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Abstract
This study considers data from 5 waves of the English Longitudinal Study of Ageing
(ELSA). We aim to study the impact of demographic and self-rated health variables
including disability and diseases on the survival of the population aged 50+. The
disability variables that we consider are mobility impairment, difficulties in performing
Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL).
One of the problems with the survey study is missing observations. This may happen
due to different reasons, such as errors, nonresponse and temporary withdrawals. We
address this problem by applying single and multiple imputation methods. We then fit
a Generalized Linear model (GLM) and Generalized Linear Mixed model (GLMM) to
our data and show that a GLMM performs better than a GLM in terms of information
criteria. We also look at the predictability of our models in terms of the time-
dependent receiver operating characteristic (ROC) and the area of ROC, i.e. AUC. We
conclude that among the disability factors, IADL and among the diseases, cancer
significantly affect the survival of the English population aged 50 and older.

Keywords: Longitudinal data; survival analysis; random effects model; multiple imputation

1. Introduction

Survival analysis is the study of the survival of a member and the variables that affect
survival until the event of interest occurs. In our study the event of interest is death and
we aim to investigate the impact of demographic factors such as age, marital status,
employment status and self-reported health factors such as mobility, Activities of
Daily Living (ADL) and Instrumental Activities of Daily Living (IADL) impairment
and Noncommunicable Diseases (NCD) such as Cardiovascular Diseases (CVD) and
lung diseases on the lives of the English population aged 50+. We consider ELSA
which is a panel study of a representative cohort of individuals aged 50 or older
living in private households in England and is conducted every two years since 2002.
ELSA has been extensively studied by researchers in medical and social sciences. For
example, Demakakos et al. (2016) study the relationship between wealth and
all-cause and cause-specific mortality using Cox proportional regression analysis and
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find that wealth is strongly associated with CVD and other non-cancer mortality among
people aged 50–64, whereas there is a weak relationship between wealth and cancer
mortality. In another study, Demakakos et al. (2018) investigate the relationship
between self-perceptions of socio-economic status and all-cause and cause-specific
mortality using Cox proportional regression hazard model and chained equations to
impute missing values. Some studies use ELSA to consider the problem of disability
and factors that affect disability among the elderly. For example, d’Orsi et al. (2014)
apply Generalized Estimating Equation (GEE) models with 2-year lagged Poisson
regression to look at the impacts of socio-economic, demographic and lifestyle on
IADL, its duration and speed of recovery. Potente and Monden (2016) use a
multinomial logistic model to study the relationship between socio-economic status
and disability before death in ELSA dataset. They look at the association between
income, education, wealth and disability factors such as ADL, IADL and mobility
impairment among deceased individuals. Steptoe and Zaninotto (2020) study the
relationship between socio-economic status, represented by wealth and physical
capability, sight, hearing impairment, physiological function, cognitive performance,
emotional well-being and social function using covariance and logistic regression
analysis while controlling for age, gender, ethnicity, education and long-term health
conditions. They find that lower wealth is associated with all these problems and
hence will increase the rate of ageing. In both studies, among socio-economic
indicators, the impact of wealth is more significant than education and income.
Torres et al. (2016) consider the problem of wealth inequality and disability by
taking into account depression and social support using multinomial logistic
regressions. Guzman-Castillo et al. (2017) predict the life expectancy with and
without disability using Sullivan’s index (1971). They use ELSA dataset and apply a
discrete-time probabilistic Markov model to examine the individual and collective
impacts of CVD, dementia, disability and other diseases on life expectancy. Some of
the studies in social sciences consider the impact of social interaction and well-being
on survival among people in old age. Davies et al. (2021) apply linear mixed models
and Cox proportional hazard model to study the impact of social isolation and
loneliness on frailty and use multiple imputations to impute missing data. [See, also
Steptoe et al. (2015); Khondoker et al. (2017); Rafnsson et al. (2020) and the
references therein]. There are comparative studies that combine ELSA with data from
other countries. Aida et al. (2018) consider the impact of social and behavioral
factors on survival among old-aged population in Japan and England. They fill in
missing values using multiple imputation methods with chained equations and apply
Laplace regression models to estimate the percentile of survival time and Cox
proportional hazards for sensitivity analysis. Donati et al. (2019) use ELSA and The
Irish Longitudinal Study of Ageing to predict the development of functional
disability through deep and shallow artificial neural networks. They consider
declining ADLs and IADLs between two consecutive waves as a measure of frailty
among participants and apply Minimum Redundancy Maximum Relevance (MRMR)
algorithm to select a subset of the most significant features. Kessler et al. (2020)
focus on the comparison of risk factors such as physical inactivity, smoking,
hypertension, diabetes and high BMI which are the causes of NCD among the
population aged 60+ from ELSA and Bagé Cohort study of Ageing (SIGa-Bagé).
They conclude that the level of these risks among the Brazilian population is higher
than the English population. They ascribe their results to the quality of healthcare
and economic situations in England. Stamate et al. (2022) also apply machine
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learning algorithms to predict the development of dementia among participants. They
consider patients’ general health, mental health, life satisfaction, mobility,
socio-economic status, etc and apply Cox proportional hazard model with Elastic
Net regularization and a Random Forest algorithm where the best split is obtained
by maximizing the survival difference between subsequent nodes. They removed
rows with missing values at 51% or greater and apply K-nearest neighbors with K = 5
to impute the rest and use concordance measure c-statistics which is a generalization
of the Receiver Operating Characteristic curve (ROC) and the area under curve
(AUC) [Heagerty and Zheng (2005)] to evaluate the performance of their models.

After reviewing the literature related to our dataset (ELSA), we look at the literature
that considers time to event analysis. Cox (1972) introduces Cox regression models for
the analysis of the effect of categorical and quantitative variables on survival in
continuous time. In our case, the exact time of death and withdrawal, i.e. censored
time is unknown and we only know the year of death or whether an interviewee has
participated in the follow-up interview or not. Therefore, we need to carry out a
discrete-time survival analysis. Thompson (1977) considers the problem of ties and
introduces a model based on the grouping of failure times. He applies a logistic
model based on Cox’s binary hazard model and uses a modified Newton–Raphson’s
method to estimate the likelihood equations. Friedman (1982) considers a piecewise
exponential model for the analysis of censored data with covariates and uses iterative
numerical methods to find Maximum Likelihood (ML) estimates. Discrete-time
survival analysis has been considered by Allison (1982) where he compares
discrete-time and continuous-time survival models and shows that the likelihood
function is similar to the function for binary responses in GLMs and therefore
similar estimation methods can be applied. Discrete-time survival model in the
context of job duration and unemployment has been considered for example, by
Petersen (1986), Ham and Rea (1987), and Singer and Willet (1993). Discrete-time
frailty models also known as survival models with random effects can account for
unobserved heterogeneity which cannot be described by existing covariates. Scheike
and Jensen (1997) study the time to pregnancy and point out that random effects
models can capture the heterogeneity due to biological variation. The likelihood
function of random effects models involves numerical integrations and can be solved
by numerical methods such as Laplace methods [Breslow and Clayton (1993)],
Gauss–Hermite quadrature (GHQ), adaptive GHQ [Davidian and Giltinan (2003);
Bolker et al. (2009)], and Markov Chain Monte Carlo methods [Fahrmeir and
Knorr-Held (1997); Bolker et al. (2009)]. Davidian and Giltinan (2003) provide a
review of mixed effects models and discuss different estimation methods and the
supported software. Bolker et al. (2009) consider GLMMs in the context of ecology
and evolution and look at different inference methods for hypothesis testing and
model selection. [See, also, Tutz and Schmid (2016) and the references therein for a
detailed discussion of discrete-time survival models and their applications in R].

In our dataset, the maximum number of observations for each participant is 5 waves,
i.e. 10 person-years. However, some participants may contribute to less than 5 waves
due to death, permanent or temporary withdrawals. For example, some individuals
may participate only in wave 1 and then re-join in wave 5 and that means we do not
have any information in waves 2, 3 and 4. In these cases, we consider the withdrawal
periods as missing records and apply Multivariate Imputation by Chained Equations
(MICE) to impute these records. [See, for example, Lee and Carlin (2010); Azur
et al. (2011); van Buuren and Groothuis-Oudshoorn (2011); van Buuren (2018)].
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Longitudinal study or panel study is a useful tool in order to study the
developmental pattern of the same variables over a short or long period. It is often
used in clinical psychology to study changes in behavior, thoughts and emotions and
in economics to study consumer trends. In actuarial science, longitudinal data has
been considered by Frees (2004), Antonio and Valdez (2012), Antonio and Zhang
(2014) in the context of experience rating and credibility theory and by Renshaw and
Haberman (2000), Richayzen and Walsh (2002), Li et al. (2017) and Hanewald et al.
(2019) in the context of mortality and disability trend.

In this study, we use ELSA dataset and perform a discrete-time survival analysis to
examine the impact of demographic and self-reported health factors on the survival of
the population aged 50+. We fit a random effects model to our imputed datasets. The
predictability of our model will be examined in terms of time-dependent ROC and
AUC. The rest of the paper is organized as follows: in Section 2 we explain ELSA
dataset and the variables of our study. Section 3 discusses the models and algorithms
we use to analyze our dataset. In Section 4 we discuss our results and Section 5
concludes.

