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Abstract. We show that the pseudo-Anosov diffeomorphisms have a kind of stability
even outside their own homotopy class, this generalizes some results of Lewowicz
and Handel. As a corollary, we show that two pseudo-Anosov maps, with the same
dilatation coefficient, which are semi-conjugate on the , level are also semi-
conjugate as dynamical systems by a map which is a ramified cover.

Our main interest in this work is to find when a dynamical system g: N> N on a
compact connected space can be semi-conjugated onto a pseudo-Anosov map. This
is reminiscent of J. Franks work {F], it is also related to work of J. Lewowicz [L]
and M. Handel [H1, H2].

A pseudo-Anosov diffeomorphism f of a surface M is a homeomorphism, for
which there exists a pair of transverse measured foliations (%°, u%), (¥, u*) and
A>1 such that f(F°, u*)=(F’,A"'u*) and Lo (F ™) =(F¥, Au") - see [FLP]
for Thurston’s theory of measured foliations and pseudo-Anosov diffeomorphisms.
In the beginning, our work was motivated by an attempt to classify pseudo-Anosov
maps up to ramified covers, because we wanted to find out the smallest surface on
which a given pseudo-Anosov diffeomorphism was ‘living’ naturally. Our Theorem
2 below shows that this can be reduced to an algebraic semi-conjugacy problem on
the fundamental group level. When M. Handel’s paper [H1] appeared, it was clear
that this problem was related to a form of dynamical ‘stability’ for pseudo-Anosov
diffeomorphisms which is the content of our Theorem 1 below. In fact, the proof
of Theorem 1 produces more than its statement, we find a natural hyperbolic
extension of the pseudo-Anosov map in which the surface sits naturally as the
smallest non-trivial invariant compact connected subset. The space on which the
hyperbolic extension exists has a universal cover which is the product of the two
trees obtained from the stable and unstable foliations.

The following theorem generalizes some work of J. Lewowicz [L] and M. Handel
[H1].

THEOREM 1. Let f: M > M be a pseudo-Anosov map of the closed connected surface
t Supported by NSF Grant No. DMS-8610730(1).
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M. Let g: N> N be a homeomorphism of the compact connected space N. Suppose
that a: N - M is a continuous map such that the diagram:

N—g>N

S
M— M
commutes up to homotopy. If a is not homotopic to a constant, then there exists a

closed subset Y = N, which is g invariant, and a continuous surjective map B: Y > M
such that B is homotopic to a|Y and the following diagram commutes:

gly
Y—> Y

Bl lts
!
M— M

The second theorem is a generalization of the fact that two homotopic pseudo-
Anosov maps are conjugate, it should also be compared with [H2).

THEOREM 2. Let f:M > M and g: N-> N be pseudo-Anosov maps, with the same
dilatation coefficient on the closed connected surfaces M and N. Suppose that
ay:m (M)~ 7 (N) is a non constant algebraic homomorphism such that the following
diagram commutes:

m(N) —%— 7,(N)

m (M) ‘L’ m(M),

where f, and g, are respectively representatives of the action of f and g on the
Jundamental groups. Then there exists a ramified cover a : N > M which semi-conjugates
g 1o f, and whose action on fundamental groups can be represented by a, .

1. Some facts about trees and measured foliations

Let M be a closed connected surface and let # be a minimal measured foliation
on M. Call M the universal cover of M. Denote by Z the pullback of % to M. We
call a leaf of & either a regular leaf which does not contain a separatrix or the
union of a singularity and all separatrices ending in that singularity. Since % is
minimal, any such leaf is a closed subset of M. We call 7 the set of leaves M /ﬁ.
If we define the distance between two leaves of & as the minimum of the transverse
measures of arcs joining the two leaves, we obtain a distance on J which turns 7
into a tree - see Morgan and Shalen [MS, § 2]. If the genus of M is =2, then J is
not complete for this distance. We will denote by 7 its completion, it is also a tree,
see [MS, proof of Theorem 2.1.9]. To simplify notations, we will denote by I" the
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fundamental group of M the group I' acts in a natural way as a group of isometries
of J and hence it also acts as a group of isometries of 7.

