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Abstract. Let I' be one of the N2-dimensional bicovariant first-order differential calculi on the
quantum groups O,(N) or Sp,(N), where ¢ is not a root of unity. We show that the second
antisymmetrizer exterior algebra ;I'" is the quotient of the universal exterior algebra ,I" by
the principal ideal generated by A0 Here 6 denotes the unique up to scalars bi-invariant 1-form.
Moreover, OA0 is central in , I and ,I'" is an inner differential calculus.
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1. Introduction

More than a decade ago, Woronowicz provided a general framework for covariant
differential calculus over arbitrary Hopf algebras, [12]. Since then, a theory of
covariant differential calculus on Hopf algebras has been developed. (for an over-
view, see [6, Chapter 14]). In his paper, Woronowicz also introduced the concept
of higher-order forms which is based on a braiding o: 'QuI" — I'Q4I". The braiding
o naturally generalizes the classical flip automorphism. It turns out that
Woronowicz’s external algebra ,,J is not simply a bicovariant bimodule but a
differential graded Hopf algebra [1], [6, Theorem 14.17]. However there are two
other concepts of exterior algebras which are also differential graded Hopf algebras,
[2, 7], [6, Theorem 14.18]. The ‘second antisymmetrizer’ exterior algebra (I'" is also
constructed using the braiding; but it involves only the antisymmetrizer / — o of
second degree while Woronowicz’s construction uses antisymmetrizers of all
degrees. The universal exterior algebra ,I” can be characterized by the following
universal property. Each (left-covariant) differential calculus which contains a given
first-order differential calculus I” as its first-order part is a quotient of ,I'*. It seems
natural to enquire about the relation between these three concepts. For the quantum
groups GL,(N) and SL,(N) and their standard bicovariant first-order differential
calculi (abbreviated FODC) this problem was completely solved in [9].
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In this paper, we consider the quantum groups O4(N) and Sp,(N) together
with their standard bicovariant FODC. The main result is stated in Theorem 1.
Suppose that ¢ is not a root of unity and let 6 be the unique up to scalars
bi-invariant 1-form in I'. Then I /(0*) and (I are isomorphic differential
graded Hopf algebras. Further, 6 is central in I and I is an inner
differential calculus i.e. dp =0Ap—(=1)'p A0 for p e, I It is somehow
astonishing that the left-invariant parts of ,I'"*? and ,I'"* differ only in the single
element 6°.

This paper is organized as follows. Section 2 contains general notions and facts
about bicovariant bimodules and bicovariant differential calculi over Hopf algebras.
In Section 3, we recall the necessary facts about morphisms of corepresentations for
orthogonal and symplectic quantum groups. We give a brief introduction into the
graphical calculus with morphisms. The construction of bicovariant FODC on
orthogonal and symplectic quantum groups is reviewed. The main result is stated
in Theorem 1. In Section 4, a very useful criterion for the size of the space of
left-invariant 2-forms of ,I'" in terms of the quantum Lie algebra is given. This
criterion applies to arbitrary left-covariant differential calculi. We show that
eyl is the direct sum of 9 bicovariant subbimodules. Every bicovariant sub-
bimodule of I'®4I" which contains 0®40, already contains the kernel of I — .
Section 5 exclusively deals with the universal differential calculus. The outcome
of the very technical calculations is that A0 is non-zero and the unique up to scalars
bi-invariant 2-form in ,I'".

We close the introduction by fixing assumptions and notations that are used in the
sequel. All vector spaces, algebras, bialgebras, etc., are meant to be C-vector spaces,
unital C-algebras, C-bialgebras, etc. The linear span of a set {a; | i € K} is denoted
by (a; | i € K). A always denotes a Hopf algebra. We write A° for the dual Hopf
algebra. All modules, comodules, and bimodules are assumed to be .A-modules,
A-comodules, and A-bimodules if nothing else is specified. Denote the com-
ultiplication, the counit, and the antipode by A, &, and by S, respectively. We
use the notions ‘right comodule’ and ‘corepresentation’ of .4 as synonyms. By fixing
a basis in the underlying vector space, we identify corepresentations and the cor-
responding matrices. Let v (resp. f) be a corepresentation (resp. a representation)
of A. As usual ¢ (resp. f©) denotes the contragredient corepresentation (resp. con-
tragredient representation) of v (resp. of f). The space of intertwiners of cor-
epresentations v and w is Mor(v, w). We write Mor(v) for Mor(v, v). By End(V)
and V' ® W we always mean Endg(V) and V ®¢ W, respectively. If 4 is a linear
mapping, A" denotes the transpose of 4 and trA the trace of 4. Lower indices
of A always refer to the components of a tensor product where 4 acts (‘leg
numbering’). The unit matrix is denoted by /. Unless it is explicitly stated otherwise,
we use Einstein convention to sum over repeated indices. Set d=a—c¢a)lforaec A
and A=%kere={d|aec Al. We use Sweedler’s notation for the coproduct
A(a) = )_aqy ® ap) and for right comodules Ar(p) =} p(y) ® p(1)- The mapping
Adg: A — A® A defined by Adra =) ap) Q Sagyag) is called the right adjoint
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coaction of A on itself. The mapping b <a := Sauybap), a € A, b € B, is called the
right adjoint action of A on B, where 5 is an .A-bimodule.

