying any results to a
real situation may be questionable. The assumptions of homogeneity and
isotropy were, however, also used by Bennet [2] in a brief communication on
the stress concentration effects of a prosthetic socket on limb stumps, the
rationale being that a crude model may be sufficient to demostrate general
behaviour in an initial study. The same is true here, and regardless of the
inadequacies of the model, it is clearly demonstrated that a variation of stress
does occur through the thickness of the arm, and that, for the same applied
pressure, the radial stress near the centre depends markedly on the ratio of cuff
length to arm diameter.

This particular problem was initially studied by Filon [3], who, by
expanding the pressure band in terms of a Fourier series, was able to obtain
approximate results for various problems involving finite length cylinders. A
similar problem was analysed by Tranter and Craggs [S], using integral
transform methods on an infinite cylinder loaded over half its length by a
uniform pressure, later generalized by Sneddon [4] to include a non-uniform
pressure. Similar problems, in which mixed conditions are prescribed on the
surface, belong to the class of elastic contact problems, for which a vast
literature exists. Here, consideration is limited to the solution of the model
described, similar to the problem studied by Filon, by the transform methods of
Sneddon.

The cylinder is taken to be of radius a, with Poisson’s ratio v, and the
normal pressure p (z) (later taken to be uniform) is applied over the region
~b=z=b, for 0=60 =2#, in cylindrical polar coordinates (r,8,z). The
boundary conditions may then be written
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The stresses may be written in terms of a stress function, @,
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where p is the shear modulus of the material, V*> the Laplacian operator in
cylindrical polar coordinates, and

VVip =0 3)
If the Fourier transform ® of & is defined as
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it is easy to show from the equations of equilibrium that
D(£,r) = AdE) Io(ér) + AAE)r T (¢r), (6)

where, after use of the boundary conditions (1),
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The transform of the radial stress may then be written

_ AEVE IfEr) — (EIr T (¢r))
T (&r) = 2pig { + ANEY (1 = 20) To(Er) + r§’1.(§r»}' (10)
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For a uniform pressure, p(z) = p, (9) gives

1 2p sin(éb))

p) = (11
2p ¢ )
and hence that
e 2 ® 4 >
T =—}r F{r,é)sin{b¢&)cos{&z)de (12)
mJo

with
|[ L(&) (1 = 20) Lo(r€) + rel (rE)) ]
= ()€ + 1,(£)2(1 — v)) (o(r) — 1(ré)/r))
F(r,§)= 2 - 1
(r.8) Uo®) £~ U8 (1~ ) + £))] 13
where &, r, and b have been non-dimensionalized with respect to a, and T,, with
respect to p. Hence, the non-dimensional stress at may point (r,z) may be
calculated by evaluating the integral (12).

3. Evaluation of the integral

Although the integral (12) is merely a Fourier cosine transform, its
inversion is not obvious, except in the case r = I, which yields the required
boundary condition. For other values of r, the radial stress must be evaluated
numerically.

The most direct procedure, since the integrand is regular on the real axis,
appears to be numerical integration. Since the integrand oscillates with a
frequency determined by the value of z, it was found that for large values of z
accuracy was somewhat limited. For small z, the oscillations are of period
approximately 27 /b, and a ten point Gaussian integration routine over succes-
sive segments of length 27 /b gave accurate results. As z increased, the number
of oscillations in each segment increased, and the accuracy suffered. It is,
however, possible (in principle at least) to evaluate (12) for all values of z by
use of the calculus of residues.