LemMA 1.1. If a is a closed arc contained in 9 then a minus its endpoints is contained
inJ. If fe T, the set T\I'f is totally disconnected.

In order to prove 1.1, we need a couple of sublemmas.

SUBLEMMA 1.2. Let a (resp. a’) be an arc between x and y (resp. x' and y') in a tree.
The intersection a N a' is an arc of length I{(a N a’) satisfying:

lana)=la)—d(x,x)—d(y,y").

The proof of this sublemma can be found in [MS, proof of Corollary 2.1.7].

SuBLEMMA 1.3. Let I be the completion of the tree J. If a is an arc in J, then a
minus its extremities is contained in 7.

Proof. Call x and y the extremities of a. Choose x, > x and y,~» y with x,, y,€ 7.
Call a,< J the arc between x, and y,. We have ana,< 9 and lana,)~>Il(a)
by 1.2. The sublemma follows easily. O

Proof of 1.1. Since the foliation % is minimal and any non trivial arc in J contains
the image under the map M - J of a non trivial arc transverse to %, we obtain that
any non trivial arc of J contains a point of I'f. By 1.2, the same is true for any non
trivial arc in 9. Lemma 1.1 follows from this last fact. O

2. Embedding a pseudo-Anosov map in a hyperbolic dynamical system

Let f: M > M be a pseudo-Anosov map. Let A > 1 be its dilatation coefficient and
let F° and F" be its stable and unstable foliations. Call (7%, d* ) and (77, d°) the
trees M/ %° and M/ g w1th their respective metrics. Fix a lift f of fto M. This f
induces actions F* and F* on the trees 7* and J° which satisfy:

VYa,a'e J*  d“(F“(a), F“(a’))=Ad"(a,a’)
Vb beT®,  d(F(b), F*(b))=r"'d*(b,b').

This implies that these actions extend to the completions 9* and 9 and that these
extensions verify the same equalities.

If we look at the product action F= F*x F“ on Z=9"xJ™ with the product
metric d =d*+d" we obtain what we can call a metrically split hyperbolic homeo-
morphism - generahzmg to arbltrary metric spaces [F, Definition on p. 67].

There is an inclusion M < Z, which is obtained by sending a point in M to the
pair of leaves - one from %° and the other from %* - that contain it. It is well
known that the metric d induces on M the usual topology.

The action of I'=7,(M) on M induces isometries on Z in a natural way. The
inclusion M = Z is equivariant with respect to these actions of I

If we write fy =f#(y)f~ for yeT', we also have 157 =f#(-y)f5.
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LeMMA 2.1. There exists € >0 such that:
Vyel\{ld}, VzeZ d(yz z)=ce.
Proof If z=(a", a’)e F* x F° then vz =(vya", ya*). This implies:
d(vyz,z)=d"(ya", a")+d"(ya’, a*)
=i(y, F)+ iy, F°).
It is well known that there exists € > 0 such that:
Vyel\{Id}, i(y, F)+i(y, F)=e. O
COROLLARY 2.2. The action of T on Zis properly discontinuous.

If we call Z=Z/T, we obtain a metric space since d is I' equivariant. The map
Z->Z appears as the universal cover of Z since Z is contractible and locally
contractible. The inclusion M - Z gives an inclusion M = Z which is an
isomorphism on the fundamental group. The map F gives a map F:Z - Z which
is a hyperbolic homeomorphism whose universal cover is metrically split. The images
of the foliations {J* x blbe J*} and {ax ™ lae 9} under the map Z - Z give
the stable and unstable foliations of F. The restriction of F to M is f.

LeEMMA 2.3. In the situation described above, two continuous maps g,, g,: X > M are

homotopic as maps with values in M if and only if they are homotopic as maps with
values in Z.

Proof. Since the genus of the surface M is =1, we can endow M with a Riemannian
metric such that any pair of points in the universal cover M can be connected by
a unique geodesic. Given any path a < Z connecting the two points x, y € M, a lift
& to Z connects two points %, j € M, call o’ the image in M of the unique geodesic
connecting %, § in M. The map a+>a’ is well defined and continuous in the compact
open topology. The lemma follows routinely from this fact. O

LeEmMMA 2.4. If xe M, then Z\(W*(x, F)u W"(x, F)) is totally disconnected.