2. Preliminaries

In the next three subsections, we shall use the general framework of bicovariant
differential calculus developed by Woronowicz [12], see also [6, Chapter 14]. We
collect the main notions and facts needed in what follows.

2.1. BICOVARIANT BIMODULES

A bicovariant bimodule over A is a bimodule I' together with linear mappings
Ap:T' - AQT and Ag: ' — I' ® A such that (I', Ay, Ag) is a bicomodule and

Ar(awb) = A@AL(@)A®D), and  Ar(awb) = A@Ar(@)AD),

fora,b € Aand w € I'. Let I' be a bicovariant bimodule over A. We call the elements
of the vector space

I'n={o|A(w)=1Q0 w} (resp. g ={w | Ar(®w)=w & 1})

left-invariant (resp. right-invariant). The elements of I'y =I'y NI'g are called
bi-invariant. The structure of bicovariant bimodules has been completely character-
ized by Theorems 2.3 and 2.4 in [12]. We recall the corresponding result: Let
(I', Az, AR) be a bicovariant bimodule over A and let {w; | i € K} be a finite linear
basis of I'y. Then there exist matrices v = (v}) and f = (};-i) of elements v} eA
and of functionals f; on A, i,j € K such that v is a matrix corepresentation, f is
matrix representation of A, and

w;aa = f,(@)wn, (D

Ar(w) = 0, @], 2

for a € A, i € K. Conversely, if the corepresentation v and the representation f
satisfy certain compatibility condition, then there exists a unique bicovariant
bimodule I with (1) and (2) and {w; | i € K} is a basis of I';. In this situation
we simply write I' = (v, f).

2.2 BICOVARIANT FIRST ORDER DIFFERENTIAL CALCULI

A first-order differential calculus over A (FODC for short) is an .A-bimodule I" with
a linear mapping d: A — I that satisfies the Leibniz rule d(ab) =da - b+ a - db for
a,b e A, and T is the linear span of elements adb with a, b € A.
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A FODC I is called bicovariant if there exist linear mappings A;: I’ — A ® ' and
Ar: T’ — I' ® A such that

Ar(adb) = A(a)(id ® d)A(D),
Agr(adb) = A(a)(d ® id)A(b)

foralla, b € A. It turns out that (I', Az, Ag) is a bicovariant bimodule. A bicovariant
FODC is called inner if there exists a bi-invariant 1-form 6 € I' such that
da=0a—a0, a e A. By the dimension of a bicovariant FODC we mean the
dimension of the vector space I'y, of left-invariant 1-forms. Let I" be a bicovariant
FODC over A. Then the set Ry = {a € A | w(a) = 0} is an Adg-invariant right ideal
of A. Here w: A — I'p is the mapping

a)(a) = Sa(l)da(z). (3)

Conversely, for any Adg-invariant right ideal R of ;l, there exists a bicovariant
FODC I such that Ry = R (cf. [6, Proposition 14.7]).
The linear space

Xr={XeA|X(1)=0 and X(p) =0 for all p € Ry}

is called the quantum Lie algebra of I'. We recall the main property. The space X' is
an adg-invariant subspace of the dual Hopf algebra A° satisfying A(X) —1® X €
Xr® A° for X € X, [6, Corollary 14.10].

2.3. HIGHER-ORDER DIFFERENTIAL CALCULI

In this subsection, we briefly repeat two concepts to construct higher-order
differential calculi (DC for short) to a given bicovariant FODC I'. Let I = (v, f)
be a bicovariant bimodule.

Obviously the tensor product I'®f =TI'®,---®4I'(k factors) is again a
bicovariant bimodule. Define the tensor algebra I'® = @), . , I'®*, I'®* = A, over
A. It is also a bicovariant bimodule. Since bicovariant bimodules are free left
A-modules we always identify (I' @4 ---®4 I'); and 'y ® --- ® I'r. This justifies
our notation w; ® w; instead of w; ® 4 w; for w;, w; € I';. There exists a unique
isomorphism o:I' @4 I’ — I’ ® 4 I', of bicovariant bimodules called the braiding
with a(w ® p) = p) ® (w < p(y)), ®, p € I'L. Moreover, o fulfils the braid equation

(¢ ®id)(id ® 0)(c ® id) = (id ® 0)(¢ ® id)(id ® o)

inI'®4 T ®4T. Let (J denote the two-sided ideal in I'® generated by the kernel of
Az:

I'Qul — I'Qul’, A, =1d — 0.

Wecall (I = I'®/,J the second antisymmetrizer exterior algebra over I'. Since ¢ is a
morphism of bicomodules (I'®4I"); is invariant under ¢. So there exist complex
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numbers o-?, such that a(w;Qw,;) = ag",w,@a)j. By [12, (3.15)] we have
ij S0
Oyt :f; (Vt). (4)

Let ¥ A— I't ® I'r be defined by (a) = w(aq)) @ w(ap). Let ,J denote the
two-sided ideal of I'® generated by the vector space ¥(Rr). Then 7" =T%®/,J
is called the universal exterior algebra over I'. Both ;I and ,I'" are Nj-graded
algebras, bicovariant bimodules over A as well as differential graded Hopf algebras
over A. They are related by ,J C  J. Their left-invariant subalgebras ,I"} and
sI'7 are both quadratic algebras over the same vector space I';.

