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Abstract

The lattice parameters and the crystal and magnetic structures of Fe2SiO4 have been determined from 10 K to 1453 K by high-resolution
time-of-flight neutron powder diffraction. Fe2SiO4 undergoes two antiferromagnetic phase transformations on cooling from room tem-
perature: the first, at 65.4 K, is to a collinear antiferromagnet with moments on two symmetry-independent Fe ions; the second tran-
sition, at ∼23 K, is to a structure in which the moments on one of the sets of Fe ions (those on the ‘M1 site’) become canted. The
magnetic unit cell is identical to the crystallographic (chemical) unit cell and the space group remains Pbnm throughout. The magnetic
structures have been refined and the results found to be in good agreement with previous studies; however, we have determined the
spontaneous magnetostrictive strains, which have not been reported previously. In the paramagnetic phase of Fe2SiO4, at temperatures
of 70 K and above, we find that the temperature dependence of the linear thermal expansion coefficient of the b axis takes an unusual
form. In contrast to the behaviour of the expansion coefficients of the unit-cell volume and of the a and c axes, which show the expected
reduction in magnitude below ∼300 K, that of the b axis remains almost constant between ∼70 K and 1000 K.
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Introduction

The thermoelastic and thermodynamic properties of the olivine
group of minerals are of considerable interest, being necessary
to understand the structure of the Earth’s upper mantle (down
to 410 km depth), where olivine is believed to account for between
30% to 60% (by volume) for typical mantle phase assemblages
(e.g. Ringwood, 1969; Bass and Anderson, 1984). Olivines with
compositions between forsterite (Mg2SiO4) and fayalite
(Fe2SiO4) are among the most studied minerals due to their abun-
dance and importance in a spectrum of geological and cosmic
environments, their physical properties determining, amongst
other things, the formation and thermal evolution of planetary
bodies. For example, as pointed out recently by Béjina et al.
(2021), determination of the thermoelastic properties of iron-rich
olivine is likely to be crucial in understanding the Martian

interior. Since the original determination of their crystal struc-
tures by Bragg and Brown (1926), there have been numerous
investigations of the temperature dependence of the volume of
the (Mg,Fe)2SiO4 olivines. The first studies of the linear thermal
expansion of olivines were made by Kozu et al. (1934) and
Rigby et al. (1946) using dilatometers for their measurements.
The first thermal expansion study for pure forsterite was made
by Skinner (1962) using powder X-ray diffraction, and for pure
fayalite by Suzuki et al. (1981), using dilatometry.

In the Mg–Fe solid-solution, the Fe2+ and Mg2+ ions are suffi-
ciently similar in size that this substitution results in very little
structural change (e.g. Hazen, 1977). However, the fayalite end-
member does show some very significant differences in behaviour
compared to that of the isostructural forsterite. In particular, faya-
lite becomes magnetically ordered at low temperature and the
change with temperature in the thermal expansion coefficient of
its b axis takes a very different form to that of forsterite.
Fayalite is orthorhombic, with space group Pbnm and cell para-
meters a ≈ 4.82 Å, b ≈ 10.48 Å and c ≈ 6.09 Å at room tempera-
ture. The crystal structure can be considered in terms of a layered
hexagonal close-packed (HCP) oxygen network. Silicon ions occupy
tetrahedral sites (in 4c positions at x, y, ¼, with x ≈ 0.43 and
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y ≈ 0.10 at room temperature) lying on mirror planes. Iron
cations occupy two symmetrically non-equivalent octahedral
sites, namely M1 (= Fe1) and M2 (= Fe2); the first of these is
located in the 4a (0, 0, 0) positions and the second in 4c positions
with x ≈ 0.99 and y ≈ 0.28 (Fig. 1). There are three
non-symmetry-equivalent oxygen ions in the unit cell; two of
these, O1 and O2, are located in 4c positions on the mirror
planes, with x ≈ 0.77, y ≈ 0.09 and x ≈ 0.21, y ≈ 0.45, respectively,
at room temperature. The remaining oxygen ions are in the
general 8d positions, with x ≈ 0.29, y ≈ 0.17 and z ≈ 0.46. The
smaller, more distorted, M1 octahedral site (at 0, 0, 0) is located
on a centre of symmetry, and shares edges with the larger
M2 octahedral site – which lies on the mirror planes running
perpendicular to the c axis, cutting it at ¼ and ¾. The coordin-
ation polyhedron of the M1 site is formed by bonding to two
O1, two O2 and two O3 atoms; that for the M2 site involves
bonding to one O1, one O2 and four O3 atoms. In the SiO4

tetrahedra the Si bonds to one O1, one O2 and two O3 atoms.
Kondo and Miyahara (1963) were the first to propose that pure

fayalite exhibits a Néel point between 77 and 300 K, however
Santoro et al. (1966) were the first to report detailed information
about the two magnetic transitions at 23 K and 65 K by means of
neutron powder diffraction. Below 65 K the Fe2SiO4 structure is
antiferromagnetically ordered (henceforth termed AFM1) with
the spins of the Fe atoms on both the M1 and M2 sites having
a collinear arrangement parallel to the c axis. Below 23 K, there
is a different antiferromagnetic structure (AFM2) in which the
spins on the Fe atoms at the M1 sites become canted, possessing
components along all three crystallographic directions (e.g.
Müller et al., 1982). Suzuki et al. (1981) first identified the high-
temperature anomalous behaviour of fayalite’s b axis, which is
completely different from that found in forsterite, with the ther-
mal expansion coefficient for this axis showing a shallow, roughly
parabolic form between 300 K and 1100 K, which they considered
to be similar to the behaviour of some of the elastic moduli as
reported by Sumino (1979). In subsequent studies, Kroll et al.
(2012, 2014), also detected the anomalous behaviour of b, how-
ever their data are sparse below room temperatures and show sig-
nificantly more scatter than those of Suzuki et al. (1981);
furthermore, the behaviour of the thermal expansion coefficient
of the b axis below room temperature reported by Kroll et al.
(2014; as shown in figure 5b of their paper) differs markedly
from that which we observe in the present study. Anomalous ther-
mal expansion associated with a magnetic phase transition has
also been reported by Sazonov et al. (2010) in the isostructural
compound Co2SiO4. This material, however, differs markedly
from Fe2SiO4; firstly, in that only one phase transition is observed,
to the phase denoted here as AFM2 (at 50 K) and, secondly, as the
b axis of Co2SiO4 (equivalent to the a axis in the Pnma setting of
the space group used by Sazonov et al., 2010) does not show any
unusual behaviour, or indeed any anomaly at the temperature of
the magnetic phase transition.

To date, the effects of magnetism on the lattice parameters and
the high-temperature anisotropy of the thermal expansion in faya-
lite have never been studied together and there have been no
detailed measurements of the lattice parameters within the anti-
ferromagnetic region. Using neutron powder diffraction, we
have identified the two antiferromagnetic phase transitions and
have determined their effects on the cell parameters of synthetic
Fe2SiO4. The neutron powder data were collected with the High
Resolution Powder Diffractometer (HRPD) at the STFC ISIS spal-
lation neutron source. Measurements were made between 10 K

and 1453 K, i.e. close to fayalite’s melting point at 1478 K, allow-
ing us to investigate the structural basis for the unusual anisotropy
of fayalite’s thermal expansion.

Experimental method

Sample synthesis

Polycrystalline Fe2SiO4 was prepared from a stoichiometric mix-
ture of metallic Fe, Fe2O3 and SiO2. The sample was synthesised
using a new WC-COW solid-state oxygen buffering reaction
within a ceramic crucible system (Dobson, 2021) that is effective
at maintaining the oxygen fugacity at a level between iron–wüstite
and quartz–iron–fayalite during solid-state synthesis of
Fe-bearing silicates at 1 atm and 1273–1373 K. The sample was
sintered for 6 days at 1323 K in a set of nested alumina crucibles
inside a 5 L muffle furnace. In total, three sintering cycles were
used, each lasting 2 days, with the fayalite being re-ground and
pelleted between cycles. The recovered sample was examined by
powder X-ray diffraction at room temperature; it was found to
contain a very small amount of quartz as an impurity phase,
with the Rietveld-refined X-ray diffraction pattern indicating a
composition of 99.8 wt.% Fe2SiO4 and 0.2 wt.% SiO2.

Neutron Powder Diffraction

Time-of-flight neutron powder diffraction patterns were collected
with the High Resolution Powder Diffractometer (HRPD)
(Ibberson et al., 1992; Ibberson 2009) at the STFC ISIS spallation
neutron source, Rutherford Appleton Laboratory, UK. Diffraction
data, at all temperatures, were collected in HRPD’s standard
100 ms wide time-of-flight window in the range 30–130 ms
(d-spacings = 0.65–2.6 Å), normalised to the incident spectrum
and corrected for detector efficiency by reference to a V:Nb stand-
ard, and then exported in a format suitable for analysis with
GSAS/EXPGUI (Larson and Von Dreele, 2000; Toby, 2001)
using the Mantid library of diffraction algorithms (Mantid,
2013; Arnold et al., 2014).