2. Data and data preparation

The English Longitudinal Study of Ageing (ELSA) is a collection of economic, social,
psychological, cognitive, health, biological and genetic data. The study commenced in
2002 and the sample has been followed up every 2 years. The first cohort was
selected from respondents to the Health Survey for England (HSE) in 1998, 1999
and 2001 and included people born on or before February 29, 1952, i.e. aged 50 and
older. The first ELSA wave was in 2002–2003. Wave 2 took place in 2004–2005, wave
3 in 2006–2007, wave 4 in 2008–2009 and wave 5 in 2010–2011. To make sure ELSA
is designed to be representative of people aged 50 and over in England, in waves 3
and 4, a refreshment cohort of people just entering their 50 s was introduced. These
new cohorts are called “Cohort 3” and “Cohort 4”. The cohort number was chosen
to reflect the wave in which the new sample was introduced. There is no “Cohort 2”
or “Cohort 5” as no new sample was issued at waves 2 and 5. In wave 2, an End of
Life interview was conducted with the purpose of finding out about the health and
socio-economic situations of people just before their death. End of Life interviews
have been carried out at waves 2, 3, 4 and 6. [For more information on ELSA,
sampling and interview process see, for example, Steptoe et al. (2013); Blake et al.
(2015)]. Table 1 shows the number of participants in each cohort and the number of
deaths among “core members” reported in waves 2, 3, 4 and 6. Core members are
age-eligible sample members who participated in the HSE and are interviewed in the
first wave of ELSA when invited to join [Bridges et al. (2015)]. Here, we only focus
on core members and do not consider their partners.

In this study, we collected information about age, gender, marital status,
employment status, self-rated physical and health conditions of core members from
waves 1, 2, 3, 4 and 5 and retrieve information regarding their status from waves 2,
3, 4 and 6. The variables that we consider in our study are presented in Table 2.
These variables are extracted from “core data” files that can be obtained from ELSA
website after registration. The participants have been asked to fill in a questionnaire.
The information provided is based on participants’ self-assessment of their health
conditions. Responses such as “refusal”, “don’t know” and “schedule not applicable”
are considered missing values. Our dependent variable is the status of the individuals
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Table 1. Number of core members and end of life interviews in each wave

Waves Cohort 1 Cohort 32 Cohort 42 End of life interviews3

(1) 2002–2003 11,391 − − −

(2) 2004–2005 8, 7801 − − 133

(3) 2006–2007 7,535 1,275 − 369

(4) 2008–2009 6,623 972 2,291 234

(5) 2010–2011 6,242 936 1,912 −

(6) 2012–2013 − − − 240

NatCen: Technical Report (Wave 6).
1 New cohorts were only introduced in waves 3 and 4.
2 The number of end of life interviews of the core members.
3 In wave 2 one member aged below 50 has been removed.

Table 2. Dependent and independent variables of the study

Age Continuous Age above 90 is recorded as 90 to avoid
disclosure (50− 90)

Gender Categorical Male (1), female (2)

Marital status Categorical Single (0), couple (1)

Employment Categorical
1, 4, 3, 5, 2.

Employed, retired, permanently sick or disabled,
self-employed other (looking after home or family,
semi-retired, unemployed and other).

Mobility Discrete
0, …, 10

Walking 100 yards, sitting for about two hours, getting
up from chair climbing several flights of stairs
without resting, stooping, kneeling, reaching or
extending your arms, pulling or pushing large
objects, lifting or carrying weights, picking up a 5p
coin

ADL Discrete
0, …, 6

Dressing including putting on shoes and socks,
walking across room, bathing or showering, eating
such as cutting up your food, getting in or out of
bed, using toilet

IADL Discrete
0, …, 7

Using a map, preparing a hot meal, shopping for
groceries, making telephone calls, taking
medications, doing work around the house or
gardens, managing money such as paying bills

CVDs Yes (1)
No (0)

High blood pressure, angina, heart attack, heart
failure, heart murmur, abnormal heart rhythm,
diabetes, stroke, other heart diseases

Other diseases Yes (1)
No (0)

Chronic lung diseases, asthma, arthritis, osteoporosis,
cancer, Parkinson’s, psychiatric diseases, Alzheimer
and dementia

Status Death (1)
Survival (0)

Dependent variable
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that can be obtained from “eol” files for different waves and is coded 1 if death occurs
and 0 otherwise. The age is a continuous variable which is limited to 90 to avoid
disclosure. The age average ranges from 65.2 in wave 1 to 67.8 in wave 5. The gender
is coded 1 for males and 2 for females. From wave 3, “civil partnership” has been
added to the legal marital status. In our study, the marital status has two categories:
“married” (being in a partnership) and “single” (no partnership including divorced
and widowed). There are 8 categories of employment status. We combine
“semi-retired”, “other”, “looking after home or family” and “unemployed” as “other”.

The questions relating to health factors are different in different waves. We selected
questions which are common among all waves. In wave 1 participants were asked to
select the physical difficulties and diseases that they suffered, from a list and from
wave 2 they were asked about the health conditions carried forward from the
previous wave and the newly-diagnosed conditions. In other words, if a participant
confirms a particular disease, this can be either the disease from the previous year or
the newly-diagnosed disease. Therefore, for these variables, we consider “not
applicable” as no experience of physical difficulty or disease. The variables mobility,
ADL and IADL score are discrete. They represent the number of activities with
which participants have difficulties or need help. For example, a score of “0” means
that the participants have not reported difficulties in performing any activities related
to mobility and a score of “10” means they have reported difficulties in performing
all 10 activities. The scores for ADL and IADL are similarly defined. The remaining
variables are dichotomous.

Figure 1 shows the number of times that a problem related to mobility, ADL and
IADL has been reported. We observe that difficulties in performing physical
activities, which are represented by green circles, are more frequent than difficulties
in performing IADL, which are represented by red circles. Further, difficulty with
“stooping” is the most reported problem and difficulty with “picking up a 5p coin” is
the least reported problem among mobility impairment. Out of activities related to
ADL, difficulty with “dressing” is the most reported problem and difficulty with
“eating” is the least reported problem. The most reported problem under IADL is
difficulty with “pushing or pulling large objects” and the least reported problem is
difficulty with “taking medications”.

Table 3 shows the “number of death”, “at risk”, i.e. the number of members exposed
to risk and “hazard probability”, i.e. the probability of event occurrence in each interval.
Figure 2 shows the baseline hazard function in our model which is the hazard function
for the reference individual in the model (see Section 3).

2.1. Missing values

Table 4 shows an example of the type of data and missing values that we are dealing
with in our study in long format. In this table, we have 5 periods with repeated
observations of variables such as V1, V2, … for individuals with ID numbers 1, 2, 3
and 4. Individual 1 participates in interviews within the periods [t1, t2), …, [t4, t5)
and dies in the period [t4, t5). Individual 2 participates within the period [t1, t2) and
[t2, t3) and withdraws in the period [t2, t3), i.e. right-censored. Individual 3
participates within the period [t2, t3) and dies in the same period. Therefore, we do
not have any information about this individual for the period [t1, t2) except for age,
gender and status assuming that in the period [t1, t2) the individual was 2 years
younger and the gender is fixed. This individual is left-censored. Individual 4
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participates within the periods [t1, t2) and [t2, t3), withdraws temporary in the period
[t3, t4), rejoins the study in the period [t4, t5) and dies in that period. Therefore, the
only information that we have from this individual in the period [t3, t4) is age,
gender and status. In this study, all NAs are considered missing values.

We assume that missing values are independent of the occurrence of death, that is
participants have not withdrawn from the study because they were more or less likely to
die. Given that the interviews are conducted every two years, we expect each participant
to be two years older in the follow-up interview, so the missing values of the variable
age can be easily filled in. However, this means that the minimum age is now below
50 and the age is not capped at 90. The variable gender is “time-invariant” and
complete. The next variable to consider is the employment status. We set all missing
values as “retired” for participants aged 60 and above. To fill in the missing values of
employment status and marital status we use Last Observation Carried Forward
(LOCF) method. LOCF is a single imputation method in which the last observed
record of an individual is used to fill in subsequent missing values. However, it is
not recommended by the National Academy of Sciences for the imputation of
missing values in clinical trials and/or without justifications1. Here we do not expect
much changes in employment status and marital status among the elderly. After the
implementation of LOCF, we still have two participants with missing values that we
remove from our dataset. For other variables such as physical disability and diseases,
we use multiple imputation methods. MICE, known as “fully conditional

Figure 1. The number of times a problem has been reported.

1https://www.nap.edu/catalog/12955/the-prevention-and-treatment-of-missing-data-in-clinical-trials
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specification” or “sequential regression multiple imputation”, can handle different types
of variables such as continuous, binary and categorical variables. In R package mice, we
use the “predictive mean matching” (pmm) method for the imputation of mobility,
ADL and IADL and “logistic regression” for the imputation of other variables. One
of the advantages of pmm is that it always finds values that have been actually
observed in the data, i.e. all imputed values are based on the possible observed
values and this reduces the possibility of model misspecification and allows the
algorithm to be used for any data types. The assumption underlying this method is
that the distribution of the missing data is the same as the distribution of the
observed data. Figure A3 in the Appendix compares the distribution of the imputed
values of these 3 covariates with the distribution of the observed values. We explain
pmm and logistic algorithms in Section 3.4. We create 5 complete datasets with 10
iterations. The number of iterations can be determined by inspecting the trace lines
generated by the algorithm. In Figures A1 and A2 we cannot detect any trends as
expected and therefore 10 iterations is reasonable [van Buuren and
Groothuis-Oudshoorn (2011)]. MICE is computationally expensive for a large
number of variables. Therefore, we consider a model with a very simple predictor
matrix by setting all variables except status equal to zero [van Buuren (2018), page 300].