3. Orthogonal and Symplectic Quantum Groups, their Standard FODC, and
the Main Result

In this section we recall general facts about orthogonal and symplectic quantum
groups. Throughout, A denotes one of the Hopf algebras O(O,(N)) and
O(Sp,(N)) as defined in [3, Subsection 1.4]. We give a brief introduction into the
graphical calculus with morphisms of corepresentations of .4 and we recall the con-
struction of the standard bicovariant FODC over A. At the end we state our main
result.

As usual we set ¢ =1 in the orthogonal and ¢ = —1 in the symplectic case.
Throughout the deformation parameter ¢ is not a root of unity, and N > 3. We
always use the abbreviations

r—r!

q—q

€

4=q9—q 2, =q+q". r=eg" ", and x=1+

Recall that R denotes the complex invertible N2 x N2-matrix [3, (1.9)], R% = R,
and C = (C)), C] = £q%d; defines the metric. Here we set ¢ = 1 for i < N/2 and
¢ =¢ otherwise. The parameter g, are determined as follows. Let k":=
N+1—k for k=1,...,N. Then set 9, =(N+1—-¢)/2—k for k< N/2 and
0w = —0; for all k=1,...,N. The matrix K is given by K% = C;iBj, where
B=C"'"=¢C. We need the diagonal matrix D = B"C. Sometimes we use the
notation C% =Cf, Cup=C{. Then (C%)eEnd(C,C"®CY) and (Cp) e
End(CY®CY, C). The N? generators of A are denoted by ui, i, j=1,...,N,
and we call u= (u;i) the fundamental matrix corepresentation. The element

U=3%; Dfu; is called the quantum trace. Note that

(C®y e Mor(1, u®u), (Cap) € Mor(u®u, 1), CT € Mor(u®, u). (5)

For T = (T%) € End(C"®C") define the g-trace tr, T € End(C") by (tr T =
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DT . We often use the following well known relations between i(, IAQ”, K, and D.

a” st

QRi=r'cC.  RiQ=r'C (6)

R-R'=4UI-K), (7

x =trD, ®)
1D _ 1y 1 _

tqu =rl, trql =xI, trqK =1. 9)

The mapping g; — IAQ,»,,»H, e;1— K; ;11 defines a representation of the Birman—Wenzl-
Murakami algebra C(q, r), [11]. We shall give a brief introduction into the graphical
calculus with morphisms, see also [8, Fig. 1 and Fig. 6]. The calculus is justified
in [10]. Using the graphical calculus formulas and proofs become more transparent.
In order to distinguish the places for the corepresentation u and u° we use arrows
in the graph (Figure 1). A vertex stands for u, resp. u¢, if the corresponding edge
is downward directed, resp. upward directed. Since for orthogonal and symplectic
quantum groups # and u€ are isomorphic, it appears that one edge has two directions.
For instance, the intertwiner C' € Mor(u, u) is represented by a vertical edge
downward directed at the bottom and upward directed at the top. Removing a curl
by rotating part of the diagram clockwise (resp. anti-clockwise) acquires a factor
r (resp. r~!) (First Reidemeister move). A closed loop gives the factor x.
The matrix R has the spectral decomposition

R= qiﬁ — q_li’_ + V_li’o,

where i”, T € {+, —, 0}, is idempotent.

We repeat the method of Jurco [5] to construct bicovariant FODC over A. For the
more general construction of bicovariant FODC over coquasitriangular Hopf
algebras see [6, Section 14.5]. Let ¢ = ({) be the N x N-matrix of linear
functionals ¢+ on A as defined in [3, Section 2]. Recall that £+ is uniquely determined
by () = (Ril) and the property that ¢=: 4 — End(C") is a unital algebra
homomorphlsm Note that Ei’(Su’") = (R”F) !. Define the bicovariant bimodules

Fi=u®u, e @L°RLY),

where ¢, = ¢and ¢_ is the character on .4 given by s_(uj) = —0;. The structure of I',

S QG XK [
Ol Q] G-

Figure 1. The graphical representation of (6), (7), and (9).
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can easily be described as follows. There exists a basis {0 | i,j =1,..., N} of (I'+),
such that the right adjoint action and the right coaction are given by

05 <a = e+(any)S ™7 (@@)0m, a € A,
ARHUZHW,”®U:”(UC/”, i,jzl,...,N.

In particular
O <ut, = £R R0y, 01t = £(RD O, (10)

where 6 =).0; is the unique up to scalars bi-invariant element. Defining
da = 0a — a0 for a € A, (I'x,d) becomes a bicovariant FODC over A. The basis
{Xl-]i} of the quantum Lie algebra X dual to {0;} is given by

X7 = exl] — 0y == 6:S(6;,)¢” — 5.

One easily checks that X := (D™, X = ex(D~')}¢} — xis an adg-invariant element
of A°. The braiding ¢ of I'. can be obtained as follows. Inserting v = u ® u® and

fi=¢ex®L°® LT into equation (4) the braiding matrices of Iy and I'_ coincide
0= k{gklzkﬁlkzs, (11)

where the matrices 1/3, IVQ, and R~ are defined as follows. For a complex
N? x N’>-matrix T with 7 e Mor(u®u) define the matrices 79 =T},

f\?",b = TA“;;’, and T = (7")_1. Note that 7" € Mor(u® ® u, u ® u¢) and Te Mor(u ® u°).
Now we can formulate our main result.