For the low-temperature data collection, between 10 and 340 K,
the sample was loaded into an 18 mm × 23 mm aluminium-alloy
‘slab can’ sample holder with a depth of 5 mm. The Al sample
holder is open at the front (beam-facing) and rear, and the sample
is then contained by 125 μm thick vanadium foil windows, held in
place with steel frames and sealed with indium wire. Exposed steel
and aluminium surfaces on the front face of the holder were
masked from the incident beam with Gd and Cd foils. The sample
holder has holes drilled on either side of the specimen area, one to
accept a RhFe resistance thermometer, and the other to take a
cartridge heater; this arrangement allows rapid and accurate con-
trol of the true sample temperature provided that an appropriate
time – ∼10 minutes – is allowed for thermal equilibration after
each change of temperature (Fortes, 2019). The assembly was
then loaded into a closed-cycle refrigerator (CCR) held under a
partial pressure of ∼50 mbar of He exchange-gas. An initial data-
set was collected at 100 K, followed by measurements in 5 K
increments on cooling to 10 K. Thereafter, the sample was
warmed to 110 K and measurements were obtained in 10 K
steps up to 340 K. The majority of the datasets were ‘short’ acqui-
sitions of ∼10 minutes duration (8 μAh of proton beam current)
intended solely for the refinement of unit-cell parameters, but
several longer measurements for ∼100 minutes (80 μAh) were
made at 40 K and 10 K on cooling and at 300 K on warming;
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these provided diffraction data of excellent statistical quality suit-
able for us to carry out high-precision structure refinements.

To prevent sample degradation in the evacuated furnace at
high temperatures, the sample was loaded under He gas at
room temperature into a Ti–Zr–Mo alloy (‘TZM’) cylindrical
sample can (8 mm in internal diameter with a 0.25 mm wall
thickness), which was then sealed with a niobium wire gasket.
This was then placed in a vacuum furnace (10–6 mbar) and heated
using vanadium-foil elements. Two K-type thermocouples were
secured on either side of the sample can. After the first data col-
lection at room temperature, ∼297 K (20 μAh), a measurement
was made at 373 K (40 μAh), after which data were taken in
20 K increments from 373 K to 1273 K, counting for 10 μAh at
each point. As before, longer counting-times were used at
573 K (80 μAh), 873 K (80 μAh) and 1173 K (120 μAh) to provide
data more suitable for high-precision structure refinements. The
experiment was interrupted by a failure of the furnace elements
at ∼1270 K, as a result of which the sample cooled rapidly back
to room temperature. After the elements were replaced, the sam-
ple was reheated, with data collected at 1073 K and 1173 K (to
provide an overlap with the first high-temperature dataset),
whereafter diffraction patterns were obtained in 20 K intervals
from 1273 K up to 1453 K, close to the melting point of
Fe2SiO4 which is reported to be at 1478 K. In the second high-
temperature series, data were collected for 10 μAh at each tem-
perature, except at 1353 K and 1453 K where the counting
times were extended to 200 μAh and 167 μAh respectively.
After heating to 1453 K, the recovered Fe2SiO4 sample, measured
at 573 K for 53 μAh, was found to be unaltered, with no add-
itional peaks seen in the powder pattern (the unit-cell parameters
of the recovered sample are given in the footnote to Table 2; the
refined values of the fractional coordinates differed by 0.0007, at
most, from those originally found at 573 K).

Refinement

Neutron diffraction patterns of Fe2SiO4 collected at 10 K, 300 K
and 1453 K are presented in Fig. 2. A total of 119 data sets
were collected for Fe2SiO4: 45 in the low- and 75 in the high-
temperature sample environment. The good statistical quality of

even the ‘short’ data acquisitions allowed us to carry out refine-
ments of the nuclear and magnetic structure using all of the
data collected between 10 and 1453 K. For consistency, the
same set of parameters was refined for both the ‘long’ and
‘short’ counting times. As one might expect, for the short count-
ing times, the estimated standard deviations of the refined para-
meters are larger than those derived from the longer
measurements, however we are nonetheless able to discern trends
in – for example – bond lengths, bond angles and magnetic
moments with a high degree of certainty, as illustrated below.
The magnetic and nuclear structures were refined as separate
phases with the Rietveld method using the GSAS I suite of pro-
grammes (Larson and Von Dreele, 2000) with the EXPGUI graph-
ical interface (Toby, 2001). Consideration of previous studies of
the magnetic structure of Fe2SiO4 (e.g. Müller et al., 1982) indi-
cated that the space group remains Pbnm in all phases and so
the magnetic and nuclear unit cells were constrained to be the
same throughout. Following Müller et al. (1982), for the canted
antiferromagnetic (AFM2) region (T < 23 K), all three compo-
nents of the magnetic moment on the Fe1 site were allowed to
vary while for the collinear (AFM1) region, 25≤ T≤ 65 K,
these moments were constrained to remain parallel to the c
axis; the moments on the Fe2 site were constrained to remain par-
allel to the c axis at all temperatures below 65 K. At and below
65 K, in the AFM1 phase, 59 variables were included in the refine-
ment (one scale factor, six profile parameters, eight background
coefficients, three cell parameters, two magnetic moments, 11
fractional coordinates, 28 displacement parameters); below the
second AFM transition at 23 K, the number of refined magnetic
moments increases to four. For all data collected with the sample
in the CCR, the instrumental parameters DIFC and DIFA, which
define the primary neutron flight path and the contribution to the
path from wavelength-dependent absorption from the sample,
were fixed at 48216.25 and −0.38, respectively, these being derived
from an instrument calibration carried out using a NIST silicon
standard, SRM640e. Above 65 K we observed no peaks from
the magnetic cell and therefore only the nuclear phase was
refined, including 57 variables. Bragg reflections from the TZM
sample can were present in the data collected with the sample
in the furnace. This TZM alloy has a composition of ∼99.4%

Figure 1. Polyhedral model of the Fe2SiO4 structure, consisting of SiO4 tetrahedra (blue) and Fe1 (= M1, orange) and Fe2 (= M2, green) octahedra, viewed along
[100]. Image produced using VESTA (Momma and Izumi, 2011).
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Mo, alloyed with 0.5% Ti, 0.08% Zr and 0.02% C; it was, therefore,
included in the refinement on the basis that it had the body-
centred cubic structure of Mo, with the intensities calculated via
the Le Bail method as it was highly textured. The lattice para-
meters of Fe2SiO4 and those of the Mo sample can, the fractional
coordinates, atomic displacement parameters, scale factors, phase
fractions, background and profile parameters were refined with
DIFC and DIFA (adjusted to take account of the different sample
geometry), fixed at 48216.25 and −0.52, respectively. Due to a
small offset between the two stages, as well as between the two

sets of high-temperature measurements, all high-temperature cell
parameter values were scaled to match the low-temperature
results. This was done by fitting first-order polynomials to the
data from 300–340 K (CCR) and 297–433 K (furnace) and
960–1000 K (first high-temperature run) and 900–1020 K (second
high-temperature run) and then calculating the scale factors for
the offsets (see Table 2) from the ratios of the values of the poly-
nomials at 300 K and 980 K. Refined fractional coordinates,
anisotropic atomic displacement parameters (and their isotropic
equivalents) and magnetic moments of the ten data sets with

Figure 2. Examples of neutron powder diffraction patterns of Fe2SiO4 col-
lected at different temperatures. Observed data are shown as red crosses,
the calculated diffraction pattern as a green line, and their differences are
given by the lower pink trace. The black tick marks in each of the plots
show the positions of the Bragg reflections from the nuclear Fe2SiO4 crys-
tal structure. For the refinement at 10 K, the red tick marks show the posi-
tions of the Bragg reflections from the Fe2SiO4 magnetic structure; the
contribution from magnetic scattering to the diffraction pattern is judged
negligible below 0.986 Å. For the 1453 K refinement, the red tick marks
show the positions of the Bragg reflections from the TZM sample can.
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Table 1. Fractional coordinates, anisotropic atomic displacements, and magnetic moments at 10 temperature points (numbers in parenthesis are one standard
error of the least significant digits).