Proof. Choose a point (f,fYe Z above x. We have fed’, f'e " It follows
from 1.1 that (I°\I'f)x(T“\I'f’) is totally disconnected. But this product is
precisely the inverse image of Z\(W*(x, F)u W*(x, F)) under the covering map
Z-Z [

ProPosITION 2.5. If X is a closed connected non empty subset of Z which is F invariant
then either it is reduced to a point or it contains M.

Proof. Suppose that X is not reduced to a point. Since the periodic points of f = F| M
are dense in M and X is closed, it suffices to show that X contains these periodic
points. Fix such a periodic point p. Since X is closed and invariant under F, it
suffices to show that either W*(p, F) or W*(p, F) intersects X. But this follows
clearly from 2.4, since X is connected and not reduced to a point. O

The next theorem is a generalization of Theorem 1.
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THEOREM 2.6. Suppose that we have a diagram:

|
Z — 7

commutative up to homotopy, where g is a homeomorphism of the compact connected
space N. Then there exists a continuous map B : N > Z, homotopic to a, and such that
the diagram:

N —L,N

|

Z — Z

commutes. Moreover, if a is not homotopic to a constant, then the image B(N) contains
M. It follows that Y =B~'(M) is invariant under g and that B|Y is a continuous
surjection onto M, which is a semi-conjugacy between g| Y and f. Moreover, ifa(Y)c M
then «|Y and B|Y are homotopic as maps with values in M.

Proof. Since Z has a universal cover on which F has a hyperbolic metrically split
lift with a complete metric. It is easy to see that the machinery developed by J.
Franks in [F, § 4] can be applied to give B: N - Z, homotopic to a which gives a
semi-conjugacy:

N —+ N

|

zZ — Z

If a is not homotopic to a constant, by 2.3, the image B(N) is a compact connected
F invariant subset of Z which is not reduced to a point. By 2.5, we have M < B(N).
The last assertion follows from 2.3. O

3. Pseudo-Anosov diffeomorphisms with the same dilatation coefficient
The following lemma is certainly well known.

LEMMA 3.1. Let g: N > N be a pseudo-Anosov diffeomorphism on a closed connected
surface, with dilatation coefficient A > 1. Suppose that Y = N is a compact g-invariant
subset, if the topological entropy of g| Y is log A, then Y= N.

Proof. From [FLP, Exposé 10 § IV and § VI], there exists an irreducible subshift of
finite type (24, 04), whose topological entropy is log A, and a surjective semi-
conjugacy 0:3,-> N between o, and g. The closed subset 8#7'(Y) is o,-invariant
and the topological entropy of o4 restricted to that subset is log A, it follows
from [CP, Theorem 3.3] that 7 '(Y)=3X,. The surjectivity of 6 implies that
Y=N. O
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Let f: M > M and g: N> N be pseudo-Anosov maps, with the same dilatation
coefficient A on the closed connected surfaces M and N. Suppose that a,: 7, (N)~>
(M) is a non constant algebraic homomorphism such that the following diagram
commutes:

m(N) —2— m(N)

m(M) —2 (M),

where f, and g, respectively represent f and g on the fundamental group.
The first remark is that there exists a map @: N > M, which can be represented
by a, on 7, and such that the diagram:

N—g—>N

M —f> M

commutes up to homotopy. These are standard facts from algebraic topology. By
Theorem 2.6, there exists Y < N a g-invariant subset and a surjective semi-conjugacy
a:Y-> M, between g|Y and f, with @« homotopic to &|Y. Since the topological
entropy of both f and g is log A, the topological entropy of g|Y is also log A. By
3.1, we have Y = N and, in fact, the map « is a surjective semi-conjugacy between
g and f, which is homotopic to @ The following lemma finishes the proof of
Theorem 2.

LEMMA 3.2. Any non constant semi-conjugacy between two pseudo-Anosov maps, with
the same dilatation coefficient on closed connected surfaces is a ramified cover..