THEOREM 1. Let A be one of the Hopf algebras O(O4(N)) or O(Sp,(N)), N =3,
and g not a root of unity. Let T' be one of the bicovariant FODC Iy, and

2x + (g — ¢ ) —r 1) # 0in case of I'_. Denote the unique up to scalars bi-invariant
1-form by 0.

() Then the quotient I /(0%) and the second antisymmetrizer algebra I are
isomorphic bicovariant bimodules.
(i) The bi-invariant 2-form 0% is central in ,I". The calculus I is inner, i.e.

do=0Ap—(=1)'p A0, pe, ™. (12)

Remark. Theorem 1 is true for the quantum group SL,(2) and the 4D,
biocovariant FODC as well, [9, Theorem 3.3(iii)]. In cases SL,(N) and GL,(N),
N =3, we have , " = I'", [9, Theorem 3.3(ii)]. For the quantum super group
GL,(m | n) the relation ,I'"" 22, I'" was proved in [7, Section 5.3].

Remark. The isomorphism of bicovariant bimodules ,I""/(6*) and ,I"" implies its
isomorphy as differential graded Hopf algebras.
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4. Proof of the Theorem

In the first part of this section, we study the duality of I'; ® ', and X ® X in more
detail. In the second part, we examine how I’ ® 4 I' splits into bicovariant sub-
bimodules. We shall prove that the space of bi-invariant elements of I' ® 4 I' gen-
erates the whole bimodule ker 45.

4.1. DUALITY

There is a useful criterion to describe the dimension of the space of left-invariant
2-forms of ,I'* in terms of the quantum Lie algebra.

LEMMA 2. Let Abe an arbitrary Hopf algebra, I' a left-covariant FODC over A with
quantum Lie algebra X, and ,I'"" the universal differential calculus over I'. Then

dim, I')? =dim{T € X @ X | w(T) € X},

where u: X ® X — A° denotes the multiplication map.

Proof. We use the following simple lemma from linear algebra without proof. Let
B:V x W — C be a nondegenerate linear pairing of finite-dimensional vector
spaces and U a subspace of V. Then the induced pairing B: V/U x U+ — C with
Ut ={we W | B(u,w) =0 for u € U} is also nondegenerate. Applying this lemma
to the non-degenerate pairing (-, : I, Q@I x XX — C, [12, p. 164], and
U=%(R) we have T = o/X; ® X; € U™ if and only if

0 = (w(p1)®w(pe), 2’ X:®X;) = o’ X;(p1)) Xi(pe) = W(T)(p)

for p e R. Hence, T € U* if and only if u(T) € X. Consequently Ut = u~'(X),
where p~'(X) denotes the pre-image of X under u. Since the induced pairing is
nondegenerate too and ,I” 22 =TIy ®I'L/¥(R) by definition, the assertion of the
lemma is proved.

Remark. Suppose I to be bicovariant. Since for f:V — V linear,
(kerf)* =im fT, the pairing also factorizes to a nondegenerate pairing of
SF22 x XA X, where YAX=A4,(X®X) and A, is the dual mapping to
AL ®T'p).

We proceed with a result for a dual pairing of a comodule and a module.

PROPOSITION 3. Let V be a right A-comodule, W a right A°-module, and
()Y V x W — C a nondegenerate dual pairing of vector spaces. Moreover

wow-f) = o vy, w),

forveV,we W, and f € A°.
If P € Mor(V) then PT € Mor(W). If in addition P> = P, then the induced pairing
imP x imP" — C is nondegenerate too.
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Proof. Since P € Mor(V), Pvo) ® va) = (Pv)g) ® (Pv)y. Forve V, we W, and
f € A° we thus get
(v, PTw-f) = (vo/ (va)), PTw)
= (Pvof (va)), w)
= ((Pv)o)f (Pv)1y)s w)
= (Pv,w-f)
= (P (w-f).

Since the pairing is nondegenerate the first assertion follows.

Since P and PT are morphisms, the corresponding subspaces are invariant. Let
vo € imP, i.e. vy = Pvy, and suppose 0= (vo, PTw) for all we W. Then 0=
(Pvg, PTw) = (P?vy, w) = (v, w). Since the pairing is nondegenerate, vy = 0.
Similarly, one shows that imP separates the elements of imPT.

COROLLARY 4. Let Abe an arbitrary Hopf algebra, I' a bicovariant FODC over A
with quantum Lie algebra X, and P € Mor(Ag), P> = P. We restrict Ag to (I’ @ 4T,
or a suitable quotient. Then imP is a Ag-invariant subspace of (I' ®41);
(,[22 resp. SFQZ), and imP" is an adg-invariant subspace of X @ X (u~'(X) resp.
X A X). The induced pairing imP x imPT — C is nondegenerate.

Proof. (i) Since ¥(R) and (ker Ay); are Ag-invariant, and since p~'(X) and
A (X ® X) are adg-invariant, the mappings Ag and adg are well-defined on both
quotients ,I'}* and (I')? resp. u~'(X ® X) and X A X.

It follows from [12, (5.17) and (5.21)] that for pe ' @4 1T');, Y € X ® X, and
feA

(P(O)f(p(l))’ Y)={(p, Y<f).

Thus Proposition 3 applies to our situation.