Table 3. Number of deaths and at risk in each time interval

Wave Number of death Number at risk Hazard probability

[1, 2) 322 14,966 0.0215

[2, 3) 231 12,978 0.0178

[3, 4) 190 11,759 0.0162

[4, 5) 158 10,477 0.0151

[5, 6) 75 9,090 0.0083

Total 976 14,966

Figure 2. Baseline hazard function: log (−log (1− λ(t)) = γ1T1 + γ2 T2 + γ3 T3 + γ4 T4 + γ5 T5.
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The 5 datasets are identical for the observed data but differ in the imputed values.
We store these 5 complete datasets and perform our analysis on each dataset instead
of combining the results using Rubin’s rules. Table 5 shows the mean for mobility,
ADL and IADL scores and the number of participants with a particular disease for 5
datasets after imputation, i.e. datasets I, II, III, IV and V.

3. Models

In this section, we look at discrete-time survival models, also known as time-to-event
models. When we are working with survey data the information is not available at
the exact point in time and we only know the period in which the event of interest
occurs, which is usually every one year or in our case every two years. We can divide
the underlying continuous-time process into intervals [0, a1), [a1, a2), …, [at−1, at),
[at, ∞). Let T be a discrete-time random variable, where T = t means the event has
happened in the interval [at−1, at). Censoring is common in survival analysis and
right-censoring occurs when the participants are lost to follow up or when the study
ends. For individual i, i = 1, …, n, let Ti denote duration times and Ui be
right-censoring times. Let t =min (Ti, Ui) be the observed discrete time and δi be the
censoring indicator:

di = 1, Ti < Ui, i.e. observation is uncensored
0, Ti ≥ Ui, i.e. observation is censored.

{
(1)

Let yit∈ {0, 1} be the event indicator. We then have

yit = 1, event occurs in [at−1, at),
0, event does not occur in [at−1, at).

{
(2)

Table 4. An example of longitudinal data with missing values (long format). V1, V2, … are variables such
as age, ADL score, etc.

ID Time V1 V2 V3 … Status

1 [t1− t2) 1 0 0 … 0

1 [t2− t3) NA 0 0 … 0

1 [t3− t4) 1 NA 0 … 0

1 [t4− t5) 0 1 0 … 1

2 [t1− t2) 0 NA 0 … 0

2 [t2− t3) 1 0 0 … 0

3 [t1− t2) NA NA NA … 0

3 [t2− t3) 1 0 0 … 1

4 [t1− t2) 0 1 0 … 0

4 [t2− t3) 1 0 0 … 0

4 [t3− t4) NA NA NA … 0

4 [t4− t5) 0 1 0 … 1

Journal of Demographic Economics 427

https://doi.org/10.1017/dem.2023.3 Published online by Cambridge University Press

https://doi.org/10.1017/dem.2023.3


Table 5. Mean and frequency of the variables for 5 new datasets. 1: Mean.

Status Mobility1 ADL1 IADL1 High pressure Angina Heart attack Heart failure

Dataset 0 2.028 0.4091 0.4450 38,327 55,489 57,890 58,979
I 1 20,938 3,776 1,375 286

Dataset 0 2.029 0.4062 0.4428 38,437 55,525 57,934 58,968
II 1 20,828 3,740 1,331 297

Dataset 0 2.011 0.4047 0.4457 38,445 55,499 57,903 58,969
III 1 20,820 3,766 1,362 296

Dataset 0 2.013 0.4070 0.4417 38,381 55,481 57,874 58,971
IV 1 20,884 3,784 1,391 294

Dataset 0 2.024 0.4054 0.4451 38,326 55,486 57,909 58,966
V 1 20,939 3,779 1,356 299

Heart murmur Heart rhythm Diabetes Stroke Other Lung Asthma

Dataset 0 57,178 55,443 53,999 57,994 57,610 56,220 52,854
I 1 2,087 3,822 5,266 1,271 1,655 3,045 6,401

Dataset 0 57,184 55,468 53,995 57,987 57,624 56,184 52,833
II 1 2,081 3,797 5,270 1,278 1,641 3,081 6,432

Dataset 0 57,191 55,441 53,972 57,968 57,610 56,221 52,919
III 1 2,074 3,824 5,293 1,297 1,655 3,044 6,346

Dataset 0 57,169 55,460 53,975 57,945 57,608 56,186 52,822
IV 1 2,096 3,805 5,290 1,320 1,657 3,079 6,443

Dataset 0 57,195 55,467 53,945 57,958 57,610 56,203 52,882
V 1 2,070 3,798 5,320 1,307 1,655 3,062 6,383

Arthritis Osteoporosis Cancer Parkinson’s Psychiatric Alzheimer Dementia

Dataset 0 38,560 55,390 56,763 58,903 54,590 59,081 58,702
I 1 20,705 3,875 2,502 362 4,675 184 563
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Dataset 0 38,541 55,448 56,726 58,885 54,624 59,094 58,684
II 1 20,724 3,817 2,539 380 4,641 171 581

Dataset 0 38,483 55,451 56,764 58,880 54,622 59,094 58,681
III 1 20,782 3,814 2,501 385 4,643 171 584

Dataset 0 38,456 55,479 56,721 58,867 54,629 59,099 58,695
IV 1 20,809 3,786 2,544 398 4,636 166 570

Dataset 0 38,611 55,453 56,741 58,895 54,575 59,100 58,684
V 1 20,654 3,812 2,524 370 4,690 165 581
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In the following, we explain survival models and the estimation methods in GLM
[McCullagh and Nelder (1989)] and GLMM framework.

3.1. GLMs with time-varying covariates

Let xit = (xi1, …, xit)
T be a vector of covariates and i = 1, 2, …, n be the sample size. For

individual i, we then define the hazard function in discrete time by

l(t|xit) = Pr(Ti = t|Ti ≥ t, xit) = h(hit), (3)

which is the conditional probability that an event occurs at time t given that it has not
already occurred and ηit is the linear predictor, given by

hit = g0t + xTitg. (4)
In Equation (3), h(.) is a function, which is assumed to be strictly monotonically
increasing with the inverse function g = h−1 which is known as the link function.
Therefore, Equation (3) can also be written as

g(l(t|xit)) = g0t + xTitg.

The function h(.) is selected such that the value of the discrete-time hazard is restricted
to the interval [0, 1]. Common candidates are logistic, probit, Gompertz (clog-log), and
Gumbel (log-log) link functions. Further, γ0t is the intercept which may vary over time
and is interpreted as a baseline hazard and γ is the vector of parameters. Thompson
(1977) shows that logistic and clog-log link functions give rise to similar results. In
this study, we choose clog-log link function, where h(η) = 1− exp (− exp (η)).
Hence, the hazard function is given by

l(t|xit) = 1− exp (−exp (g0t + xTitg)), (5)
which can also be written as

log (− log (1− l(t|xit))) = g0t + xTitg. (6)
We can also define the discrete-time survival function by

S(t|xit) = Pr(Ti > t|xit) =
∏t
k=1

[1− l(k|xit)], (7)

which is the probability that death occurs after time t given the covariates. Hence the
unconditional probability of death at time t, i.e. the probability that death occurs
within the interval [at−1, at) is given by

Pr(Ti = t|xit) =
∏t−1

k=1

[1− l(k|xit)]l(t|xit). (8)

Assuming that censoring is non-informative and does not depend on the
parameters, the likelihood function for observation i is given by

L =
∏n
i=1

Pr(Ti = ti)[ ]yit Pr(Ti > ti)[ ]1−yit . (9)
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Substituting (7) and (8) and taking the logarithm yields the log-likelihood function
[Allison (1982); Singer and Willet (1993)]

l =
∑n
i=1

yit log l(t|xit)+ yit
∑ti−1

k=1

log [1− l(k|xit)]+ (1− yit)
∑ti
k=1

log [1− l(k|xit)]
[ ]

,

(10)

which can be rewritten as

l =
∑n
i=1

yit log
l(ti|xit)

[1− l(ti|xit)]+
∑n
i=1

∑ti
k=1

log [1− l(k|xit)]. (11)

Equation (11) can be solved using numerical methods such as Iteratively Reweighted
Least Squares (IRLS) in R. [See, McCullagh and Nelder (1989)].

3.2. GLMMs

In this section, we explain random effects models. Let bi be a random intercept specific
to individual i that follows a mixing distribution with density f(.). We define the
discrete-time hazard function for individual i by

l(t|xit , bi) = Pr(Ti = t|Ti ≥ t, xit , bi) = h(h′
it), (12)

where h′
it is the linear predictor given by

h′
it = bi + g0t + xTitg. (13)

Similar to GLMs we define the survival probability in discrete-time by

S(t|xit , bi) = Pr(Ti > t|xit , bi) =
∏t
k=1

1− l(k|xit , bi)[ ].

Since our model only includes a random intercept, we call it the random intercept
model. Estimation of parameters in GLMMs is not as straightforward as the GLMs.
To estimate the parameters, we need to integrate the likelihood function over all
possible values of the random effects, i.e.

L =
∏n
i=1

∫
l(t|xit , bi)

∏ti−1

k=1

[1− l(k|xit , bi]
[ ]yit ∏ti

k=1

1− l(k|xit , bi)[ ]
[ ]1−yit

f (bi)dbi. (14)

To handle the integral, we need to use numerical integration methods. In this study, we
use Gauss–Hermite quadrature which is a numerical method used by “glmer” in R
package “lme4” to approximate the value of integrals of the following kind

∫1
−1

e−x2 f (x)dx.
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The idea is that we can approximate an integral as a sum of polynomials, i.e.