Closed-Cycle Refrigerator

Temperature 10 K
Atom x y z 100U11 (Å2) 100U22 (Å2) 100U33 (Å2) 100U12 (Å2) 100U13 (Å2) 100U23 (Å2) Uiso (Å2)*

Fe1 0 0 0 0.29(2) 0.37(2) 0.36(2) 0.02(2) −0.07(2) −0.04(1) 0.0034
Fe2 0.98619(4) 0.28012(4) ¼ 0.30(2) 0.29(2) 0.31(2) 0.01(2) 0 0 0.0030
Si 0.4313(2) 0.0972(1) ¼ 0.36(6) 0.43(5) 0.36(5) 0.08(4) 0 0 0.0038
O1 0.7684(2) 0.0919(1) ¼ 0.44(4) 0.57(4) 0.49(3) 0.01(3) 0 0 0.0046
O2 0.2089(2) 0.4528(1) ¼ 0.30(4) 0.42(4) 0.55(3) −0.09(3) 0 0 0.0042
O3 0.2882(1) 0.1658(1) 0.4643(1) 0.46(3) 0.60(3) 0.46(3) −0.06(2) 0.07(2) −0.06(2) 0.0051

Site Mx (μB) My (μB) Mz (μB) |M| (μB)

M1 2.46(4) 1.37(7) 3.39(3) 4.41(5)
M2 0 0 4.53(3) 4.53(3)
Chi2 2.235
wRp 0.041

Temperature 40 K
Atom x y z 100U11 (Å2) 100U22 (Å2) 100U33 (Å2) 100U12 (Å2) 100U13 (Å2) 100U23 (Å2) Uiso (Å2)*

Fe1 0 0 0 0.22(3) 0.33(4) 0.40(3) 0.08(3) −0.06(3) −0.08(3) 0.0031
Fe2 0.9859(1) 0.2798(1) ¼ 0.25(4) 0.29(4) 0.30(3) 0.04(3) 0.00 0.00 0.0027
Si 0.4307 (3) 0.0972(2) ¼ 0.59(10) 0.30(8) 0.36(7) 0.03(6) 0.00 0.00 0.0041
O1 0.7687(3) 0.0920(1) ¼ 0.18(7) 0.56(6) 0.57(5) 0.01(5) 0.00 0.00 0.0043
O2 0.2088(3) 0.4529(1) ¼ 0.35(6) 0.37(6) 0.44(5) −0.08(5) 0.00 0.00 0.0038
O3 0.2889(2) 0.1658(1) 0.4642(2) 0.43(4) 0.53(4) 0.43(4) −0.02(4) 0.07(3) −0.08(4) 0.0046

Site Mx (μB) My (μB) Mz (μB) |M| (μB)

M1 0 0 2.38(5) 2.38(5)
M2 0 0 4.28(4) 4.28(4)
Chi2 6.015
wRp 0.045

Temperature 100 K
Atom x y z 100U11 (Å2) 100U22 (Å2) 100U33 (Å2) 100U12 (Å2) 100U13 (Å2) 100U23 (Å2) Uiso (Å2)*

Fe1 0 0 0 0.51(2) 0.69(3) 0.63(2) 0.01(3) −0.03(2) −0.11(2) 0.0038
Fe2 0.9861(2) 0.2800(1) ¼ 0.55(3) 0.53(3) 0.56(2) 0.03(2) 0.00 0.00 0.0032
Si 0.4315(2) 0.0971(1) ¼ 0.74(7) 0.60(6) 0.63(6) 0.12(5) 0.00 0.00 0.0042
O1 0.7680(2) 0.0919(1) ¼ 0.52(5) 0.82(4) 0.80(4) −0.07(4) 0.00 0.00 0.0047
O2 0.2089(2) 0.4529(1) ¼ 0.58(5) 0.57(4) 0.82(4) −0.17(4) 0.00 0.00 0.0043
O3 0.2884(1) 0.1657(1) 0.4643(1) 0.72(3) 0.83(3) 0.66(3) −0.06(3) 0.08(3) −0.11(3) 0.0051
Chi2 3.209
wRp 0.033

Temperature 300 K
Atom x y z 100U11 (Å2) 100U22 (Å2) 100U33 (Å2) 100U12 (Å2) 100U13 (Å2) 100U23 (Å2) Uiso (Å2)*

Fe1 0 0 0 0.92(3) 1.33(4) 1.11(3) −0.06(4) −0.16(3) −0.28(3) 0.0112
Fe2 0.9869(2) 0.2798(1) ¼ 1.06(4) 1.03(4) 1.04(3) 0.01(3) 0.00 0.00 0.0104
Si 0.4315(3) 0.0970(2) ¼ 1.52(10) 0.78(8) 1.01(7) 0.18(6) 0.00 0.00 0.0110
O1 0.7675(2) 0.0922(1) ¼ 0.89(7) 1.41(5) 1.25(6) −0.03(5) 0.00 0.00 0.0118
O2 0.2101(3) 0.4533(1) ¼ 1.14(6) 0.88(5) 1.30(5) −0.04(5) 0.00 0.00 0.0110
O3 0.2881(2) 0.1657(1) 0.4644(1) 1.12(4) 1.39(4) 1.28(4) −0.12(4) 0.21(3) −0.11(4) 0.0126
Chi2 4.307
wRp 0.038

TZM Furnace

Temperature 373 K
Atom x y z 100U11 (Å2) 100U22 (Å2) 100U33 (Å2) 100U12 (Å2) 100U13 (Å2) 100U23 (Å2) Uiso (Å2)*

Fe1 0 0 0 0.72(5) 1.06(6) 0.89(5) 0.18(6) −0.07(5) −0.23(4) 0.0089
Fe2 0.9854(3) 0.2808(1) ¼ 0.85(6) 0.70(6) 0.79(5) 0.09(4) 0.00 0.00 0.0078
Si 0.4306(4) 0.0975(2) ¼ 0.83(3) 0.76(2) 0.46(10) 0.11(9) 0.00 0.00 0.0068
O1 0.7694(3) 0.0926(2) ¼ 0.13(9) 1.18(8) 1.07(9) −0.21(8) 0.00 0.00 0.0079
O2 0.2090(4) 0.4531(2) ¼ 0.57(9) 0.80(9) 1.35(9) 0.11(8) 0.00 0.00 0.0090
O3 0.2891(3) 0.1659(1) 0.4644(2) 0.78(6) 1.37(7) 0.88(6) 0.02(5) 0.22(5) −0.52(5) 0.0100
Chi2 2.512
wRp 0.034

(Continued )
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longer collection times, from the CCR and the furnace, are
shown in Table 1. The use of anisotropic displacement
parameters with powder data is sometimes questionable.
However, we believe that they can be justified in this case as we
have neutron data extending to 0.65 Å and because the resulting
equivalent isotropic displacements (Table 1) are such that the
values for the same types of atoms are always very similar. In

the high-temperature data, when the scattering at short d-spacings
is reduced in intensity, the values are probably less reliable, with
one component of the displacement ellipsoid of a few atoms for
some data sets (e.g. U11 for Si and O1 at 1453 K) occasionally tak-
ing values that are too small, without, however, showing a system-
atic trend (Supplementary Fig. 1 shows plots of the displacement
ellipsoids).

Table 1. (Continued.)

TZM Furnace

Temperature 573 K
Atom x y z 100U11 (Å2) 100U22 (Å2) 100U33 (Å2) 100U12 (Å2) 100U13 (Å2) 100U23 (Å2) Uiso (Å2)*

Fe1 0 0 0 0.97(4) 1.62(5) 1.22(5) 0.15(5) −0.12(5) −0.27(4) 0.0105
Fe2 0.9867(3) 0.2804(1) ¼ 1.30(5) 0.93(5) 1.09(5) 0.16(4) 0.00 0.00 0.0092
Si 0.4305(4) 0.0977(2) ¼ 0.51(2) 0.85(10) 0.90(9) 0.05(7) 0.00 0.00 0.0063
O1 0.7679(3) 0.0933(2) ¼ 0.38(9) 1.54(8) 1.40(8) −0.09(7) 0.00 0.00 0.0112
O2 0.2096(3) 0.4534(2) ¼ 0.96(8) 1.08(8) 1.74(8) 0.04(7) 0.00 0.00 0.0110
O3 0.2895(2) 0.1655(1) 0.4630(2) 1.06(5) 1.69(6) 1.30(6) 0.05(5) 0.14(5) −0.59(5) 0.0113
Chi2 3.274
wRp 0.027

Temperature 873 K
Atom x y z 100U11 (Å2) 100U22 (Å2) 100U33 (Å2) 100U12 (Å2) 100U13 (Å2) 100U23 (Å2) Uiso (Å2)*

Fe1 0 0 0 1.57(5) 2.64(7) 1.75(5) −0.01(6) −0.24(6) −0.55(5) 0.0200
Fe2 0.9870(3) 0.2814(1) ¼ 1.88(6) 1.59(6) 1.85(5) 0.04(5) 0.00 0.00 0.0174
Si 0.4299(4) 0.0975(2) ¼ 0.90(3) 1.36(3) 1.48(10) 0.27(9) 0.00 0.00 0.0115
O1 0.7666(3) 0.0936(2) ¼ 0.59(10) 2.33(10) 2.33(9) −0.28(8) 0.00 0.00 0.0165
O2 0.2096(4) 0.4542(2) ¼ 1.28(9) 1.31(9) 2.71(10) 0.12(8) 0.00 0.00 0.0170
O3 0.2903(3) 0.1651(1) 0.4629(2) 1.49(6) 2.82(8) 1.84(7) 0.08(6) 0.11(6) −0.76(6) 0.0201
Chi2 3.264
wRp 0.027

Temperature 1173 K
Atom x y z 100U11 (Å2) 100U22 (Å2) 100U33 (Å2) 100U12 (Å2) 100U13 (Å2) 100U23 (Å2) Uiso (Å2)*

Fe1 0 0 0 2.08(6) 3.94(9) 2.61(7) −0.02(8) −0.34(7) −0.96(6) 0.0287
Fe2 0.9877(4) 0.2817(1) ¼ 2.89(7) 2.07(7) 2.45(7) 0.01(6) 0.00 0.00 0.0247
Si 0.4307(5) 0.0977(2) ¼ 1.44(6) 1.60(5) 1.79(3) 0.10(1) 0.00 0.00 0.0160
O1 0.7650(4) 0.0944(2) ¼ 1.01(2) 3.30(2) 2.86(2) −0.10(10) 0.00 0.00 0.0238
O2 0.2108(4) 0.4546(2) ¼ 2.00(2) 1.84(2) 3.47(2) 0.23(9) 0.00 0.00 0.0243
O3 0.2916(3) 0.1652(2) 0.4609(2) 2.17(8) 3.78(10) 2.52(9) −0.02(7) 0.16(7) −1.10(7) 0.0282
Chi2 1.145
wRp 0.043