Let B be a right A°-module with respect to adg. For the space of invariants we use
the notation By ={b € B|b<f =¢(f)b,f € A°}. Our next aim is to compare the
bi-invariant components of I' @4 I', I’ "2 and ,I"? with the invariant subspaces
(X ® X)y, (X A X),, and u~!'(X),, respectively.

LEMMA 5. Let A be one of the Hopf algebras O(O4(N)) or O(Sp,(N)), N = 3, I one
of the N*-dimensional bicovariant FODC Iy over A and let X be the corresponding
quantum Lie algebra. Then we have

(i) dim I'¥?* =3, dim(X®X), =3,
(i) dim,I'}* =0, dim(XAX), =0, dim(ker4y); =3,
(i) dim, 2 =1 u'(X)y =(T), dim(L(R),) =2,

where 7 = Xij ® /Ymn Bi k/y Cg

yitmz
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Proof. (i) It is well known that dim Mor(u ® u) = 3, and I, R, and K form a linear
basis of Mor(u®u). Using (5) it is easy to see that the mapping T i— (BjC;T;’f
defines a linear isomorphism Mor(u®u) — Mor(l, uQu°Q@u®uc). Since

p= a[/m”Hij@an e '’

is bi-invariant if and only if (/") € Mor(l, uQu‘@u®uc), (i) is proved.
(i) The elements

020, n=Di0yx®0; and &= CLRYB0;@0,

form a basis of I ?2. Using the graphical calculus it is not difficult to check that o acts
as the identity on I }8’2, see Figure2.
Consequently, I'$* Ckerd4, and I)*={0}. By Corollary 4 we obtain
(XAX), = 0.
(iii) By [3, (2.3)], RUj(¢°y'e = ¢;"(¢°),Ry.. Further by [3, Remark 21],
0ECTerT = CT1. Let
To = C0BLRY C' = (096 (€), 6 BLRY. C!.

Yo mz Tz mz =z

Using the above identities, (6) twice, and finally (8) one gets
To = S€,/ (€Y Ry ¢, BLC!
= S¢,'St,”RI"C/ B,
=r7'8(,, ' Ch)B,
_ —lpipiy -l
=r CyByl =71 X
Using Xl/i = siﬁj — 5;, the above calculation, and again (6) and (8) it follows that

W(T) = (exl] — ) (ex )t — 8, )BLRY C"

mz = Z
-l i piy mpm i Djy mpi i iy m
=r x—¢eB R, CIt)) — e+ B R CT'l; + B\R, . C.
_ -1 m N pm i pi
=1 (x —exBI'CI0) — . B,CL i + x)
= —2r’1X§E.

Consequently, T € p~'(X) and dimu~'(X), > 1. By Corollary4 applied to the
projection P e Mor(Ag[,['}?) onto the space ,I[}?, the pairing
WIP?xpu~!(X)y — Cis nondegenerate. Since , [} = I'??/.7(R);, dim I'?? = 3 by (i),

8&” V’é&// C\Q/>>L\//

Figure 2. ¢ acts as the identity on 6 ® 0, n, and ¢.
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and dim .#(R); > 2 by the result of Section 5 we get dim u~!(X), = dim, F,A2 =1.
This completes the proof.

4.2 BICOVARIANT SUBBIMODULES

We shall describe a method to construct a class of bicovariant subbimodules of
I'®4I". This method is also applicable to higher tensor products I'®%, cf. [4, p. 1356].
In this subsection A is one of the Hopf algebras O(0,(N)) or O(Sp,(N)) and I" always
denotes one of the NZ?-dimensional bicovariant bimodules I'y over A with
left-invariant basis {0;|i,j = 1,..., N}. The canonical basis of CV is {e1,...,en}.

LEMMA 6. (i) Let P and Q be idempotents in Mor(u®u) and Mor(u*Qu),
respectively. We identify the underlying spaces of the right coaction on I't  I'r,
and the equivalent matrix corepresentation uu‘Queut via 0;R0r —
e;®e;Qex®e;. Then the subspace

Ry P1y0suRys (I @ Tr) (13)

of I'L @Iy is the lefl -invariant basis of a bicovariant subbimodule of T'@uI" of
dimension rk(P) rk(Q)

(i) I'QuI is the direct sum of 9 bicovariant subbimodules A™, t,v € {+, —, 0}, gen-
erated by the left-invariant elements

Ry P5y Py Ros(TL @ Tp).
Moreover we have the following identity of bicovariant bimodules
kerdr, = ATt A~ @ A%,

Proof. (i) Since all four in (13) appearing mappings are morphisms of cor-
epresentations one easily checks that T:= R3; P12 034 Ro3 € Mor(u®u‘®u®u‘). Hence
the space is closed under the right coaction. Now we compute the right adjoint
action. Set 012, = T(0,,»®0x). By (10)

0 149

mnk

i wed 1 w dz
p 2t = Tyt R RV R RE 0 @ Oy

m cz Vit

= (RiaR23 R34 Rys T1234)n122[[j0ab ® 0y

= (T1234R12R23R34R45);Zni[/0ab ® Oy

_ ivwst
- evwst(RlzR23R34R45 mnklj*

The second last equation becomes evident taking a look at the graphical presentation
of these equations, see Figure 3.

Consequently, T(I'y®I';) is closed under the right adjoint action. Hence
AT(I' ®I') is a bicovariant subbimodule.