∫1
−1

f (x) dx =
∫1
−1

e−x2 ex
2
f (x)

[ ]
dx ≈

∑n
i=1

wif (xi),

where wi and xi are the weights and quadrature points, respectively. Parameters are
chosen so that this approximation is exact for polynomials f(x) up to and including
degree 2n− 1, where n is the number of points in the summation. Suppose n = 3,
then we have 3 unknown w, 3 unknown x and polynomials with degrees up to and
including 5, i.e. f(x) = 1, f(x) = x, …, f(x) = x5. Therefore, we have 6 equations to find
6 unknowns. The values of wi and xi for different n can be obtained from
Table 25.10 in Abramowitz and Stegun (1964).

3.3. Optimization

Parameter estimation in the above models is an optimization problem as we either need
to maximize the likelihood function or minimize the negative likelihood function, i.e.
min f(x), x∈ Rn. The common approach to solving such problems is to take a
derivate of the objective function (here, the likelihood function). However, when the
objective function is not smooth and/or is complicated, we can use gradient-free
optimizers and numerical methods to find the optimum value. In Table A2 in the
Appendix, we provide a comparison of some of the gradient-free algorithms in terms
of the estimated parameters, convergence and the time taken until convergence. In
the following, we briefly explain the optimizers in this table.

Nelder-Mead simplex algorithm
This is a direct search method, which means that it calculates the value of a function
and compares it to its values at other points. It uses a simplex which is a shape
consisting of n + 1 vertices in n dimensions, such as a triangle in 2 dimensions. To
optimize a function in 2 dimensions, we need three arbitrary points and find the
value of our function at those points, say, f(a) < f(b) < f(c) in this step a is the best
point as our function takes the minimum value at a and c is the worst point. Then
we reflect c through the centroid of a and b. If the new point is better than b, we
replace the old c with our new c. If the new c is better than a, then we extend c even
further. The algorithm takes different steps such as reflection, extension and
contraction until it converges and the optimum point is obtained (Nelder and Mead
(1965).

Bound Optimization BY Quadratic Approximation (BOBYQA)
This is a trust region method, where a surrogate model is used. If f is a complicated
function, we can use a simpler function like f̃ for optimization that approximates f
well in the trust region. The common candidate for f̃ is a quadratic function
obtained by Taylor series, i.e.

f̃ (xk + s) = f (xk)+ ∇f Tk s+
1
2
sTHks,

where xk is the point at the kth iteration, ∇f is the gradient and H is the Hessian. This
algorithm, does not require the exact calculation of the gradient and Hessian matrix,
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instead it uses interpolation equation f̃ k(xi) = f (xi) for i = 1, 2, …, m to estimate the
gradient and the Hessian matrix, where m is chosen from the interval [n + 2, (n + 1)
(n + 2)/2]. We then minimize f̃ subject to a trust region with radius δ at each iteration

‖s‖2 ≤ dk,

To determine the size of the δ at each iteration we define the ratio

r = f (xk)− f (x∗)

f̃ (xk)− f̃ (x∗)
,

where x* is the solution to the subproblem in each iteration. If r is greater than a
threshold, say, 1 then, the trust region is increased, i.e. δ increases as the
algorithm is moving in the right direction towards the optimum point, otherwise,
the trust region is decreased. The algorithm terminates when the radius of the
trust region is less than a given tolerance level [Powell (2009); Rios and Sahinidis
(2013)].

L-BFGS-B
This method is based on quasi-Newton optimization method. The idea is that as we can
use Newton’s method to find the roots of a function, we can also apply this method in
order to find the roots of the gradient of a function, i.e.

xk+1 = xk − H−1
k ∇fk. (15)

Since H−1 does not always exist and it is computationally expensive, it can be replaced
by another function which is an approximation to H. Therefore, Equation (15) in
quasi-Newton algorithms can be written as

xk+1 = xk − B−1
k ∇fk, (16)

where B is an approximation to H. The algorithm starts with an arbitrary B, say, I an
identity matrix and updates B until convergence. The difference between different
classes of quasi-Newton methods such as Broyden-Fletcher-Goldfarb-Shanno (BFGS)
and limited memory BFGS (L-BFGS-B) is on how B is determined. For example,
L-BFGS-B is more suitable for large scale optimization problems with restricted
memory [Liu and Nocedal (1989); Nash and Varadhan (2011)].

Other algorithms in Table A2 include nonlinear minimization with box constraints
(nlminb) which is based on Newton optimization methods subject to a box constraint,
alternative versions of Nelder-Mead and bobyqa which are provided via “nloptr”
wrapper package.

3.4. Imputation algorithms

Let Y be a variable that contains the missing values. We denote the observed values by
yobs and the missing values by ymis. Let also Xobs be a matrix of covariates for which y is
observed and Xmis be a matrix of covariates for which y is missed. In this study, we use
predictive mean matching and logistic regression to impute missing values.
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Predictive mean matching
This method is based on Bayesian regression and we need to draw samples from the
posterior distribution of the parameters. This is an important step in MICE
algorithm to ensure uncertainty in the imputations [van Buuren (2018)].

Step 1 Let yobs∼N(Xobsβ, σ
2I), where X is a matrix with n rows and k columns

which represent the number of covariates. Here we assume β and σ2 are
both unknown. Suppose the prior distribution of β|σ2 is given by

b|s2 	 Nk(0, s
2V0) (17)

and the prior distribution of σ2 by

s2 	 Inv − Gamma a0 = n0
2
, b0 = 1

2
n0s

2
0

( )
= Scale− inv−x2(n0, s

2
0) = n0s

2
0x

−2
n0
. (18)

Then, the posterior distribution has the following form [see, for example,
Box and Tiao (1973); Murphy (2012)]

p(b, s2|Xobs, yobs)/ p(b|Xobs, yobs, s
2)p(s2|Xobs, yobs)

/ N(b|bn, s
2Vn)Inv − Gamma(an, bn),

where
• bn = VnXT

obsyobs
• Vn = (XT

obsXobs + V−1
0 )−1

• an = a0 + n/2
• bn = b0 + (yTobsyobs − bT

nV
−1
n bn)/2.

Here, we only need the first two expressions. (See, Appendix A.2 for details).
Step 2 Let [Box and Tiao (1973)]

s2 = (yobs − ŷ)T(yobs − ŷ)/n,

where ŷ = Xobsb̂ is the vector of predicted values of y. Then from (18) we
have ŝ2 	 ns2x−2

n . Draw a random variable g 	 x2n with ν = n− k, where n
is the number of rows with observed values and k is the number of
covariates for which y is observed. Calculate ŝ2 = s2/g.

Step 3 Draw k random values Z∼N(0, 1).
Step 4 Calculate b∗ = b̂+ ŝz1V1/2.
Step 5 Calculate y* =Xmisβ*.
Step 6 For each missing value of y*, find the closest predicted values, i.e. ŷ.
Step 7 Choose d values of ŷ which are close to y* and randomly choose one of them.

The values of d depend on the sample size. Small d may lead to repetition
and large d may increase bias [van Buuren (2018)].

Step 8 Find the corresponding observed value of ŷ and set ymis = yobs.
Example: Suppose ADL score for individual I is NA and the observed values of

ADL, y, for individuals II, III, IV and V are 5, 6, 3 and 4, respectively.
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Using b̂ we can estimate ADL, ŷ, for these individuals, say, 7, 5, 4 and 3,
respectively. Then suppose using β*, we find y* = 6. The 3 closest ŷ to 6
are 7, 5 and 4 with the corresponding observed values of y = 5, 6 and
3. The algorithm then selects one value from the observed values of y
randomly to impute the missing ADL for individual I.

Inverting the matrix in Step 1 may not be numerically stable. MICE applies Cholesky
decomposition for matrix inversion [Murphy (2012); van Buuren (2018)].

Logistic regression
In this section, we explain imputation using logistic regression method.

Step 1 Consider the binary model:

p(yobs = 1|Xobs, b) = 1

1+ exp (−bTXobs)
.

MICE uses Iterative Reweighted Least Squares (IRLS) to estimate β.
Therefore, the negative log-likelihood function is given by

NLL : = l

= −
∑n
i=1

yi,obs log p(xi,obs; b)+ (1− yi,obs) log (1− p(xi,obs; b))
[ ]

. (19)

Taking the partial derivative with respect to β yields

g = ∂l
∂b

=
∑n
i=1

[p(xi,obs; b)− yi,obs]xi,obs = XT
obs(p− yobs), (20)

and the second partial derivate gives

H = ∂2l

∂b∂bT =
∑n
i=1

p(xi,obs; b)[1− p(xi,obs; b)]xi,obsx
T
i,obs = XT

obsWXobs, (21)

where W = diag(p(xi,obs; b)[1− p(xi,obs; b)]). Beginning with Newton–
Raphson algorithm we have

bnew = bold −H−1g.

Substituting (20) and (21) yields

bnew = (XT
obsWXobs)

−1XT
obsWz, (22)

where z =Xβold +W−1 (y− p) (see Appendix A.3 for details.). Since each iteration
solves the weighted least squares problem, i.e. (z−Xβ)TW (z−Xβ), this method is
known as IRLS. [See, for example, Hastie et al. (2009); Murphy (2012)]
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Step 2 Calculate the estimated covariance matrix of b̂, i.e. V =H−1 = (XTWX)−1

where W is as defined in (21). Murphy (2012)
Step 3 Draw k random values Z∼N(0, 1).
Step 4 Calculate b∗ = b̂+ z1V1/2.
Step 5 Calculate the predicted probability based on missing values, i.e. p* = 1/[1 +

exp (−Xmisβ*)].
Step 6 Draw random variates from the uniform distribution U(0, 1).
Step 7 Set imputations ymis = 1 if u≤ p*, and ymis = 0 otherwise.