Temperature 1353 K
Atom x y z 100U11 (Å2) 100U22 (Å2) 100U33 (Å2) 100U12 (Å2) 100U13 (Å2) 100U23 (Å2) Uiso (Å2)*

Fe1 0 0 0 2.29(1) 4.49(6) 2.67(2) −0.14(4) −0.78(9) −1.04(10) 0.0323
Fe2 0.9874(6) 0.2826(2) ¼ 2.77(2) 2.19(2) 2.72(2) 0.16(10) 0.00 0.00 0.0265
Si 0.4318(8) 0.0978(4) ¼ 1.14(7) 2.12(6) 1.84(2) –0.33(8) 0.00 0.00 0.0161
O1 0.7633(6) 0.0938(3) ¼ 1.00(1) 3.36(8) 0.21(10) 2.98(7) 0.21(8) −0.15(7) 0.0256
O2 0.2103(7) 0.4553(3) ¼ 1.42(7) 1.82(20) 3.81(?) 0.21(?) 0.37(5) 0.00 0.0261
O3 0.2924(6) 0.1649(3) 0.4607(4) 2.63(2) 3.97(8) 2.50(5) 0.47(3) 0.11(1) −1.24(2) 0.0305
Chi2 1.152
wRp 0.043

Temperature 1453 K
Atom x y z 100U11 (Å2) 100U22 (Å2) 100U33 (Å2) 100U12 (Å2) 100U13 (Å2) 100U23 (Å2) Uiso (Å2)*

Fe1 0 0 0 2.53(6) 4.31(10) 2.34(5) 0.07(9) −0.62(7) −1.13(6) 0.0305
Fe2 0.9876(4) 0.2828(1) ¼ 3.28(8) 2.30(8) 3.48(6) 0.07(7) 0.00 0.00 0.0301
Si 0.4321(4) 0.0976(3) ¼ 0.09(5) 2.13(6) 3.08(5) −0.08(1) 0.00 0.00 0.0176
O1 0.7654(4) 0.0945(2) ¼ 0.56(2) 3.53(3) 3.44(3) −0.38(10) 0.00 0.00 0.0250
O2 0.2107(4) 0.4562(2) ¼ 2.16(3) 1.56(2) 4.31(4) −0.06(10) 0.00 0.00 0.0267
O3 0.2955(3) 0.1654(2) 0.4578(3) 2.47(7) 4.54(2) 2.61(9) 0.72(8) −0.10(7) −0.95(6) 0.0320
Chi2 5.629
wRp 0.023

* Equivalent isotropic displacement parameters calculated from the anisotropic values.
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The crystallographic information files have been deposited
with the Principal Editor ofMineralogical Magazine and are avail-
able as Supplementary material (see below).

Results and Discussion

Antiferromagnetic Transition Temperatures

Although the space group of the paramagnetic, canted, and collin-
ear AFM phases of Fe2SiO4 remains Pbnm, some reflections that

are systematically absent when only the nuclear scattering is con-
sidered become visible in the collinear AFM and canted AFM
phases. To determine the temperature of the transition between
the paramagnetic and AFM1 phases, we considered the behaviour
of the 052 reflection, as this peak, with intensity coming solely
from the magnetic scattering, occurs at a d-spacing (∼1.72 Å)
where it is well separated from other peaks in the diffraction pat-
tern (Fig. 3). The values of |Fobs|

2 for 052, obtained from the GSAS
refinements, are shown as a function of temperature in Fig. 3, with
those for T≥ 50 K fitted by non-linear least squares to the

Table 2. Lattice parameters and unit-cell volumes* measured in this study. The listed values are unscaled and the numbers in parenthesis are one standard error of
the least significant digit.

Closed-Cycle Refrigerator TZM furnace

T (K) a (Å) b (Å) c (Å) V (Å3) T (K) a (Å) b (Å) c (Å) V (Å3)

10 4.81638(1) 10.44704(1) 6.08316(1) 306.086(1) 453 4.82534(2) 10.49135(5) 6.09972(3) 308.794(2)
15 4.81638(2) 10.44709(4) 6.08318(2) 306.088(1) 473 4.82614(2) 10.49337(5) 6.10130(3) 308.985(2)
20 4.81640(2) 10.44725(4) 6.08316(2) 306.093(1) 493 4.82702(2) 10.49530(5) 6.10293(3) 309.181(2)
25 4.81644(2) 10.44743(4) 6.08300(2) 306.095(1) 513 4.82775(2) 10.49697(5) 6.10444(3) 309.353(2)
30 4.81648(2) 10.44784(4) 6.08287(2) 306.101(2) 533 4.82859(2) 10.49879(5) 6.10584(3) 309.532(2)
35 4.81649(2) 10.44827(4) 6.08276(2) 306.109(2) 553 4.82971(2) 10.50112(5) 6.10777(3) 309.770(2)
40 4.81654(2) 10.44887(2) 6.08256(1) 306.120(1) 573 4.83058(1) 10.50321(3) 6.10951(2) 309.976(1)
45 4.81655(2) 10.44923(4) 6.08247(2) 306.126(2) 593 4.83151(2) 10.50515(4) 6.11112(3) 310.174(2)
50 4.81659(2) 10.45006(4) 6.08230(2) 306.145(2) 613 4.83250(2) 10.50721(4) 6.11284(3) 310.386(2)
55 4.81660(2) 10.45094(4) 6.08220(2) 306.166(2) 633 4.83347(2) 10.50914(4) 6.11459(3) 310.594(2)
60 4.81663(2) 10.45208(4) 6.08205(2) 306.194(2) 653 4.83450(2) 10.51124(4) 6.11629(3) 310.809(2)
65 4.81666(2) 10.45370(4) 6.08191(3) 306.236(2) 673 4.83547(2) 10.51301(4) 6.11797(3) 311.009(2)
70 4.81670(2) 10.45518(4) 6.08170(2) 306.274(2) 693 4.83651(2) 10.51515(4) 6.11978(3) 311.231(2)
75 4.81673(2) 10.45603(4) 6.08181(2) 306.303(2) 713 4.83755(2) 10.51739(4) 6.12147(3) 311.451(2)
80 4.81676(2) 10.45649(4) 6.08190(2) 306.324(2) 733 4.83864(2) 10.51937(4) 6.12322(3) 311.669(2)
85 4.81675(2) 10.45709(4) 6.08191(2) 306.341(2) 753 4.83970(2) 10.52159(4) 6.12528(3) 311.899(2)
90 4.81680(2) 10.45748(4) 6.08192(3) 306.356(2) 773 4.84070(2) 10.52340(4) 6.12664(3) 312.095(2)
95 4.81685(2) 10.45791(4) 6.08202(3) 306.379(2) 793 4.84170(2) 10.52557(5) 6.12834(3) 312.313(2)
100 4.81686(1) 10.45838(2) 6.08214(1) 306.397(1) 813 4.84206(2) 10.52776(5) 6.13010(3) 312.536(2)
110 4.81702(2) 10.45930(4) 6.08231(3) 306.443(2) 833 4.84389(2) 10.53000(5) 6.13191(3) 312.765(2)
120 4.81708(2) 10.46027(4) 6.08255(3) 306.487(2) 853 4.84495(2) 10.53224(6) 6.13354(4) 312.983(2)
130 4.81720(2) 10.46125(4) 6.08284(2) 306.538(2) 873 4.84600(1) 10.53433(3) 6.13530(2) 313.211(1)
140 4.81736(2) 10.46217(4) 6.08315(2) 306.591(2) 893 4.84710(2) 10.53654(5) 6.13704(3) 313.432(2)
150 4.81747(2) 10.46313(4) 6.08346(3) 306.642(2) 913 4.84820(2) 10.53888(4) 6.13884(3) 313.663(2)
160 4.81770(2) 10.46415(4) 6.08378(3) 306.702(2) 933 4.84934(2) 10.54111(4) 6.14054(3) 313.889(2)
170 4.81791(2) 10.46512(4) 6.08417(3) 306.763(2) 953 4.85044(2) 10.54355(5) 6.14231(3) 314.123(2)
180 4.81804(2) 10.46618(4) 6.08456(3) 306.823(2) 973 4.85156(2) 10.54594(5) 6.14407(3) 314.357(2)
190 4.81830(2) 10.46728(4) 6.08493(3) 306.890(2) 993 4.85272(2) 10.54851(5) 6.14579(3) 314.597(2)
200 4.81851(2) 10.46824(4) 6.08540(3) 306.955(2) 1013 4.85382(2) 10.55107(5) 6.14765(3) 314.840(2)
210 4.81876(2) 10.46938(4) 6.08590(3) 307.030(2) 1033 4.85490(2) 10.55355(5) 6.14945(3) 315.079(2)
220 4.81896(2) 10.47044(4) 6.08637(3) 307.098(2) 1053 4.85608(2) 10.55598(5) 6.15124(3) 315.317(2)
230 4.81916(2) 10.47145(4) 6.08691(3) 307.168(2) 1073 4.85723(2) 10.55847(5) 6.15300(3) 315.556(2)
240 4.81946(2) 10.47250(4) 6.08746(3) 307.245(2) 1093 4.85833(2) 10.56107(5) 6.15470(3) 315.793(2)
250 4.81969(2) 10.47360(4) 6.08791(3) 307.315(2) 1113 4.85944(2) 10.56359(5) 6.15649(3) 316.032(2)
260 4.81996(2) 10.47469(4) 6.08856(3) 307.397(2) 1133 4.86056(2) 10.56612(5) 6.15830(3) 316.273(2)
270 4.82028(2) 10.47566(4) 6.08910(3) 307.473(2) 1153 4.86174(2) 10.56885(5) 6.16009(3) 316.524(2)
280 4.82056(2) 10.47683(4) 6.08967(3) 307.554(2) 1173 4.86288(2) 10.57153(3) 6.16194(2) 316.773(1)
290 4.82087(2) 10.47776(4) 6.09036(3) 307.636(2) 1193 4.86401(2) 10.57424(5) 6.16372(3) 317.020(2)
300 4.82113(1) 10.47890(2) 6.09092(1) 307.714(1) 1233 4.86635(2) 10.57985(5) 6.16750(3) 317.535(2)
310 4.82144(2) 10.47997(4) 6.09154(3) 307.796(2) 1253 4.86761(2) 10.58297(5) 6.16946(3) 317.812(2)
320 4.82175(2) 10.48097(4) 6.09213(3) 307.875(2) 1273 4.86910(2) 10.47885(5) 6.17170(3) 318.131(2)
330 4.82206(2) 10.48199(4) 6.09283(3) 307.961(2) 1293 4.87082(2) 10.48498(5) 6.09264(2) 318.500(2)
340 4.82240(4) 10.48305(9) 6.09356(6) 308.051(4) 1353 4.87444(1) 10.58785(2) 6.16350(1) 319.296(1)
297 4.82023(2) 10.47688(4) 6.08971(3) 307.536(2) 1373 4.87569(2) 10.59065(5) 6.17250(2) 319.569(2)
373 4.82260(2) 10.48435(3) 6.09448(2) 308.148(1) 1393 4.87691(2) 10.59377(5) 6.17425(2) 319.847(2)
393 4.82326(3) 10.48609(5) 6.09572(3) 308.304(2) 1413 4.87810(2) 10.59651(5) 6.17618(2) 320.125(2)
413 4.82397(3) 10.48792(5) 6.09713(3) 308.474(2) 1433 4.87940(2) 10.59957(5) 6.17798(2) 320.401(2)
433 4.82462(2) 10.48967(5) 6.09845(3) 308.635(2) 1453 4.88080(1) 10.60266(3) 6.17988(1) 320.708(1)