(i) The first part follows from (i) and the fact that (P+ + P+ P )12
(PJr +P 4+ P )34 1s the identity of (CN)®4 In addition P* and P’ as well as P*
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Figure 3. The linear span (072) is closed under the right adjoint action.

and P’ are pairwise orthogonal idempotents, respectively. Hence the sum is direct.
To the second part. Let A, denote the eigenvalue of R with respect to the idempotent
Pt RP* = J.P", namely A, = ¢, i_ = —q~!, and 4y = r~!. Note that RP* = 1. P* as
well. Put p = Ry, P, Py, Ro3(Bxs). Then by (11)

a(p) = Ry R12R3} Ras - k2_3i)§2P§4k23(9ijk1)
= Jedy ' Ry P}y Py Ros (O01)
= 2. p.

Since ¢ is not a root of unity, A; # 4, for 7 # v. Hence p € (ker 4); if and only if
T =v. We thus get (kerdy), = AjT @ A, & A(zo as linear spaces. By (i) each space
on the right hand side generates a bicovariant subbimodule. This completes the
proof.

To simplify notations we choose a new basis of (I' @4 I');,

vast - k—y—’gv}y@gﬂ’ vast = I/Qyzpvyzb (14)

ws ws

The right coaction now reads ¥ ® u ® u° @ u° and the braiding in the new basis is
T = Rlzi{;‘l. We simply write A° instead of A*°, 7 € {+, —, 0}. Since the correspond-
ing P subcorepresentation of u®u is irreducible, by Schur’s lemma A° has a unique
up to scalars bi-invariant element #°, see Figure 4.

The relations with the old basis of A?z are n = r(n’ + 4t +47), £ =xn°, and

000 = qnt — ¢ 'y~ +r1°. (15)

The next lemma is the key step in our proof.
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nT = (ﬁT)mngmnkl = pT P gmulcl = P 0mnkl-

Figure 4. The bi-invariant elements 5+, 5~, and 1.

LEMMA 7. Let I' be one of the bicovariant FODC I . over A and A*,t € {+, —, 0},
the above defined bicovariant subbimodule of ker Ay. Then A® is generated by the
single element n*. More precisely, n" < A= Aj.

Proof. By Lemma 2 the canonical left-invariant basis of A° is

O ir = Roy P12 034 Roz(0n®01r) = R (P71 (PYi RO 0, @0

The proof is in two steps. First we compute #* < uj’ and obtain elements
Ny = BUPYE PR Ll
& = (PP R O

The graphical presentation of nj; and ff, is as in Figure 5.

First we will show that

N <t = g + D& — ' g1+ 275, (16)

Nl =o'y (e +A7D(er — 27070, (17)
By (14) and (10) one has

amnkl < u; = R;kab(oma < ”2)(0171 < uj)

= R "Ry RERIREOD,q @ 0, (18)

o
= (R34 R12R23 R34 Ras Ry3) gy Oviest -

The graphical presentation of (18) is Figure 6. Now we explain Figure 7.

In the first step we replaced the crossing in the dash box using (7). In the second
step we did the same with the R-matrix in the first dash box. This gives the first
three terms in the next line. Moreover the dash box in the second summand is
multiplied by P and gives 4.1 (no crossing). Similarly, a second crossing in the same
term gives another A,. With the third summand we are dealing in the same way; in
addition the curl gives the factor r~!. Since iZ]’ = u]’ — 9,1, (16) follows immediately.

Note that for t =0

n" <) = oyn” (19)

is obvious from the first line in Figure 7 since P° = x~'K and no crossing appears
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Figure 5. The elements #j; and &

v w s t

gmnkl <]’u,§ - ‘ - \ngst
E 1l 7

7 mn

Figure 6. The right adjoint action of uj’ on Ok

there. Moreover 7 = d;1° and 50 = rd;n° and (16) and (17) are valid. Since A° is
one-dimensional there is nothing to prove. Now we fix t € {+, —}. We shall eliminate
n; from (16). Multiplying (16) by D) and using D’r]] =7, D’f = ry® gives (17). Since
q is not a root of unity, 7, = q(/l2 I)R‘ Yg(1 + 77 ) is 1nvert1ble with inverse

1 1 1 . 1 .
T =~ Pt P~ P,
g, (1 —r D TS =g )

i L o pry b p sy L
T 421 \g 2 —gr! ~1—gr! g lr—q ')

Set (S, )l‘f = B/(T7'Y/C’ and multiply (16) by (S;)”?. Then we obtain
(S; )A,n <1u =1;,. Consequently, i, € A" for s,t=1,...,N and 7 € {4+, —}.

In the second step we again compute the right adjoint action of u]’ but on elements
1. We obtain elements

vl]t (PT) (PT VWR)'}'ngnmw
0 = By BLPY (PO C Cllpny.

Obviously ¢, = ngydRy “. Graphically they are represented in Figure 8.