It may be shown that, for realistic values of v, the poles of the integrand of
(12) are all of single order, and that, in the region Imé£ > 0, they occur in pairs
& = *ae +idi, k = 1,2,- -, with one pair of zeros corresponding to each pair of
points ijox, iji«; in the usual notation j,. is the kth zero of J.(z), the Bessel
function of order v. The conjugates are also poles. By a judicious choice of
contour, (12) may be converted to a contour integral, and evaluated by the
calculus of residues. For the case z = b, the correct contour is the real axis and
the lower semi-circle, and it is possible to show that the contribution from the
pair of poles at £ = *a - id is given by

4o [ sin ba cosh bd (G sinaz — H cos az) ]

+cos ba sinh bd (G cos az + H sin az) (4
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where

G+iH= lim ((—(a-id))F(ré). (15)
£—a-id
The first four poles in the region Re £ >0, Im £ <0 were found numerically to
be approximately

£o=13457—i 2.7898
£ =16353-i 6.0862
£&=18270—i 9.2834
£ =1.9665—i 12.4536

and hence the contribution of further poles, with imaginary parts of greater
magnitude, is insignificant, even for z near b. In principle the integral may be
evaluated exactly for z = b from (14) and (15); in practice, however, the
evaluation of (15) is extremely sensitive to small errors in the determination of
the poles. The behaviour for z = b, is, nevertheless, demostrated by (14) to be
an exponentially decaying oscillation, decreasing like e >* for sufficiently large
2. With regard to the physiological problem, the region |z|<b is of major
interest; the behaviour in this region is calculated to sufficient accuracy by
numerical integration.

4. Results and discussion

The integral (12) was evaluated for a range of values of r,z, and b. The
value of b is equivalent to the ratio of cuff length to arm diameter. Since T, is
an even function of z, only positive values of z are considered.

Figures 1-6 show the results of the numerical integration; Figures 1-3
showing the overall stress distribution with increasing z for a number of radial
positions and three different cuff lengths. Figures 4-6 demonstrate specific
behaviour at the axial mid-point z = 0. In the first group, the applied stress at
r =1 is shown as a broken line.

Considering firstly Figure 1, for a cuff length 0.5, it is easily seen that near
the centre (r = 0.1), the magnitude of the applied stress in the region z < 0.5 is
considerably less than unity, applied at r = 1, whilst for z > 0.5, the applied
stress magnitude is greater than that applied at r =1 (zero). Hence, for a
relatively narrow cuff, some “‘leakage™ of stress from beneath the cuff has
occurred. The same is also true to a lesser degree at r = 0.5 and r = 0.9, the
effect diminishing as the distribution curves tend to the step function to meet
the boundary condition at r = 1. A slight expansionary stress (T, >0) is
present for each radius for a range of z above z = 0.5; again this effect is most
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Figure 1. The variation of the radial stress T, with axial distance z for radii 0.1, 0.5, and 0.9 witha
cuff length of 0.5.

obvious at r = 0.1, being barely present at r = 0.9. This expansion stress will
cause the expected bulging of the cylinder past the ends of the cuff.

For a cuff length of 1.0 (Figure 2 and 2(a)), the behaviour is
generally similar, with the exception that the magnitude of the stress at z = 0is
now greater than unity for r = 0.1 and r = 0.5 by about 1%, whilst at r = 0.9, it

CUFF=10
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Figure 2. The variation of the radial stress T,, with axial distance z for radii 0.1, 0.5, and 0.9 with a
cuff length of 1.0.
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Figure 2(a). The radial stress T,, for a cuff length of 1.0 on an expanded scale for0=z = 1.

is marginally less than unity. Hence, a leakage does not appear to have
occurred; rather a stress concentration at the centre seems apparent. This
effect is discussed further in the light of Figures 3 and 3(a) for a cuff length of
2.0. Here, the stresses at z =0 do not have the maximum magnitude, the
maximum being reached at a point slightly less than z = 0.8, for the lower
values of r at least. At r = 0.9, the magnitude falls smoothly off to zero with
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Figure 3. The variation of the radial stress T, with axial distance z for radii 0.1, 0.5, and 0.9 with a
cuff length 2.0.
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Figure 3(a). The radial stress T,, for a cuff length of 2.0 on an expanded scale for 0 = 2 = 1.25.

increasing z. This maximum is greater in magnitude than unity, and is
presumably in some way related to the expansionary stress outside the cuff.
The concentration effect for a cuff length of unity is the result of the combining
of the maxima from each end of the cuff. This maximum magnitude was
present for all cuff lengths greater than 2.0 used in the calculations, although
the result for 2.0 only is shown. In all cases, however, the maximum occurred at
a distance slightly greater than 1.2 inside the cuff. Hence it would be expected
that the absolute maximum of the stress magnitude at z = 0 would occur at a
cuff length near 1.2, where the maxima from each end would reinforce to the
greatest extent.