4. Results

In this section, we discuss the models that we fit to our datasets I, II, III, IV and
V. In each dataset, we have 59, 265 observations and 14, 964 unique individuals.
We then divide our datasets into 70% training set and 30% validation set (test
set). We will use the test set in Section 4.1 to compare the predictive power of
our fitted models. In our training set, we have 41, 543 observations and 10, 475
unique individuals. In order to select our variables, we first build a “full model”
by incorporating all variables and fitting a GLM with a clog-log link function.
The results based on training set I are provided in Table 6. The variables “time”,
“gender”, “age”, “employment status”, “IADL”, “heart attack”, “diabetes”, “lung
disease” and “cancer” are statistically significant at 0.1% and marked with three
asterisks, which indicate that these variables have a significant impact on the
hazard probability of death. We then use these significant variables from the
“full model” and build our reduced GLM. We can see a similar pattern in the
“reduced model” with greater log-likelihood at the expense of losing 10 variables.
We test the null hypothesis that all these variables are identical. The difference
between deviances of the full model and the reduced model is 9.4 which is less
than 5% critical value of a χ2 distribution with 10 degrees of freedom and
therefore we do not have sufficient evidence against our null hypothesis. We
consider the variables of our reduced model and fit a random effects model
(GLMM) to our training set I. As we discussed in Section 3.2 fitting GLMMs
involve numerical optimization which is computationally expensive with the
possibility of convergence issues. We apply the adaptive Gauss–Hermite
quadrature [Kabaila and Ranathunga (2019)] with 9 quadrature points, i.e.
nAGQ = 9. The higher the quadrature points, the more exact the approximation
is. However, this happens at the cost of speed. Also, according to Tutz and
Schmid (2016) for simple models with random intercept, 8 to 15 quadrature
points yield stable estimates. Since most of our variables are binary and the scale
of age is different from other variables, we have convergence issues which can be
resolved by scaling the variable age. This can be done by subtracting the column
mean and dividing by the standard deviation. After that, we try several
optimizers (see Table A2 in Appendix). As we can see, even after scaling age, we
have convergence warnings for most of the optimizers. Bates et al. (2015)
recommend “bobyqa”. We use this optimizer with the maximum number of
function evaluations before termination of 100, 000. As we can see both Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) have
reduced. The random effect shows the individual-level effects, i.e. how much
does an individual differ from the population? This variability is given by a
variance of 1.346. The results of GLMM fitted to datasets II, III, IV and V are
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Table 6. Coefficient and standard error estimates of models

Full model (cloglog) Reduced model (cloglog) Random effects model

Estimate Std. Error Estimate Std. Error Estimate Std. Error

Intercept −11.31*** 0.3746 −11.25*** 0.3692 −5.4944*** 0.3492

Time 2 −0.1698 0.1063 −0.1649 0.1060 −0.0488 0.1184

Time 3 −0.4357*** 0.1153 −0.4141*** 0.1139 −0.2683* 0.1313

Time 4 −0.6566*** 0.1197 −0.6324*** 0.1191 −0.4687*** 0.1397

Time 5 −1.3313*** 0.1495 −1.2934*** 0.1486 −0.1371*** 0.1661

Gender(F) −0.4792*** 0.0852 −0.4578*** 0.0834 −0.5309*** 0.0991

Age 0.0989*** 0.0051 0.0981*** 0.0050 1.2049***1 0.0883

Employment 2 −1.0983 1.0291 −1.0828 1.0290 −1.0803 1.0344

Employment 3 1.5226*** 0.3279 1.5800*** 0.3262 1.4866*** 0.3399

Employment 4 0.3354 0.2773 0.3627 0.2767 0.0892 0.2951

Employment 5 1.0513* 0.4170 1.0525* 0.4169 1.0352* 0.4253

Marital status(S) −0.1679+ 0.0866 −0.1679+ 0.0866 −0.1456 0.0985

Mobility 0.0574** 0.0187 0.0585** 0.0183 0.0623** 0.0200

ADL 0.0644+ 0.0350 0.0658+ 0.0348 0.0880* 0.0389

IADL 0.1210*** 0.0301 0.1319*** 0.0288 0.1591*** 0.0331

High pressure(Y) 0.0722 0.0792

Angina(Y) −0.0648 0.1257

Heart attack(Y) 0.6553*** 0.1484 0.6468*** 0.1420 0.6959*** 0.1581

Heart failure(Y) 0.7199** 0.2245 0.7709*** 0.2207 0.9739*** 0.2768

Heart murmur(Y) 0.0116 0.1649

(Continued )
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Table 6. (Continued.)

Full model (cloglog) Reduced model (cloglog) Random effects model

Estimate Std. Error Estimate Std. Error Estimate Std. Error

Heart rhythm(Y) 0.1204 0.1206

Diabetes(Y) 0.3548*** 0.1066 0.3633*** 0.1057 0.4037** 0.1228

Stroke(Y) 0.3158* 0.1389 0.3413* 0.1377 0.3811* 0.1540

Other heart D(Y) 0.1048 0.1808

Lung(Y) 0.5881*** 0.1170 0.5819*** 0.1144 0.6829*** 0.1362

Asthma(Y) −0.0909 0.1252

Arthritis(Y) −0.1970* 0.0832 −0.1866* 0.0830 −0.2298* 0.0941

Osteoporosis(Y) 0.1859 0.1275

Cancer(Y) 1.1763*** 0.1068 1.1917*** 0.1062 1.2938*** 0.1276

Parkinson’s(Y) 0.2525 0.2668

Psychiatric(Y) 0.2331 0.1480

Alzheimer(Y) 0.5334* 0.2649 0.5233* 0.2613 0.7538* 0.3179

Dementia(Y) 0.1689 0.1949

AIC 5,623.5 5,612.8 5,599.8

BIC 5,908.4 5,811.4 5,807.1

Log-likelihood −2, 778.7, df = 33 −2, 783.4, df = 23 −2, 775.9

Random effect: id number

Variance 1.346

Number of obs: 41,543, groups: idauniq, 10,475

+p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001.
1 Scaled.
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provided in Table A1 in Appendix. As we can see the estimated parameters and the
information criteria for these datasets are reasonably close.

To interpret the coefficients in a regression model with a clog-log link function, we
note that −log (1− x) ≈ x. Therefore, from Equation (6), λ(t|x)≈ eη, where η is the
linear predictor. Negative coefficients correspond to a negative effect on the hazard
probability and positive coefficients correspond to a positive effect on the hazard
probability. The variable “time” has a negative coefficient which means that as time
passes we expect improvement in hazard probability, i.e. mortality. The coefficient of
gender is negative which means that the probability of mortality for females is less
than the probability of mortality for males. The coefficient of age is positive, which
means that death is more likely as people get older.

Mortality trends
Figure 3 shows the probability of hazard for males (solid lines) and females (dashed
lines) who are healthy, retired and in partnership. This figure is based on GLMM
and each curve represents the probability of death for the average population at a
particular age during 5 waves. We can observe that the probability of death decreases
over these 5 waves, which suggests an improvement in mortality. From wave 1 to
wave 2 which corresponds to the years 2002–2003, the curves are relatively flat. From
wave 2 to 4, we can see a steeper downward slope. This period corresponds to the
years 2003–2009. The steepest slope is in wave 5 which is during 2010–2011. This
suggests a greater mortality improvement during these years. We can also observe
that this improvement is more pronounced among males than females. The mortality
improvement happens faster in older ages. This mortality trend is in agreement with

Figure 3. Hazard probability for males (solid lines) and females (dashed lines), retired, in relationship, with no
disease (population).
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Deaths Registered in England and Wales: 2013, Figure 12. We can see similar trends in
terms of survival probability in Figures 4, 5 and 6. In these figures, which are also based
on GLMM and average population, the green curve represents the survival probability
for a healthy individual. Comparing the green curve of the plots in Figure 4, we can see
a sharper negative slope in survival probability among males (left plot) than among
females (right plot) before wave 4. After wave 4, the slope is less steep on the left
plot than on the right plot compared with before wave 4. In other words, between
waves 4 and 5, the improvement in mortality among males is more than the
improvement in mortality among females.

Socio-economic factors
Now, we consider the coefficient of “employment”, where the reference category is
“employed”. Employment 3, 4 and 5 correspond to “permanently sick or disabled”,
“retired” and “self-employed”, respectively. The positive coefficients, although not
always statistically significant, suggest an increase in the risk of death for a retired,
disabled and self-employed compared with an employed individual. Similar results
have been found by Sorlie and Rogot (1990) for the US population. They find that
the mortality rate is particularly higher for those who are unable to work. In our
study, we can see that the coefficient of employment 3 (permanently sick or

Figure 4. Adjusted survival probability for different ADL scores (solid line) and IADL scores (dashed line) for a
male (left) and female (right) aged 65 in wave 1, retired, in relationship, with no disease (population).

2https://webarchive.nationalarchives.gov.uk/ukgwa/20160105181301/http://www.ons.gov.uk/ons/rel/vsob1/
mortality-statistics–deaths-registered-in-england-and-wales–series-dr-/2013/stb-deaths-registered-in-england-
and-wales-in-2013-by-cause.html
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disabled) is higher than the coefficient of other categories. In another study, Morris
et al. (1994) find that the risk of death for British men who are unemployed is much
higher than for those who are employed. They even report a higher risk of mortality

Figure 5. Adjusted survival probability for different diseases for a male (left) and female (right) aged 65 in wave
1, retired, in relationship (population).