From (18), we obtain F1gure 9.
Replacing one crossing R by R~ + §I — §K similarly to the graphical calculations
in the first part of the proof one can show that

) au Svb R S S S G -
WII = nw<1ubR R _511775[ - qé&l_‘/r qr M,
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Figure 7. The proof of (16).
Since ¢ is not a root of unity, T =§(R~' —r'I) is invertible with inverse

T =g = r ) 'Pt — (¢ + r~')"' P7). Therefore
B}(T l)y]Ckaz]t = nvklt
belongs to A}. Finally we have B"BCCCly,  R% = 0;,,, which completes the
proof.
Now we are ready to complete the proof of the theorem. By Lemma 5 (iii) both *

and n~ belong to #(R) (see Section 5) and dimu F = 1. Hence 1° ¢ #(R),. Since
000 = r~'5° mod #(R) by (15) and an’ = %, a € A, by (19) we get

aOANO=0A0a, acA (20)

We prove (12) by induction over the degree n of p € , I'"". For n = 0 it is true by the
definition of the FODC. Suppose it is true for n — 1. Since there exist o; € , I~ ! and
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Figure 9. The right adjoint action of u; on 1.

b; € A such that p = o;db;, we obtain by induction assumption and by (20)

dp = dOC,‘db,‘ = QO(idb,‘ — (—1)”_10(,'9(0[9,' — b,@)
= 0p — (=1)"(;0b;0 — 0;0,0%)
=0p — (—1)"o;db;0
=0p — (=1)"p0.
Using d?p = 0 and (12) twice gives 0°p = p6?, and 6 is central in ,I"*?. This com-
pletes the proof of (ii).
By Lemma 5 (iii) and Lemma 7

S (R)D F(R)ya A=A} @A

Since ¥(R) C ker A, by universality of ,I”" and n° € ker 45, we conclude with
Lemma 6 (ii) that the above inclusion is not strict,

F(R)=Af @A, and (kerAdy); = S (R)& A%,
Since both ,I'} and ,I'} are quadratic algebras,
L1/ 2 TENS(R) @ (") = T /(kerds), = T

Since both ,I'}/(°) and I are free left A-modules it follows ,I""/(n°) = ; I'".
Noting that 0> = r~'5" in ,I"* completes the proof of the theorem.
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5. The Bi-invariant 2-form of the Universal Differential Calculus

In this section we will complete the proof of Lemma 5 (iii) and show that both
bi-invariant elements #™ and 4~ belong to ¥(R). We give different proofs for
the cases I', and I'_. The first proof for I'; is self-contained and much easier than
the second one. In the later one we take results from [8] and make use of a computer
algebra program to simplify long terms. For ¢ transcendental however the first proof
works for I'_ too.

We recall some identities which are easily proved using (3) and the Leibniz rule.
Equations (22), [6, formula (14.3)], and (24), [6, Lemma 14.15], are valid for arbi-
trary left-covariant FODC while (21) and (23) in addition require da = 0a — a0.
For a,b € A and p € R we have

w(a) =0<a+e@d, O<p=0, 1)
w(ab) = w(a)<b + e(@)m(b), (22)
F(a) =(000)<xa—0® (0<a)— (0<xa)® 0+ &a)d ® 0, 23)
S (p) = (00)<p,

S (ab) = F(a)<b + w(a) <bay @ w(bw) + (b)) ® (w(@) <bw), (24)

S(pb) = S(p) <b.

We abbreviate # = r — r~!. In what follows we do not sum over signs T and v.
Part 1. T =T First we show Q := U - U — U € R. By (10) and (9) we obtain
0<«U=tr (Rz)’”(?mn = (gF + x)0. Using (21), (22), and &U) = x we have w(Q) =
(0« U) < U qro < U = 0. In addition &(Q) = 0; hence Q € R. Next we compute
F(Q). Since Q € R, by (23) we have ¥ (Q) = (0 ® ) < Q. Using (15) and (17) we get

F(Q) = (020)<Q = (gn" —¢~'n")<(UU - G U)
=qaint —q oty — Gi(gonT — g an) (25)
= qoy (g — g™ — g o (am — g
Since R is a right ideal Ql~] € R. By (24) and (25)

F(QU) = o (s — G+ — g7 (0 — G (26)
Solving this linear system (25) and (26) in ™ and n~ we have to consider its
coefficient determinant

det = oy o (org — o )(ory — gi) (- — gF)

(r+ D3 2l ar — a7 D@ — g%
X (@°r—q g r =g’

Since ¢ is not a root of unity, det # 0. Hence both #* and 5~ belong to #(R).
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Part 2. I'=T_. We denote the critical value by c,c = gq¢*r(2x + ) =
(¢* + Dr? +2q(¢*> — Dr — (¢* + 1). We recall some of the defining constants for
I'_ from [8, p. 656].

= H=q*r+q2r™' —§)
qr +2x

PR B )
gr+2x ’

pri=pt 4 —2x = —4i — 2x,

)

The idempotents 13", v € {+, —}, and their g-traces are as follows

P =0+ 705 + R+ (1 — r2) 'K, (27)

P2 =27
GOy + 2 = 1)

trl(P") = =:1,1. (28)

There are two Adg-invariant quq&iratic elements in A, namely V, = DSDf(IA")j”Au%u]‘ .
One has &(V,) = xt,. Note that W, € R, where W, =V, — u"'U, [8, p. 656 eq. (3)].
Suppose a € Ais Adg-invariant and p € A, where A is a bicovariant bimodule. Then
one has p <a € A;. Namely,

Ar(p <a) = (Sap) ® Sam)(p @ 1)(ap) ® aw) = p <a) @ Sanyaz = p<a® 1.