It is not difficlt to suggest a physical explanation of these results. The
bulging of the material just past the end of the cuff is the result of a stress
concentration just inside the cuff, as mentioned in connection with Figure 3.
For long cuffs, this gives rise to a boundary layer effect, extending over a region
of about one diameter in length. For decreasing cuff size, these boundary layers
eventually take over the entire region, with a reinforcement effect as men-
tioned. For smaller cuffs, “leakage” begins to predominate, and the stress
concentration effect occurs closer to the surfaces. In fact, for cuff lengths
between 0.75 and 0.9, the maximum stress occurs (at z =0, as expected) for
increasing r as cuff length decreases, until at 0.75, the stress magnitude simply
decreases in all directions away from the cuff.

This reinforcement effect is borne out by Figure 4, which shows the
normal stress as a function of cuff length for a typically small radius (r = 0.1).
For a cuff length near zero, the applied stress near the centre is naturally very
small, as the actual load is also near zero. With increasing cuff length, the stress
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Figure 4. The variation of radial stress T,, at z = 0, r = 0.1, with cuff length.

magnitude rises fairly steeply, before flattening out and reaching a maximum at
a cuff length of 1.226, close to the value predicted above. With increasing cuff
length, the stress asymptotically approaches unity, as expected.

Figure 5 and 6 show the variation of stress with radius at z = 0 for various
cuff lengths; Figure S detailing the behaviour for cuff lengths 0.25, 0.5, and 1.0,
and Figure 6 for cuff lengths 1.0 and 2.0, on an expanded scale. For small cuff
lengths the stress magnitude near the centre is small, as noted earlier,
increasing with radius-to unity at r =1, as required. As the cuff length

Figure 5. The variation of radial stress T,, at z = 0 with radius for cuff lengths of 0.25, 0.5, and 1.0.
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Figure 6. The variation of radial stress T,, at z = 0 with radius for cuff lengths of 0.5, 1.0, and 2.0,
on an expanded scale.

increases, so does the stress magnitude at r = 0, reaching a maximum for a cuff
of length 1.226, the curve for this value not being shown in the interests of
clarity. For a cuff length of 1.0, the stress magnitude is greater than unity for
r < 0.76, but less than unity for 0.76 < r < 1.0, a minimum being reached at
r = 0.88. Hence, in this region, the material is less ‘“compresed” than at the
centre. The effect is not present for cuff lengths of 2.0 or greater. For these
larger values, the curves flatten out and approach unity everywhere with
increasing cuff length. For the longest cuff considered, with a length of 5.0, the
stress was in fact indistinguishable from unity at all values of r.

The implications with regard to the measurement” of blood pressure are
obvious; as a standard width cuff is used, the measure of pressure depends on
the diameter of the subject’s arm. If the magnitude of the normal stress at
r = 0.1 is taken as a measure of the actual pressure applied to the artery, and
the cuff length is equal to the diameter of the arm, the closing pressure will be
understimated by a factor of 1.6% approximately. The effect decreases for
increasing cuff length; however, it increases sharply for decreasing cuff length.
For example, an arm such that the cuff length is 0.75 of the diameter will cause
an overestimation of the order of 5%, whilst if the ratio is 0.5, the overestima-
tion will be of the order of 20%. As the measurement of blood pressure is
indirect, and its results compared with previous measurements on different
subjects, it is plausible to suggest that extremely fleshy patients may well be
suspected of slight hypertension which does not in fact exist.

Before any real quantitative predictions are made, several improvements
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to the model should be incorporated, the most obvious of which are the
inclusion of a centrally located bone and more realistic boundary conditions at
the surface. These improvements, however, are unlikely to significantly alter
the main points of the simple model; that the radial stress does vary through the
arm, and that the variation depends markedly on the ratio of cuff length to arm
diameter.
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