Figure 6. Adjusted survival probability for different IADL scores for a male, aged 65 in wave 1, retired, in
relationship, individual (solid line) and average population (dashed line).
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among people who retired early for reasons other than illness. The results for the
relationship between mortality and self-employment are mixed. Our result shows that
self-employed people have a higher probability of death. Toivanen et al. (2016) find
that mortality from CVDs and suicide is lower among self-employed in Sweden,
whereas Gauffin and Dunlavy (2021) find that poor health conditions are more
common among self-employed than employed people in Sweden. Gonçalves and
Martins (2018) report a low mortality rate among self-employed in Portugal. We
categorize “marital status” into two groups: singles which include divorced, widowed
and not married categories and couples which include any form of partnership. The
coefficient of marital status is negative, i.e. the risk of death for a single individual is
less than the risk of death for a couple. Ebrahim et al. (1995) look at the relationship
between marital status and mortality among British men and find that although the
risk of mortality is higher among single men, divorced men are not at increased risk
of mortality. Johnson et al. (2000) show that the risk of mortality among single
people aged 45− 64 is higher than older American people. Rendall et al. (2011) find
that the survival probability among US married men is higher than the survival
probability among married women, but they did not find mortality differences
among never-married, divorced and widowed categories. In another study, Lindström
and Rosvall (2019) also point to mortality differences among married men and
women. They show that the risk of mortality is higher among unmarried, divorced
and widowed men, but there are no significant differences in mortality among
women with different marital status in Sweden. Ramezankhani et al. (2019) study
all-cause and cause-specific mortality for different marital status among Iranian
population and find that marital benefit is different among men and women. Their
results show that the risk of mortality among never-married men is higher than
among never-married women.

Disability factors
We then consider the coefficients of factors related to disability: mobility, ADLs and
IADLs. All these disability factors are significant and have a positive impact on
mortality. This is in agreement with other studies that see disability factors as
predictors of mortality. For example, Scott et al. (1997) show that there is a direct
relationship between mortality and disability factors among American population.
Gobbens and van der Ploeng (2020) find similar results among Dutch population
and Yang et al. (2021) among Chinese population. In Figure 4 we compare survival
probability for different levels of ADLs and IADLs between females and males by
controlling age, marital and employment status factors. We can observe that the
slope of survival curves is steeper for males (left plot) than for females (right plot),
which indicates survival differences due to disability factors between males and
females. This is in agreement with Pongiglione et al. (2016) where they find a strong
relationship between mortality and disability factors in ELSA participants and
survival inequality among men and women. However, their findings are based on
binary classifications of disability and they do not consider different levels of severity
of disability. In another study, they point out that ordinal classifications of disability
are more informative than binary classifications of disability [Pongiglione et al.
(2017a)]. In Figure 4 we can also observe that IADLs contribute more to a decrease
in survival probability than ADLs. Further, as IADL score increases, the survival
probability falls faster. However, we can see that slope of the curves is less steep in the
last wave which indicates an improvement in mortality due to disability during that
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period. Pongiglione et al. (2017b) also look at disability trends between 2002–2012 by
classifying disability into no disability, mild, moderate and severe groups and conclude
that severe and moderate disability has improved among women, but moderate
disability has increased and severe disability has been stable among men.

Disease trends
We expect all diseases to have a positive impact on the risk of death. However, in our
full model, the coefficients of “angina” and “asthma” are negative, although not
statistically significant and therefore they are not included in the reduced model and
GLMM. The coefficient of “arthritis” is negative and significant at 5% which does
not meet our expectations. However, this does not necessarily mean that arthritis has
a negative effect on mortality. Table 7, shows the observed number and proportion
of deaths and survivors for different diseases. For example, there are 288 cases that
arthritis has been observed together with death and 14, 025 cases that arthritis has
been reported without the occurrence of death. The proportion of reported arthritis
without the occurrence of death is about 34% which is considerably higher than
other diseases. Mendy et al. (2018) show that there is no relationship between
self-reported arthritis and the risk of death. However, they find that knee arthritis is
associated with a higher risk of CVDs and diabetes and therefore death. Similar
results have been found by Turkiewicz et al. (2019) that arthritis does not lead to
increased mortality, but knee and hip arthritis are associated with a higher risk of
CVDs as a result of the inability to walk and/or be active. Figure 5 shows the
adjusted survival probability for a male (left plot) and female (right plot) who is
retired, in partnership, aged 65 in wave 1 and only suffers from one disease. The
green curves show the survival probability for a healthy individual and the brown
one shows the survival probability for an individual who only suffers from cancer.
We can observe that the survival probability for some diseases is very close. In that
case, one of the causes of death is shown by a dashed line. According to this figure,
cancer contributes to a decrease in survival probability much more than other
diseases. The second largest contribution to death is heart failure and the third one
is Alzheimer’s. This pattern is in line with UK government statistics for the leading
causes of death amongst people aged 75 in 20073, where the largest proportion of
death was reported to be due to cancer, chronic heart disease and dementia. In our
full GLM, although the coefficient of dementia was positive, it was not statistically
significant and therefore dementia was removed in our reduced GLM and GLMM.
However, as we can see it is one of the causes of death that contributes to mortality
among the old population even more than stroke, heart attack, lung disease and
diabetes. In this figure, we can also observe that the survival probability for an
individual with diabetes, illustrated by blue solid lines, and the survival probability
for an individual who had a stroke attack, illustrated by pink dashed lines, is almost
the same. In fact, the probability of death among diabetics is about 49.7% higher
than healthy people and the probability of death among those who had a stroke
attack is about 46% higher than those who did not have a stroke attack. Perhaps the
reason that the probability of death for these two causes is so close is that according
to research diabetics are exposed to a higher risk of death due to stroke. [See, for
example, Hewitt et al. (2012); Lau et al. (2019), and the references therein]. Similarly,

3https://www.gov.uk/government/publications/death-in-people-aged-75-years-and-older-in-england-in-
2017/death-in-people-aged-75-years-and-older-in-england-in-2017
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Table 7. The reported number and proportion of deaths for different diseases in training set. Disease (1), no diseases (0)

Heart attack Heart failure Diabetes Stroke Lung disease

0 1 0 1 0 1 0 1 0 1

Number of death 633 63 672 24 585 111 672 69 600 96

Proportion (0.015) (0.002) (0.016) (0.001) (0.014) (0.003) (0.015) (0.002) (0.014) (0.002)

Number of survivors 39, 983 864 40, 673 174 37, 218 3, 629 40, 004 843 38, 891 1, 956

Proportion (0.962) (0.021) (0.979) (0.004) (0.896) (0.087) (0.963) (0.020) (0.936) (0.047)

Arthritis Cancer Alzheimer

0 1 0 1 0 1

Number of death 408 288 586 110 677 19

Proportion (0.010) (0.007) (0.014) (0.003) (0.016) (0.000)

Number of survivors 26, 822 14, 025 39, 182 1, 665 40, 725 122

Proportion (0.646) (0.338) (0.943) (0.040) (0.980) (0.003)
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we can observe that the survival probability for an individual with lung disease,
illustrated by magenta solid lines, is very close to the survival probability for an
individual who had a heart attack, illustrated by dark blue dashed lines. In fact,
controlling for other factors, the hazard ratio for an individual with lung disease is
1.98 and for an individual with a heart attack is 2. Research shows that there is a
relationship between lung diseases and CVDs and lung diseases can lead to a higher
risk of mortality due to CVDs. [See, for example, Sin and Man (2005); Carter et al.
(2019)]. Further, we can observe an improvement in mortality due to different causes
of death in the last wave. This figure shows that cancer, followed by heart failure, is
the leading cause of death which is in agreement with Deaths Registered in England
and Wales: 2012 (see, Section 1)4. The difference in survival probability among males
and females can also be detected by looking at the slope of the curves.

Population and individual effects
One of the advantages of GLMM is the ability of the model to consider observations
belonging to nested or hierarchical subgroups within the population. In our study,
the subgroups are individuals with unique id numbers who are repeatedly surveyed
over the period 2002–2012. Therefore, when we investigate the impact of one factor
on the survival probability of the population, we can also look at the variability of
the impact of that factor for a unique individual over the same period. In other
words, we consider the effects of factors both on population and individual levels. In
this study, the repeated measures are therefore treated as random effects as there are
some underlying factors which are unique to each individual that have not been
considered by the model. Figure 6 compares the survival probability of a unique
individual (solid lines) with a unique id number for different levels of disability due
to IADL difficulties with an average population (dashed lines). In this figure, we
controlled age, sex, employment and marital status. We can observe that the adjusted
survival probability of this particular individual in healthy status is less than the
adjusted survival probability of a healthy individual on average. The reason is that
this particular individual may be subject to other factors such as financial problems
or family health history which have not been considered by this model. On the other
hand, we can see that all solid lines for different IADL scores are above the dashed
lines, which indicates that the adjusted survival probability for this individual with
different levels of disability is slightly higher than the adjusted survival probability
for the average population with the same level of disability.

4.1. Discrimination measures

In this section, we look at the prediction accuracy of our 3 models: GLM, reduced GLM
and GLMM based on the test set. For this, we use time-dependent ROC curves which
are more suitable for follow-up studies than standard ROC curves. First, we explain
standard ROC curves and then the time-dependent ROC curves.

Standard ROC curve
In classification problems, where we assign our observations to different classes such as
death y = 1 and survival y = 0, we consider two types of error:

4https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/
deathsregistrationsummarytables/2013-07-10
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• False positive (Type I error): we predict that an individual will experience an event,
say, death, but they did not. In other words, we estimate ŷ = 1, but the truth is y = 0.

• False negative (Type II error): we predict that an individual will be event-free and will
survive, but they died. In other words, we estimate ŷ = 0, but the truth is y = 1.