Proof. Let us denote by ¢ : N-> M a non constant semi-conjugacy between the two
pseudo-Anosov diffeomorphisms g: N - N and f: M > M with the same dilatation
coefficient A. We denote by (F°, u°), (F* n*) the invariant stable and unstable
measured foliations of f and by (94°, »*), (94", v*) those of g. Since ¢ is a semi-
conjugacy it takes a leaf of ¥’ (resp. ¥) to a leaf of F° (resp. F").

What we mean by a segment contained in a 4" leaf is a subset of a ¥ leaf which
is homeomorphic to [0, 1] and if it contains a singularity then it must be entirely
contained in the union of the singularity and of two separatrices adjacent to the
same sector. Remark that the holonomy along ¥’ is always defined on one side of
such a segment. If a is a segment in a " leaf, we denote by v*(a) its »* measure
and by g°(a) the measure of the F“ segment which has the same extremities as
¢@(a). It is clear that g° is continuous on its domain of definition endowed with
the compact open topology. Since g and f have the same dilatation coefficient A,
we have:

Va¥'-segment 1°(f(a))= Az (a). (1)

If v is a segment of a ¢* leaf which is the union of the two subsegments a and 8
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then we have:

g (y)=p*(a)+a*(B). (2)
If we move a segment in a ¢" leaf by holonomy along %° leaves to another segment
in a 9" leaf, the two segments will have the same value under a°.

Our goal is to show that there exists p > 0 such that for any segment a in a ¢*
leaf i°(a)=pr'(a). We will use the fact that g has a Markov partition & =
{R;,...,R,} - see [FLP, Exposé 10 § IV, § V and § VI] for the definition and
properties of Markov partitions.

Denote by S{c R, any segment in a 4* leaf which goes across R;. The values
a;=v*(S}) and b, = a°(S}) do not depend on the choice of S} because any two
such choices differ by holonomy along %’ leaves. Call x; the number of times
g“(Rj) crosses the interior of R,. This gives a positive matrix X = (x;)=; <. From
[FLP, Exposé 10 Lemma 1 p. 205], the matrix X has power which is strictly positive.
Moreover, if X'=(x\") ==, then (x{),~; ;= is the number of times that f '(R;)
crosses R;. It follows from this remark and (2) above that, if we define A (resp. B)
as the vector with components a,, ..., a, (resp. b,, ..., b,), then we have:

Vi=1,A'A=X'A and A'B=X'B. (3)

Calld,,..., a, the components of the eigenvector with eigenvalue A of the transpose
of X normalized by the relation Z:'=1 a,a;=1. From Perron-Frobenius theory, it is
well known that d;> 0 and lim,., A ~'X'B =pA, with p=Y_, ab,. It follows from
(3) that B = pA. If one of the components of the last inequality was strict multiplying
the i-component by the strictly positive d; and summing would give p=Y|_, b, <
p Yi_, da; = p which is impossible. So we have:

Vi=1,...,n, b,-=pa,-. (4)

Suppose now that « is a segment in a 9 leaf. For each j=1,...,n and each I =1,
call @] the number of 9* segments intersecting @ which are contained in f~'(R;)
and go across it. Using (1) through (4), we obtain:

fla)s Y a,’-/\_’bj= Y ajprla;> pri(a).
i=1 i=1

This shows the inequality i °(a) =< pr°(a). Note now that p cannot be zero, because
that would imply that the image of ¢ (N) would be contained in one leaf of ¥* and
hence, by the g invariance, it would be reduced to one point. Suppose that some
segment B in a ¥ leaf verifies g°(B8) <pv°(B). Choose a point x in the interior of
B and call x,, an accumulation point of the sequence g" (x), 1=0. It is clear that
the unstable leaf through x, contains arbitrarily small segments a, containing x..,
and such that @*(a) <pv®(a). The density of the stable leaf through x, and the
invariance by holonomy show that the same strict inequality is true for any segment
in a 9" leaf. This is absurd, since we have equality for any segment in a 4* leaf
contained in a R; and going across it.

By rescaling v®, we can assume that p = 1. This allows us to interpret what we
obtained in the following way: the map ¢ is an isometry of any non singular leaf
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of 4* endowed with the metric defined by »* onto the corresponding leaf of %*
endowed with the metric defined by u°. Of course, the same result can be obtained
with stable foliations. It is now easy to finish the proof of the lemma. d
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