Applying this fact to A* and V,, and noting that , T € {+, —}, is the only bi-invariant
element of A® (up to scalars), there exist complex numbers ¢, 7, v € {+, —}, defined
by " <V, = cy,n*. We shall determine these constants. By the definition of V,
and (16)

naV,=n"< u_;:uf(i’v)ZbDfo
= (" + 40 + D& — g0+ 27 mg) <u (P, DIDY.
We carry out the calculations for the first term. By (16) and (28) we have
o;n'< (u‘,"(i’f ;bD?Df) =t U = t,(x+ o)y
Using graphical calculations we obtain for the other two terms
& (P DEDY) = (§0.,12 22 + rity — Gini "
G < (P DEDY) = (Griy heew + 27ty — gr ™ 270 N
where
e = (o + 40707 (0 = ri)™h

is obtained from (27) and the picture in Figure 10
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=e,n .

Figure 10. The definition of e,,.

Finally we obtain

cor =g+ 1@ = g (0 + g+
+20" 24" +24° = 2r + (4" +¢° 44"+ ¢* — Dr+
+(=2¢" +29" = 2¢° + 2q)r + ¢* + 1)

o= 21,20 — ¢ A+ ) = (@ = 1+ g7 )+
+qr—qg+1—q7%)

ey =2, =g )gr + D@ = D((@* =1+ g7+
+qr—qg +1—q7?)

com =@+ DE = g0 (@ + Dt
+Q24" = 24" +2¢° =29 + (=¢"* + ¢° —4¢° +¢* = Dri+
+(=2¢" +2¢° = 24" +24)r + 4" + ¢)

Now we are able to compute four bi-invariant elements of ¥ (R). Using (15) and (17)
we have

S(W,) = (000)<(V, — u'U)

vk S (29)
=q(epy — o)™ —q (e — Wa ).
Similarly to Part 1 we get
SWU) = goi (e — o™ — g o ey — o)y (30)

Consider the 4 x 2—coefficient matrix 7" = (77) for the linear system of Equations

(29) and (30), v € {4+, —}. The two columns are
_ _ T
Q(C++ — o, e — oy o (cyq — o), o (e — p 0‘+)) )
_ _ _ T
— g Mooy — e = o (e — o) (e — )

We distinguish three cases: The first column is zero, the second column is zero, and
no column vanishes, respectively.
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Case 1. ¢,y — uto, =ci —pu oy =0. We obtain the following two equations

0 = (¢* + D)(gr — D(gr + 1)x

% (@2 4 ¢ +2¢" P = 2¢°8 42457 — 247 — ¢+

+ @8 =45 + ¢ = =200 + 24" — 24°r + 2qr + ¢° + 1),
0 = 2(gr — D(gr + D(r + ¢ )(r — g)x

< (@' =@+ + ¢ —qr—q' + ¢ — D@+ ).

Since ¢ is not a root of unity we have
dy = @2 + ¢ 29" P = 2808 4 24°F — 2438 — 2P+
+ ¢ =4 + gt = = 2¢°r + 24" = 2¢°r + 2qr + 8 + 1 =0,
b=¢r-¢r+r+¢r—qg—q¢ +¢ -1=0.
Using the Euclidean algorithm we eliminate powers of r. We end up with
polynomials

a=("+ )¢ — 7+ (" + D' + (¢* — 7+ D3q"* — 24"+
+ 2q8 o q6 +2q2 _ 2)613,,2 + (q20 _ 2q18 + 2ql4 o 4q12 o q10+
+5¢° —6¢° +q* + 47 — Dr+(q*" — ¢* + 1)(¢"® — 49" + 24"+
+ 2q10 — 5q8 + 2q6 + 2q4 — 4q2 + 2)q

and

b=(—¢"—1)¢° — ¢ + D)(¢" — ¢* + D*(g — D°(g + 1)°qr + (—2¢"*+
+3¢" = 3¢* + ¢ + ¢* — 2> + D(¢* — ¢ + 1)’(g — D°(g + 1)°F

such that ads + bdy, = —(¢° + ¢° + 1)(¢° — ¢* + 1)(q — 1)°(q + 1)®q (there is no r left).
Since d; =d, =0, ¢ is a root of unity which contradicts our assumption. Hence
Case 1 is impossible.

Case 2. ¢, —pto_ =c__ —u o_ =0. Similarly to Case 1 we have

d3:q4r2—q2r2+r2+q3r—qr—q4+q2—l:0,
dy = q8r4 +r4+2q9r3 —2q7r3 —|—2q3r3 —2qr3 _qlzrz +q8r2 _4q6r2+
+q4r2—r2—2q11r+2qgr—2q5r+2q3r+q12+q4=().

Again there exist polynomials ¢« and b in g and r such that ad;+ bdy =
@E+F+D =@ +D(g* =P+ D(g—1D)"*(g+1)?¢%. This contradicts our
assumption that ¢ is not a root of unity. Hence, the only possibility is

Case 3. We will show, that T has rank 2. Suppose to the contrary that 7 has at least
rank 1. Then the 2 x 2-matrices built from the first and third rows, respectively, from
the second and fourth rows, both have zero determinant. Since oy — o # 0 this is
equivalent to (cjq — puto ) ey —uta_)=0 and (cio —p ay)(c—— —pu o) =0.
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Since, moreover, the matrix built from the first two rows has zero determinant, we
conclude ¢,y —ptoy =ci_ —p oy =0 or c._ — p~a_ = 0. But this is impossible
by Cases 1 and 2. Hence, T has rank 2; both #* and 5~ belong to ¥ (R).
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