We can illustrate these two types of error in a matrix which is known as the
confusion matrix [see, Table 8]:

The in-diagonal values are related to predictions that are correct and the off-diagonal
values are related to incorrect predictions. Using the information from a confusion
matrix, we can define the following measures:

∙ True positive rate: Tpr (sensitivity) = TP/(TP + FN)
∙ False positive rate: Fpr (type I error) = FP/(FP + TN)
∙ False negative rate: Fnr (type II error) = FN/(FN + TP)
∙ True negative rate: Tnr (specificity) = TN/(TN + FP)

The ROC curve plots Tpr against Fpr [Murphy (2012)]. The more this curve is away
from the 45° line, the better is our model at discriminating the positive ( y = 1) and
negative ( y = 0) events. Another way to measure the predictability of the model is by

Figure 7. ROC curve for GLM based on dataset I: AUC(t = 1)=0.572, AUC(t = 2) = 0.574, AUC(t = 3) = 0.574,
AUC(t = 4) = 0.614.
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looking at the area under the ROC curve, i.e. AUC. The larger AUC, the better the
models at distinguishing between death and survival.

Time-dependent ROC curve
Let Ti be the time of death and η be the linear predictor, which represents risk score and
is defined in Equations (4) and (13) for GLM and GLMM, respectively. Further, let y be
the death status as defined by (2). The idea is that at each time t, each individual is
classified as a case, i.e. the individual dies or control, i.e. the individual survives and
we would like to see what percentage of cases and controls can be discriminated by
our models for different values of thresholds c. In this case, each individual who had
the role of control at the earlier time, may contribute as a case at a later time [see,
for example, Tutz and Schmid (2016); Kamarudin et al. (2017)]. To plot the ROC
curve, we need sensitivity and specificity rates. The time-dependent sensitivity is
defined as

sensitivity(c, t) : = Pr(h > c|T = t, y = 1)

which is the probability that an individual who has died (T = t) is predicted to have the
hazard probability η of greater than c, indicating that cases are correctly identified (TP).

Figure 8. ROC curve for reduced GLM based on dataset I: AUC(t=1)=0.569, AUC(t = 2) =0.571, AUC(t = 3) = 0.573,
AUC(t = 4) = 0.614.
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The time-dependent specificity is also defined by

specificity(c, t) : = Pr(h ≤ c|T > t, y = 0),

which is the probability that an individual who has survived (T > t) is predicted to have
the hazard probability η of less than or equal to c, indicating that controls are correctly
identified (TN). These probabilities change as the value of threshold c changes. In a
follow-up study, the status of the individuals changes over time and some
observations may be censored before time t. Therefore to calculate sensitivity and
specificity we need to apply the inverse probability of censoring weight (IPCW) in
order to maintain consistency and to avoid bias. Let G(.) be the survival function of
the censoring times U as defined in Section 3. Then we define

G(t) = Pr(U > t|x). (23)

If G is large, then we can conclude that with high probability censoring occurs after
time t, whereas if G is small, then censoring occurs before time t and hence the
number of observations fully observed up to time t is only a small part of the
whole sample. To allow for this under-represented group, we use the inverse
probability of censoring as the weight [Tutz and Schmid (2016)]. Therefore,

Figure 9. ROC curve for random effects model for the population average based on dataset I: AUC(t = 1) = 0.534,
AUC(t = 2) = 0.554, AUC(t = 3) = 0.562, AUC(t = 4) = 0.605.
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sensitivity is given by

sensitivity(c, t) =
∑

i diI hi > c> ti = t
( )

/Gi(ti − 1)∑
i diI(ti = t)/Gi(ti − 1)

,

where δ is defined in Equation (1), I is the indicator function and G can be obtained
from the training data similar to S(t). The only difference is that this time, the event
of interest is the censoring time rather than the time of death. Further, specificity is
given by

specificty(c, t) =
∑

i I hi ≤ c> ti > t
( )∑

i I(ti > t)
.

We can plot the ROC curve for different points in time and compare the
predictability of the models at different times. Similarly, we can define the

Figure 10. AUC for GLM, reduced GLM and GLMM at t = 1, 2, 3 and 4.

Table 8. Confusion matrix

y = 1 y = 0

ŷ = 1 True positive (TP) False positive (FP)

ŷ = 0 False negative (FN) True negative (TN)
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time-dependent AUC by

AUC(t) = Pr {hi > hj}|{Ti = t}> {Tj > t}
( )

,

where ηi, ηj, Ti and Tj are the predictors and survival times of independent
observations i and j [Tutz and Schmid (2016)]. We can use package “discSurv” in
R to plot Figures 7, 8 and 9 which show the ROC curves for GLM, reduced GLM
and GLMM, respectively. From these figures, we can observe that at t = 1, 2 and 3,
the predictive power of GLM is better than the other 2 models and at t = 4, the
reduced model performs as good as the GLM. Further, we can see that the GLMM
has the worst predictive power. In fact, we know that we can use GLMM to predict
the survival probability of the existing individuals, but we cannot use this to
estimate the survival probability of a new individual and in the case of a new
individual, it only gives the estimated survival probability of the average
population. In other words, for a new individual, it only takes into account
population level and not individual levels. Figure 10 compares the AUC for all 3
models at t = 1, 2, 3 and 4. We can observe that at t = 1, 2 and 3, the AUC is only
slightly above 0.5. However, as t increases, the predictive power of all models
represented by AUC improves. From these figures, we can conclude that GLM and
reduced GLM can discriminate death and survival better than GLMM and are
better at generalization than GLMM.

5. Conclusion

In this study, we applied survival analysis to the English Longitudinal Study of Ageing
(ELSA). We looked at the impact of demographic and self-reported health conditions
on the survival of the participants. We found that the survival probability for
individuals who have difficulty in performing IADLs is less than the survival
probability for individuals who have difficulty in performing ADLs. We also found
that the survival probability for individuals with Alzheimer’s disease is less than the
survival probability for individuals with diabetes. Further, cancer was the deadliest of
the disease that we considered in this study. We showed that a random effects model
can distinguish between individual-level and population-level hazard probability. One
of the problems with survey data is missing values and, in particular, temporary
withdrawals of the participants. To address this issue we applied Last Observation
Carried Forward (LOCF) method, which is a single imputation method, to fill in the
missing values related to “employment status” and “marital status”. For the rest of
our covariates, we used MICE, which is a multiple imputation method. We produced
5 datasets and applied our analysis to each dataset. We found that the results under
all these 5 datasets are very close and therefore, we performed our analysis based on
only one dataset. The results of this study about the survival probability and factors
that affect the survival probability can be used in areas such as life insurance and
health insurance.
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Table A1. Coefficient and standard error estimates of a random effects model based on datasets II, III, IV and V

Model (II) Model (III) Model (IV) Model (V)

Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error

Intercept −5.487*** 0.3459 −5.500*** 0.3522 −5.504*** 0.3506 −5.4826*** 0.3482

Time 2 −0.0556 0.1176 −0.0551 0.1186 −0.0556 0.1183 −0.0532 0.1182

Time 3 −0.2704* 0.1308 −0.2813* 0.1317 −0.2689* 0.1315 −0.2777* 0.1310

Time 4 −0.4751*** 0.1391 −0.4694*** 0.1403 −0.4709*** 0.1400 −0.4742*** 0.1394

Time 5 −1.142*** 0.1653 −1.1415*** 0.1665 −1.1411*** 0.1663 −1.1423*** 0.1657

Gender(F) −0.5305*** 0.0989 −0.5382*** 0.0996 −0.5346*** 0.0994 −0.5338*** 0.0990

Age1 1.1996*** 0.0873 1.2065*** 0.0894 1.2071*** 0.0889 1.2046*** 0.0882

Emp. 2 −1.0755 1.0346 −1.0726 1.0346 −1.0834 1.0348 −1.0720 1.0346

Emp. 3 1.4899*** 0.3394 1.4722*** 0.3402 1.4867*** 0.3400 1.4821*** 0.3397

Emp. 4 0.1011 0.2946 0.0867 0.2954 0.0916 0.2950 0.0892 0.2948

Emp. 5 1.0356* 0.4253 1.0375* 0.4257 1.0522* 0.4256 1.0242* 0.4254

Mari. (S) −0.1430 0.0984 −0.1423 0.0989 −0.1439 0.0987 −0.1436 0.0984

Mobility 0.0644** 0.0201 0.0639** 0.0202 0.0642** 0.0202 0.0633** 0.0201

ADL 0.0878* 0.0390 0.0871* 0.0392 0.0869* 0.0390 0.0890* 0.0391

IADL 0.1584*** 0.0333 0.1636*** 0.0334 0.1642*** 0.0331 0.1600*** 0.0332

(Continued )
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Table A1. (Continued.)

Model (II) Model (III) Model (IV) Model (V)

Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error

Heart A(Y) 0.7170*** 0.1570 0.6740*** 0.1579 0.6844*** 0.1580 0.7013*** 0.1580

Heart F(Y) 0.9796*** 0.2765 0.9908*** 0.2784 0.9908*** 0.2783 0.9686*** 0.2757

Diabetes(Y) 0.3992** 0.1225 0.4049** 0.1233 0.4094*** 0.1235 0.4038** 0.1228

Stroke(Y) 0.3645* 0.1545 0.3549* 0.1550 0.3491* 0.1548 0.3463* 0.1542

Lung(Y) 0.6537*** 0.1358 0.6606*** 0.1369 0.6605*** 0.1368 0.6551*** 0.1363

Arthritis(Y) −0.2357* 0.0942 −0.2319* 0.0945 −0.2456** 0.0948 −0.2330* 0.0941

Cancer(Y) 1.2610*** 0.1268 1.2624*** 0.1282 1.2710*** 0.1278 1.2628*** 0.1273

Alzheimer(Y) 0.7784* 0.3211 0.7797* 0.3236 0.7725* 0.3227 0.7584* 0.3202

AIC 5, 602.1 5, 603.8 5, 601.6 5, 605.1

BIC 5, 809.3 5, 811 5, 808.9 5, 812.4

Log-likelihood −2, 777.0 −2, 777.9 −2, 776.8 −2, 778.6

Random effect: id number

Variance 1.322 1.386 1.379 1.341

Number of obs: 41,543; groups: idauniq, 10,475

+p < 0.1, * p < 0.05,**p < 0.01, ***p < 0.001.
1 Scaled.
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Figure A2. Trace lines do not show any trends after 10 iterations.