*Notes: The values listed in the Table are taken directly from the Rietveld refinements. In subsequent analyses of the cell parameters, the CCR data used were those shown above, with the
following multiplicative scale factors then applied to correct for the small offsets between the different sample environments: (1) between the CCR and the high-temperature furnace for a, b,
c axes and unit-cell volume, respectively: 1.000199, 1.000139, 1.000198 and 1.000536; (2) between the two high-temperature measurements for a, b, c axes and unit-cell volume, respectively:
0.99984, 0.999856, 0.99982 and 0.999526.
The cell parameters of the ‘recovered’ sample (i.e. after it had been heated to 1453 K) at 573 K were found to be a = 4.83072(2) Å, b = 10.50281(4) Å, c = 6.11305(2) Å and V = 310.152(1) Å3; the
small differences between these values and those shown at 573 K in the Table are readily attributable to the change in sample environment.
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expression:

|Fobs|2 = A
T − TN

TN

( )b

(1)

where A is a scale factor, TN is the transition temperature and β is
a critical exponent. Although our data are rather sparse, it can be
seen that an excellent fit is obtained, with TN = 65.4(1) K and β =
0.31(3). Our calculated TN is in good agreement with previous
measurements, which lie in the range 64.9–65.3 K (e.g.
Lottermoser et al., 1986; Müller et al., 1982; Suzuki et al., 1981;
Santoro et al., 1966; Aronson et al., 2007). Determination of the
transition temperature between the AFM1 and AFM2 anti-
ferromagnetic phases from our diffraction patterns is more prob-
lematic as no additional, non-overlapped, reflections appear in
the AFM2 phase. Thus, although this transition is visible in the
behaviour of the a and c axes, and in the refined values of the
magnetic moments on the Fe atoms (see below), we do not con-
sider that we can reliably fix the transition temperature beyond
saying that it occurs at 20≤ T≤ 25 K; in our analysis of the lattice
parameters we have, therefore, adopted the value of 23 K quoted
by previous authors (e.g. Müller et al., 1982).

Lattice parameters and thermal expansion

The evolution of the unit-cell volume of Fe2SiO4 over the full tem-
perature range is plotted in Fig. 4 and listed in Table 2. Our results
are in good agreement with those of earlier high-temperature
X-ray diffraction and dilatometry studies (Suzuki et al., 1981;
Kroll et al., 2012; Hazen, 1977). The detailed low-temperature
behaviour of the unit-cell lattice parameters and volume have
not, until now, been reported.

To describe thermal expansion at high temperatures an equa-
tion of the form suggested by Fei (1995) is commonly used. In
this formulation, the unit-cell volume is given by:

V(T) = VTRexp
∫T
TR

aV (T)dT

⎡
⎣

⎤
⎦ (2)

where VTR is the volume at a reference temperature (in this case
TR = 297 K) and aV(T ) is the volumetric thermal expansion coef-
ficient given by a polynomial expression of the form

aV (T) = a0 + a1T + a2T
−2 (3)

The resulting values for all data between 297 K and 1453 K,
fitted in EoSFit7c (Angel et al., 2014), are VTR

= 307.73(1) Å3,
a0 = 3.02(6)×10−5 K−1, a1 = 0.86(5)×10−8 K−2, and a2 =−0.97(8) K.

A more physically meaningful interpretation of the tempera-
ture dependence of the unit-cell volume, encompassing its full
temperature range, can be obtained by using Grüneisen approxi-
mations to the zero-pressure equation of state (Wallace, 1998).
This approach, in which the effects of the thermal expansion
are considered to be equivalent to the elastic strain induced by
the thermal pressure, also allows estimates of the Debye tempera-
ture and Grüneisen parameters. Specifically, the second-order
approximation, is more appropriate for covering a wide tempera-
ture range (e.g. Voc̆adlo et al., 2002; Wood et al., 2002;
Lindsay-Scott et al., 2007; Hunt et al., 2017) and takes the form:

V(T) = V0U
Q− bU

+ V0 (4)

where: Q = V0K0
g and b = (K

′
0−1)
2 , V0 is the unit-cell volume at

T = 0 K, γ is a Grüneisen parameter which is assumed to be
constant and K0 and K

′
0 are the bulk modulus and its first

derivative with respect to pressure (P) at T = 0 K and P = 0 GPa.
The internal energy, U(T ), can be calculated using the Debye
approximation to describe the energy of thermal vibrations (e.g.
Cochran, 1973).

U(T) = 9NkBT
T
uD

( )3 ∫uD/T

0

x3

exp (x)− 1
dx (5)

Where N is the number of atoms in the unit-cell (in this case
N = 28); θD is the Debye temperature, and kB is Boltzmann’s
constant.

However, in the case of Fe2SiO4, the behaviour of the unit-cell
volume and lattice parameters is more complex than that which is

Figure 3. (a) Stacked diffraction patterns from 10 K (bottom-most) to 70 K (top-most) showing the magnetic reflection at 1.72 Å (hkl = 052) and (b) |Fobs|
2 for the 052

reflection as a function of temperature fitted to equation 1 (solid black line) giving a transition temperature TN = 65.4(1) K.
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describable by equation 4 because of the magnetostriction result-
ing from the two magnetic transitions. In previous work on ferro-
magnetic Fe3C (Wood et al., 2004) we have accurately modelled
V(T ) over the full temperature range by assuming that the struc-
tural, VG(T ), and magnetic, VM(T ), contributions to the thermal
expansion may be separated, i.e., that

V(T) = VG(T)+ VM(T) (6)

where VG(T ) was described in a similar way to equation 4. The
magnetic contribution, VM(T ) = 0 above the temperature at
which magnetic ordering occurs; at temperatures below the ferro-
magnetic phase transition, a mean-field model was used to
describe the spontaneous magnetisation, MS, which was then
assumed to induce a change in volume that was proportional to
MS

2. For ferromagnetic systems, such as Fe3C, symmetry dictates
that there can be no coupling between the unit-cell dimensions
and any odd power of the spontaneous magnetisation, as other-
wise reversal of the magnetisation would reverse the sign of the
change in the lattice parameters; thus, the lowest-order coupling
is to MS

2. In a simple antiferromagnet, however, this restriction
does not apply as the crystal contains equal numbers of atoms
with magnetic moments of opposite sign and thus linear coupling
between the cell parameters and the spontaneous magnetisation is
allowed, assuming that MS is here taken to be the moment of one
of the sets of oppositely-magnetised atoms.