Figure A1. Trace lines do not show any trends after 10 iterations.

Journal of Demographic Economics 457

https://doi.org/10.1017/dem.2023.3 Published online by Cambridge University Press

https://doi.org/10.1017/dem.2023.3


Figure A3. Comparison of the distribution of the generated dataset (red curve) with the distribution of the
observed dataset (blue curve).
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Table A2. Comparison of different optimizers

bobyqa Nelder Mead nlminbwrap optimx.L-BFGS-B nloptwrap Nelder Mead nloptwrap BOBYQA

Intercept −5.4944 −5.1417 −4.9241 −5.4844 −5.4944 −5.4961

Time 2 −0.0488 −0.1797 −0.1650 −0.0489 −0.0488 −0.0478

Time 3 −0.2683 −0.4208 −0.4141 −0.2683 −0.2683 −0.2677

Time 4 −0.4687 −0.6108 −0.6324 −0.4687 −0.4686 −0.4681

Time 5 −1.1371 −1.3016 −1.2934 −1.1376 −1.1371 −1.1369

Gender(F) −0.5309 −0.5358 −0.4578 −0.5309 −0.5309 −0.5309

Age1 1.2049 1.1117 1.0222 1.2046 1.2049 1.2040

Emp. 2 −1.0803 −1.7030 −1.0828 −1.0925 −1.0805 −1.1050

Emp. 3 1.4866 1.4334 1.5801 1.4777 1.4866 1.4879

Emp. 4 0.0892 0.1827 0.3627 0.0820 0.0892 0.0922

Emp. 5 1.0352 0.8771 1.0525 1.0231 1.0352 1.0388

Mari. (S) −0.1456 −0.1603 −0.1679 −0.1458 −0.1456 −0.1449

Mobility 0.0623 0.0616 0.0585 0.0624 0.0624 0.0624

ADL 0.0880 0.0819 0.0657 0.0881 0.0880 0.0879

IADL 0.1591 0.1558 0.1319 0.1588 0.1591 0.1590

Heart A(Y) 0.6959 0.6214 0.6468 0.6966 0.6959 0.6969

Heart F(Y) 0.9739 0.8832 0.7709 0.9725 0.9739 0.9734

Diabetes(Y) 0.4037 0.3605 0.3633 0.4039 0.4037 0.4038

Stroke(Y) 0.3811 0.3223 0.3413 0.3810 0.3811 0.3803

Lung(Y) 0.6829 0.5993 0.5819 0.6828 0.6829 0.6826

Arthritis(Y) −0.2298 −0.2014 −0.1866 −0.2298 −0.2297 −0.2296

(Continued )
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Table A2. (Continued.)

bobyqa Nelder Mead nlminbwrap optimx.L-BFGS-B nloptwrap Nelder Mead nloptwrap BOBYQA

Cancer(Y) 1.2938 1.2162 1.1917 1.2940 1.2938 1.2938

Alzheimer(Y) 0.7538 0.6682 0.5231 0.7530 0.7538 0.7564

AIC 5, 599.8 5, 603.5 5, 614.8 5, 599.8 5, 599.8 5, 599.8

BIC 5, 807.1 5, 810.7 5, 822.1 5, 807.1 5, 807.1 5, 807.1

Log-likelihood −2, 775.9 −2, 777.8 −2, 783.4 −2, 775.9 −2, 775.9 −2, 775.9

Convergence warning No Yes Yes Yes No Yes

Random effect: id number

Std.Dev 1.16 0.873 0.0000 1.158 1.16 1.159

Number of obs: 41,543; groups: idauniq, 10,475

Elapsed time 1, 646.517 1, 133.596 96.209 1, 005.173 1, 130.972 630.508

1 Scaled.
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A.2. Posterior distribution of β and σ2

Let Y∼N(Xβ, σ2 I ); β|σ2∼Nk(0, σ
2 V0) and σ2∼ Inv-Gamma(a0 = n0/2, b0 = n0s20/2). To find the

posterior distribution of β and σ2 we have

p(b, s2|X, y)/ p(y|X, b, s2)p(b|s2)p(s2). (A1)

The first term is the likelihood function which is given by

p(y|X, b, s2)/ s−n exp − 1
2s2

(y − Xb)T (y − Xb)

{ }
. (A2)

First we consider the exponential term:

(y − Xb)T (y − Xb)

= (y − Xb̂+ Xb̂− Xb)T (y − Xb̂+ Xb̂− Xb)

= [(y − Xb̂)+ (Xb̂− Xb)]T [(y − Xb̂)+ (Xb̂− Xb)]

= (y − Xb̂)T (y − Xb̂)+ (Xb̂− Xb)T (Xb̂− Xb)+ 2(y − Xb̂)T (Xb̂− Xb)

= (y − Xb̂)T (y − Xb̂)+ (b̂− b)TXTX(b̂− b),

(A3)

where b̂ = (XTX)−1XTy. The last term is equal to 0 since

(y − Xb̂)TX(b̂− b) = (yTX − b̂TXTX)(b̂− b).

Substituting for b̂ in the first term, we have

yTX − [(XTX)−1XTy]TXTX = yTX − yTX[(XTX)−1]TXTX,

which is equal to 0 since [(XT X )−1]T XT X = [(XT X )T]−1 XT X = (XT X )−1 XT X = I. Then we consider the second term in
Equation (A1) which is the prior density of β|σ2 and is given by

p(b|s2)/ (s2)−k/2 exp − 1
2s2

bTV−1
0 b

{ }
(A4)

and the third term in Equation (A1) is the prior density of σ2 which is given by

p(s2)/ (s2)−n0/2−1 exp − n0s20
2s2

{ }
(A5)

Combining (A2), (A4) and (A5), posterior distribution is proportional to

(s2)−n/2 exp − 1
2s2

(y − Xb)T (y − Xb)
{ }

(s2)−k/2 exp − 1
2s2

bTV−1
0 b

{ }
(s2)−(n0/2+1)

exp − n0s20
2s2

{ }
.

(A6)

Next, we consider the first two exponential terms. Using the result in (A3), we have

(y − Xb̂)T (y − Xb̂)+ (b− b̂)T (XTX)(b− b̂)+ bTV−1
0 b

= yTy + b̂TXTXb̂− 2yTXb̂+ bTXTXb+ b̂TXTXb̂− 2bTXTXb̂+ bTV−1
0 b

= yTy + bT (XTX + V−1
0 )b− 2bTXTXb̂,

(A7)
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where in the last term we use the fact that

2b̂TXTXb̂ = 2[(XTX)−1XTy]TXTXb̂ = yTX[(XTX)−1]TXTXb̂ = 2yTXb̂.

Our aim is to write (A7) in a quadratic form. Consider

(b− m)TS(b− m) = bTSb+ mTSm− 2bTSm.

Comparing the above expression with (A7), bn = m = S−1(XTXb̂) and V−1
n = S = XTX + V−1

0 . Therefore, we can
write (A7) as

(b− bn)
TV−1

n (b− bn)− bT
nV

−1
n bn + yTy. (A8)

Substituting in (A6), we have

(s2)−k/2 exp − 1
2s2

(b− bn)
TV−1

n (b− bn)
{ }

(s2)−(n+n0)/2−1

exp − 1
2s2

(yTy − bT
nV

−1
n bn + n0s

2
0

{ }
.

(A9)

which is the posterior distribution of (β, σ2).

A.3. Gradient and Hessian matrix for a logistic regression
Consider xi = (xi1, …, xid)

T. In Equation (20), we first consider the first logarithm

log p = log
1

1+ e−bTx

( )
= − log (1+ e−bT x).

Taking the partial derivative with respect to βj gives

∂

∂bj
log p = xj(1− p).

Then we take the second logarithm

log (1− p) = −bTx − log (1+ e−bTx).

Taking the partial derivative with respect to βj gives

∂

∂bj
log (1− p) = −xj + xj(1− p) = −pxj.

Hence the gradient is given by

g = ∂

∂bj
l = −

∑n
i=1

[yixij(1− pi)− (1− yi)xijpi] =
∑n
i=1

(pi − yi)xij = XT (p− y),
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where X is a design matrix and is given by

X =
x11 . . . x1d

..

. ..
.

xn1 . . . xnd

⎛
⎜⎝

⎞
⎟⎠. (A10)

Next we look at the Hessian matrix by taking the second partial derivative of l

H = ∂2

∂bj∂bk
l =

∑n
i=1

xij
∂

∂bk
pi =

∑n
i=1

xijxikpi(1− pi) = XTWX, (A11)

where W is a diagonal matrix given by

W =
p1(1− p1)

. .
.

pn(1− pn)

⎛
⎜⎝

⎞
⎟⎠. (A12)

We can now show that the application of Newton–Raphson method results in an equation which is the
solution to a weighted least square problem.

bnew = bold −H−1g

= bold − (XTWX)−1XT (p− y)

= (XTWX)−1XTW[Xbold −W−1(p− y)]

= (XTWX)−1XTWz,

(A13)

which is the solution to the following problem

argmin
b

∑
wi(zi − bTxi)

2.
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