Fe2SiO4 is, though, a more complex material than either Fe3C
or a simple antiferromagnet, in that there are two magnetic tran-
sitions with each of the antiferromagnetic phases having two
independent sets of magnetic moments. In addition, there is evi-
dence, from e.g. the intensity of the 052 reflection, that the behav-
iour close to TN for the paramagnetic to collinear AFM transition
is not mean-field like. Nonetheless, we have found that a model
based on a modified mean-field magnetisation curve is adequate

to allow us to describe the behaviour of the unit-cell volume of
Fe2SiO4 at low temperature with sufficient accuracy and thereby
separate the effects of thermal vibration and of magnetic ordering
on the unit-cell volume. We assume that the magnetostrictive
contribution to V(T ) results from an effective spontaneous mag-
netisation,MS, which may be described by the following equation:

VM(T) = A65[MS65 (TN65 )]
2b + A23[MS23 (TN23 )]

2b (7)

where A65 and A23 are constants of proportionality, TN65 and TN23

the transition temperatures and β is an exponent (assumed to be
the same for both phase transitions, with the factor of 2 intro-
duced so as to ensure that a value of β =½ would correspond
to mean-field behaviour). To obtain MS(T ) in a mean-field
approximation (e.g. Blundell, 2001) it is necessary to solve the fol-
lowing equation:

m = B1
2

m
t

( )
= tanh

m
t

( )
where m is the reduced spontaneous magnetisation (i.e. MS(T )/
MS(0 K)) and t = T/TN. The right side of this equation is the
Brillouin function BJ( y) calculated here for J =½, as this is
known to provide a good fit to the magnetisation curves of mate-
rials containing Fe and other ferromagnetic transition elements
(e.g. Dekker, 1964). The theoretical justification for this approach
to quantifying the spontaneous magnetostriction is, perhaps,
somewhat scant, but equation 7 does result in a curve with the
correct asymptotic behaviour as T approaches 0 K and which is
also capable of describing the behaviour at temperatures close
to TN. The black solid line in Fig. 4 shows the result obtained
from fitting the data to equation 6 by a weighted non-linear
least-squares algorithm. The resulting values of the six fitted
parameters were: V0 = 306.280(9) Å3, θD = 498(9) K, Q = 4.0(1)
× 10−17 J, b = 5.90(1), A65 = −0.183(1) Å3, A23 =−0.009(3) Å3

Figure 4. Measured unit-cell volumes of Fe2SiO4 against temperature.
Experimental data are shown as open circles and the model of equation
6 as a solid black line. Unit-cell volume error bars are omitted because
they are smaller than the symbols; the smaller inner panel shows the fit
of equation 6 below 90 K in more detail. The lower panel shows the differ-
ences between measured and calculated unit-cell volumes as a function of
temperature when employing the model of equation 6.
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and β = 0.315(3). It can be seen that the model of equation 6 pro-
vides a good description of the behaviour of the unit-cell volume
over the full temperature range of the experiment and that the
effect of the 23 K transition on the unit-cell volume is very
small. The quality of the fit is also reflected in the volumetric ther-
mal expansion curve, Fig. 5, calculated from

aV (T) = 1
V(T)

∂V
∂T

( )
P

(8)

The full line in Fig. 5 is obtained by differentiation of equation
6 whereas the points show the results from simple numerical dif-
ferentiation by differences, point by point, of the V(T ) data. Once
again, the agreement between model and data is good, despite the
deficiencies of the theory. In particular, the neglect of anharmon-
icity can lead to an underestimate of the thermal expansion coef-
ficient at high temperatures (e.g. Wood et al., 2002), but there is
little indication of this in the present case.

For T > θD, our volume thermal expansion has slightly higher
values compared to those in the literature, with the value of αV(T)
of Suzuki et al. (1981) at 1000 K being 9.3% smaller than ours,
while those of Kroll et al. (2012), when calculated on a
point-by-point basis, are scattered. Kroll et al. (2012) measured
the thermal expansion by single-crystal X-ray diffraction and
Suzuki et al. (1981) used dilatometry. We consider our data to
be more accurate than those of Kroll et al. (2012) as we have
the advantages of neutron diffraction data collected at a very
high Bragg angle on a time-of-flight diffractometer with an
extremely long flight path. The time-of-flight method gives us a
resolution in d-spacing which is effectively constant across the
whole of the diffraction pattern, unlike the angle-dispersive
X-ray diffraction method used by Kroll et al. (2012), in which

measurements at very high Bragg angles would be required to
obtain comparable resolution. The differences between our
results and those of Suzuki et al. (1981) may be due to differences
in the stoichiometry of the samples, although it should be remem-
bered that dilatometry and diffraction sample fundamentally dif-
ferent properties of the material (see e.g. Simmons and Balluffi,
1962).

The Debye temperature of Fe2SiO4 obtained from the fit to
equation 6, 498(9) K, is in very good agreement with that reported
by Anderson and Suzuki (1983), 510 K, or Anderson and Isaak
(1995), 511 K, but somewhat lower than that of Suzuki et al.
(1981), 565 K. The value of V0, 306.280(9) Å3, corresponds to
the volume that the unit-cell of a paramagnetic phase of
Fe2SiO4, with disordered local magnetic moments, would occupy
if such a phase persisted to limiting low temperature. An estimate
of the incompressibility, K0, can be obtained directly from the
coefficient Q, provided that the Grüneisen parameter is known.
Suzuki et al. (1981) found γ equal to 1.097(5). If we apply this
value of γ we obtain K0 = 143(4) GPa which is a little larger
than published values for K0, obtained directly from high-pressure
studies, which lie between 128 and 136 GPa (e.g. Graham et al.,
1988; Béjina et al., 2019, 2021; Speziale et al., 2004; Zhang,
1998; Zhang et al., 2017). The first derivative of the incompress-
ibility with respect to pressure can also be estimated from the
coefficient b. The resulting value, K ′

0= 12.8(2), is, however, higher
than those published from high-pressure studies, which range
between 4.1 and 5.3 (e.g. Graham et al., 1988; Béjina et al.,
2019, 2021; Speziale et al., 2004; Zhang, 1998). This is an
indication of the limitations of the model of equation 6 that are
reflected in the fitted parameters. In the VG(T ) term of equation
6 the coefficients Q and b are assumed to be temperature inde-
pendent, whereas, in reality, the Grüneisen parameter, the

Figure 5. Volumetric thermal expansion coefficient of Fe2SiO4 as a func-
tion of temperature. Open circles were obtained by point-by-point numer-
ical differentiation of the experimental unit-cell volume data reported in
Table 2 and Fig. 3. The solid black line represents the fitted model as cal-
culated by differentiation of equation 6. Grey and black symbols refer to
experimental data from previous studies (grey, Kroll et al., 2012; black,
Suzuki et al., 1981).
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incompressibility and its first derivative with respect to pressure
all have some temperature dependence (e.g. Voc̆adlo et al., 2002).

A modification of equation 6 can be used to model the aniso-
tropic axial expansivities in Fe2SiO4.

X(T) = XG(T)+ XM(T) (9)
For the structural term, XG(T ), a modification of the Grüneisen

approximation, was used (see Lindsay-Scott et al., 2007).

XG(T) = X0U
QX − bXU

+ X0 (10)

Where QX = KX0V0/g, with the subscript X indicating that we
are considering axial rather than volumetric expansion. For an

orthorhombic crystal, the expression for the parameter bX becomes
more complex than is for the case of volumetric expansion. Taking
as an exemplar the a axis of Fe2SiO4 we have Qa = Ka0V0/g and
ba = [K ′

a0 – 2(Ka0/Kbo ) − 2(Ka0/Kco ) − 1]/2. The axial incom-
pressibilities are related to the elastic compliances, sij, such that
for example, Ka0 = 1/(s11 + s12 + s13). Similar equations can be
derived for the b and c axes. The magnetic, XM(T ), term of equa-
tion 9 takes the same form as was used in equation 6. Therefore
equation 9 can be used to fit the data for a(T ), b(T ) and c(T ).
The results are plotted in Fig. 6 and Table 3 lists the values of all
fitted parameters.

For an orthorhombic crystal, the bulk incompressibility,
K0, and the axial incompressibilities are related by
K0 = 1/(1/Ka0 + 1/Kb0 + 1/Kc0 ). Assuming that a value of

Figure 6. (Left column) Lattice parameters of Fe2SiO4 as a function of temperature. Symbols denote the experimental data, as obtained from the Rietveld refine-
ment, and the solid black lines show the fit of the model of equation 9 to the data. Error bars are smaller than the symbols. (Right column) Axial expansivities as a
function of temperature (circles), compared to those of Suzuki et al. (1981; red crosses). The solid black line represents the fitted model as calculated by differ-
entiation of equation 9; the points were obtained by point-by-point numerical differentiation of the experimental data. The lower panels show the differences
between the observed and calculated values.
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γ = 1.097 (Suzuki et al., 1981) applies in all cases, we obtain axial
incompressibilities of 408(17), 519(18) and 293(7) GPa for the
a, b, and c axes, respectively. By combining the axial incom-
pressibilities we obtain a value of 128(12) GPa for K0, which is
in excellent agreement with values reported in the literature
(128–136 GPa – see above), but 6.3% smaller than that obtained
by fitting the V(T ) data.

Inspection of Fig. 6 reveals that although equation 9 adequately
represents the behaviour of the a and c axes, the same is not true
for the b axis. The misfits between the model and the observed
data for b(T ) are much greater than for either a(T ) or c(T ) and
some of the fitted parameters for b(T ) are not physically sensible;
in particular, the value of the Debye temperature, 14(1) K, is
extremely low, reflecting the fact that equation 9 is not able to
account satisfactorily for the observed trend. This failure is, per-
haps, more clearly seen by examination of the thermal expansion
coefficient for the b axis, which does not show the expected fall-
off below room temperature, instead remaining almost constant
until the transition to the AFM1 phase is reached (Fig. 6). The
expansion coefficient for the b axis that we report here corre-
sponds very closely to that observed above room temperature by
Suzuki et al. (1981) using single-crystal dilatometry, however
our new data reveal that its unusual behaviour continues to
much lower temperatures.

A further deficiency of the model defined by equation 9, as
applied to the individual cell parameters of fayalite, is revealed by
comparison of our derived axial incompressibilities with those
measured directly, at room temperature and high pressure, by
X-ray diffraction by Zhang (1998) and Zhang et al. (2017).
Zhang (1998) reported axial incompressibilities of 741, 304 and
568 GPa for the a, b and c axes respectively; Zhang et al. (2017)
adopted a value of 135 GPa for the volumetric incompressibility
and obtained axial values of 682(67), 281(24) and 479(24) GPa.
Although our values for the volumetric incompressibility
(143(4) K from the fit to V(T ) and 128(12) GPa from fitting the
axes) agree well with those listed in table 2 of Zhang et al.
(2017), the agreement for the individual axes is not good, even
to the extent of being unable to determine correctly the relative
order of incompressibility. Both Zhang (1998) and Zhang et al.
(2017) have Ka0 > Kc0 > Kb0 , whereas from equation 9 we obtain
Kb0 > Ka0 > Kc0 . Bearing in mind the unusual form of the
thermal expansion of the b axis, this result is, perhaps, not
surprising. As we intend to discuss in a future accompanying
paper, in this respect fayalite behaves very differently from forster-
ite, in which the three crystallographic axes all show the expected
reciprocal relationship between thermal expansion coefficient and
incompressibility.

Magnetic structures and spontaneous magnetostriction

Our neutron data are consistent with previous results for fayalite
(e.g. Santoro et al., 1966; Müller et al., 1982; Lottermoser et al.,

1986) showing that below the antiferromagnetic phase transitions
at 65.4 K (to the AFM1 structure) and ∼23 K (to AFM2) the mag-
netic cell remains equal to the crystallographic (chemical) cell and
the space group remains Pbnm. The magnetic moments of the Fe2
ions are antiferromagnetically coupled and constrained by sym-
metry (as the Fe2 sites are on mirror planes) to lie parallel/anti-
parallel to the c axis in both the AFM1 and AFM2 structures
(Fig. 7). For the Fe1 sites, which lie on centres of symmetry,
there is no symmetry constraint on the spin orientation, however
the four Fe1 sites in the unit cell are related by symmetry such that
there is no net magnetic moment. Previous neutron diffraction
studies on powder samples (Santoro et al., 1966) and with single
crystals (Müller et al., 1982; Lottermoser et al., 1986) have shown
that in the AFM1 phase the moments of the Fe1 and Fe2 sites are
collinear, but in the AFM2 phase the moments on the Fe1 sites
are canted. Santoro et al. (1966; see also Lottermoser et al.,
1986) described two possible models for the spin canting on
the Fe1 site, only one of which (that originally proposed by Cox
et al., 1965) would seem to be consistent with space group
Pbnm. Given that the symmetry is unchanged on passing
from the AFM1 to the AFM2 phase, there has been some
discussion, on the basis of results from single-crystal neutron
diffraction (Lottermoser et al., 1986; Fuess et al., 1988), as to
whether there was a distinct transition between the two phases
or whether there was, instead, just a gradual change of the
canting angle accompanied by a decrease of the magnetic
moments. However, an analysis of Fe2SiO4 magnetisation and
its anisotropy by Ehrenberg and Fuess (1993), indicated a change
in spin canting direction on the Fe1 sites below ∼20 K which
is consistent with Mössbauer experiments on temperature-
dependent hyperfine fields (e.g. Hafner et al., 1990; Lottermoser
et al., 1995, 1996).

Our refinements of the AFM2 magnetic structure were based
on the model proposed by Cox et al. (1965), and later confirmed
by Müller et al. (1982) and Lottermoser et al. (1986); in our
refinements of the AFM1 structure, the moments of the Fe1
ions were constrained to lie along the c axis. As discussed by
Cococcioni et al. (2003 – see their figure 2), there are, however,
two possible configurations for the relative orientation of the
moments on the Fe1 and Fe2 sites. We found that the arrange-
ment shown in Fig. 7 gave the best fit to our data; this arrange-
ment also corresponds to the ground state of the system, as
determined by quantum-mechanical modelling (Cococcioni
et al., 2003), with the magnetisation of the Fe2 ion being in the
same direction to that of its closest Fe1 ion, an arrangement sug-
gesting antiferromagnetic ordering that occurs between corner-
sharing octahedra.

Our refined values for the total moments on the Fe1 and Fe2
ions and for their direction cosines are listed in Table 4. At 10 K,
our total moments on the Fe1 and Fe2 ions (4.16(4) and 4.20(3)
μB, respectively) and for the direction cosines of the Fe1 moment
with respect to the a, b and c axes (0.56(4), 0.31(7), 0.76(3)) are in

Table 3. Fe2SiO4 fitted parameters of equation 6 and equation 9 to unit-cell axes and volume data (numbers in parenthesis are one standard error of the least
significant digits).

Axis X0 (Å) θD (K) Q (J) B A65 (Å) A23 (Å) β

a 4.817(4) 952(3) 1.14(5)×10−16 12.26(6) −0.000501(3) −0.000102(2) 0.271(6)
b 10.451(5) 14(1) 1.45(3)×10−16 22.28(1) −0.0058(60) 0.00080(2) 0.251(3)
c 6.082(5) 791(2) 8.19(12)×10−17 3.52(1) 0.001112(5) 0.00013(8) 2.606(1)
V 306.280(9) 498(9) 4.0(1)×10−17 5.90(1) −0.183(1) −0.009(3) 0.315(3)
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very good agreement with the single-crystal results of Lottermoser
et al. (1986), who found values of 4.41(5) and 4.4(1) μB, 0.57(2),
0.31(2) and 0.77(1). With increasing temperature, we find a
gradual decline, more pronounced in the AFM2 phase, in the
Fe1 magnetic moments, which are considerably reduced as
compared both to the spin only value of μ = 4 μB and to those
of the Fe2 site (Fig. 8). The behaviour of the moment on the
Fe2 site is different, remaining fairly constant until ∼50 K and
then falling steeply. Once again, our results are in agreement
with the trends observed by Müller et al. (1982) and Lottermoser
et al. (1986).

Our results suggest that the Fe1 and Fe2 sites make separable
and complementary contributions to the evolution of the lattice
parameters of the AFM1 and AFM2 phases with temperature.
The transition at 65.4 K from the paramagnetic state affects all
axes, producing a decrease in a and b, but an increase in c; the

Table 4. Fe2SiO4 Magnetic moments and direction cosines (numbers in
parenthesis are one standard error of the least significant digits).

T (Κ) Fe1 (μB) cosα cosβ cosγ Fe2 (μB) cosγ

10 4.16(4) 0.56(4) 0.31(7) 0.76(3) 4.20(3) 1
15 3.94(9) 0.55(9) 0.29(4) 0.78(7) 4.16(7) 1
20 3.49(9) 0.52(10) 0.19(6) 0.83(7) 4.10(6) 1
25 2.93(6) 0 0 1 4.54(6) 1
30 2.69(7) 0 0 1 4.43(6) 1
35 2.43(7) 0 0 1 4.45(6) 1
40 2.37(5) 0 0 1 4.27(5) 1
45 2.25(8) 0 0 1 4.24(8) 1
50 2.15(9) 0 0 1 3.98(9) 1
55 1.87(10) 0 0 1 3.76(9) 1
60 1.56(13) 0 0 1 3.25(12) 1
65 0.90(20) 0 0 1 2.28(18) 1

Figure 8. (a) Magnetic and (b) squared magnetic moments for the Fe1 (M1) and Fe2 (M2) sites as a function of temperature. Moments on the Fe1 site are con-
siderably reduced as compared with Fe2 and the spin-only value of 4 μB (see Supplementary Table 1).

Figure. 7. Model of the spin configuration at: (a) 10 K in the canted and (b) at 40 K in the collinear antiferromagnetic regions. Fe1 ions (M1 sites) are shown in gold;
Fe2 (M2) ions are shown in green.
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effect of the transition at 23 K is much less pronounced, but is
clearly visible in the c axis (Fig. 9). Changes in magnetic ordering
in a crystal are, in general, accompanied by a magnetostrictive
deformation. A method to obtain the spontaneous volume
magnetostriction, ωV, is to find the volume difference between
the state in which the material is antiferromagnetically ordered,
and a hypothetical state in which it is paramagnetically disordered
(e.g. Kusz et al., 2000).

vV = Vafm − Vpar

Vpar
(11)

where Vafm and Vpar are the antiferromagnetic (observed) and
hypothetical paramagnetic values of the unit-cell volume below
TN, respectively. Similarly, the linear spontaneous magnetostric-
tion can be calculated as

lX = Xafm − Xpar

Xpar
(12)

With X referring to the lattice parameters a, b, and c.
Clearly, the derived values of the spontaneous magneto-

striction will be strongly dependent on the procedure used to
extrapolate the cell parameters of the paramagnetic phase to tem-
peratures below TN. However, a further constraint on correctness
is provided by the requirement that, for small strains,

vV = la + lb + lc (13)

Initially, we determined the strains by fitting first-order
Grüneisen approximations to the zero-pressure equation of state
(e.g. Vočadlo et al., 2002, equivalent to setting the parameter b
in equation 4 to zero) to a, b, c and V in the range 70 K≤ T≤
200 K and then using these to extrapolate the paramagnetic
behaviour into the AFM temperature range, but we then found
that that the sum of the resulting axial magnetostrictive strains
was not equal to the volumetric strain, as is required by equation

13. The reason for this is that the b axis varies essentially linearly
for 65 K≤ T≤ 200 K and so it cannot be reliably extrapolated
in this way; the correlation coefficient between b0 and θD in the
non-linear least-squares algorithm was found to be 99.9%, and
thus the temperature at which the thermal expansivity of the
b axis begins to reduce, and hence its value at 0 K, cannot be
determined. It was decided, therefore, that the most robust
method for extrapolation of the cell parameters of the paramag-
netic phase was to fit a, c and V in the range 70 K ≤ T≤ 200 K,
as described above, and then to determine bpar from Vpar/(aparcpar).
For T≤ 65 K, equation 7 was then fitted to the differences
between the measured and the extrapolated cell parameters
and the volumetric and linear magnetostrictive strains were
calculated from equations 11 and 12 and were normalised to
their calculated values at 0 K. The fitted lattice parameters are
shown in Fig. 9, with the volumetric and linear spontaneous
magnetostrictive strains given in Fig. 10a and the normalised
magnetostrictive strains in Fig. 10b (the fitted values of the para-
meters are given in Supplementary Table 1; and Supplementary
Fig. 2 shows the self-consistency of ωV and λa + λb + λc). It can
be seen from Fig. 10a that the strain λa is much smaller than λb
and λc, for which the strains have opposite signs, and that the
transition at 23 K has a minimal effect on the length of the b
axis. In this latter respect, the behaviour of Fe2SiO4 at the 23 K
transition is similar to that shown at the antiferromagnetic
phase transition by Co2SiO4 (Sazonov et al., 2010); however, in
Co2SiO4, the values of λa and λc are in the opposite sense to
those in Fe2SiO4. Comparison of the normalised values of the
spontaneous magnetostriction (Fig. 10b) with the refined values
of the magnetic moments on the Fe1 and Fe2 sites, Fig. 8, suggests
that λa and λc show a temperature dependence that is similar
to that of Fe1 moments whereas λb follows a trend more similar
to that of the Fe2 sites.

Crystal structure

In Table 1, we present our refined values of the atomic coordi-
nates for Fe2SiO4 for the 10 well-counted data sets spanning the

Figure 9. Lattice parameters of Fe2SiO4 below 120 K. Extrapolation of the
paramagnetic behaviour of Fe2SiO4 below TN using the 1st-order
Grüneisen-Debye approximation of the thermal expansion (equation 4,
with the parameter b = 0) is shown in dotted black lines and fitted
magnetostrictive components (equation 7) in solid black lines.
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range from 10 K to 1453 K. However, as it was found that even the
shorter counting times allowed us to obtain structure refinements
of very good precision, the derived parameters characterising the
Fe1O6, Fe2O6 and SiO4 coordination polyhedra are shown in
Fig. 11 and Fig. 12 for all data, with the numerical values listed
in Supplementary Tables 2–5. None of the quantities plotted
show any significant differences in behaviour associated with
the onset of the paramagnetic ordering.

In Fe2SiO4 we find that the average Fe–O bond distances in
both the Fe1O6 and Fe2O6 coordination octahedra show a
roughly linear dependence on temperature, with Fe1–O increasing
at ∼6.36×10−4 Å K–1 and Fe2–O at ∼7.53×10−4 Å K–1,while the
shorter and more rigid Si–O bonds show very little, to no, expan-
sion; the same features are visible in the volumes of the coordin-
ation polyhedra (Fig. 11). Various measures of the distortion of
the polyhedra are shown in Fig. 12. The angular variance of the
SiO4 tetrahedra (defined as

∑
(OŜiO− 109.47)2/6) is almost

invariant, whereas the Fe1O6 and Fe2O6 octahedral angular var-
iances (defined as

∑
(OM̂O− 90)2/12) both increase roughly

linearly with temperature with a possible sharper increase above
∼1300 K. Figure 12 also shows the polyhedral volume distortions
from ideal polyhedra, as calculated by the program Ivton2
(Balić-Žunić and Vicković, 1996). These were obtained via the
relationship (Vi – Vd) / Vi, where Vd is the volume of the mea-
sured coordination polyhedron and Vi the volume of the ideal
polyhedron having fixed angles and an average for bond distances
(taken from the centroid of the polyhedron to the coordinating
ligands). The distortion of the SiO4 tetrahedral sites remains
almost constant throughout the temperature range. As was seen
in the octahedral angular variances, the smaller Fe1O6 octahedron
remains more distorted throughout the temperature range and the
distortion increases at a slightly faster rate (∼1.4×10−4 K−1) than
that of the larger Fe2O6 octahedron (∼9.0×10−5 K−1) in agree-
ment with suggestions (e.g. Burns and Sung, 1978), that the larger
thermal expansion of the c axis results from the tendency of the
Fe1O6 octahedra to elongate.

Figure 11. Fe2SiO4: Average polyhedral bond distances and polyhedral volumes as a function of temperature.

Figure 10. (a) Linear and volumetric spontaneous magnetostriction of Fe2SiO4.
Experimental values (shown as symbols) were obtained from equation 11 and equa-
tion 12; the lines show the values calculated from equations 4 and 7 (for the volume)
and 9 and 10 (for the axes). (b) Normalised values of spontaneous magnetostriction,
with symbols as for (a), with the a and c axes showing a similar temperature depend-
ence to that of Fe1 (M1) moments while b and V follow temperature dependences
more like that of the moments on the Fe2 (M2) sites.
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Conclusions

We have collected high-resolution neutron powder diffraction
patterns from Fe2SiO4 over the widest range of temperatures yet
reported, from 10 K to 1453 K, which is within 25 K of the melt-
ing point (1478 K), at a homologous temperature of 0.983. Our
refined lattice parameters are of substantially better accuracy
and precision than any preceding diffraction study, allowing us
to investigate the effect of the two antiferromagnetic transitions
on the lattice parameters of Fe2SiO4 and thereby determine the
spontaneous magnetostrictive strains. Our refinements of the
magnetic structures confirm that the unit cell and space group
(Pbnm) remain the same in all phases of Fe2SiO4. The moments
on the Fe2 (M2) sites remain collinear and parallel to the c axis at
all temperatures below 65.4 K. Below 65.4 K, the spins on the Fe1
(M1) sites are collinear and parallel to the c axis, but below 23 K,
they become canted, possessing components along all three crys-
tallographic directions.

The behaviour of the unit-cell volume of Fe2SiO4 is adequately
described by a Grüneisen approximation to the zero-pressure
equation of state, combined with a model of the magnetostriction
based on modified mean-field curves, so as to include the contri-
butions of the two AFM transitions at 23 K and 65.4 K. However,
in the paramagnetic phase, the temperature dependence of the
linear thermal expansion coefficient of the b axis takes an unusual
form. In contrast to the unit-cell volume and to the a and c axes,
for which the thermal expansion coefficients show the expected
reduction in magnitude below ∼300 K, the expansion coefficient
of the b axis remains almost constant between ∼70 K and 1000 K.
This behaviour has been reported previously by e.g. Suzuki et al.
(1981) above room temperature, but we have now shown that it
persists to 70 K, i.e. throughout the paramagnetic phase field.
Calculation of the average interatomic distances, and the volumes,
angular variances, and distortions of the coordination polyhedra
show that the changes with temperature in the FeO6 and SiO4

polyhedra are small, with the SiO4 tetrahedra almost invariant.
The volumes and distortions of the FeO6 octahedra increase
roughly linearly with temperature, with the smaller Fe1O6 octahe-
dron remaining more distorted throughout. In a future accom-
panying paper we intend to compare the thermal expansion
coefficients of Fe2SiO4 with those of Mg2SiO4 and to discuss fur-
ther the effects of temperature on the structures of these two oliv-
ine end-members.
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