REMARKS ON A PROBLEM OF OBREANU
P. Erd8s and A. Rényi

(received December 15, 1962)

Let a, < aZ < ... be any sequence of integers. Assume

that the infinite sequence of numbers u satisfies the following
n
condition: To every € > 0 there isan n =n (¢) such that
o o

for all n>n and all k

Obreanu asked (Problem P. 35 Can. Math. Bull.) under what

conditions on the sequence ai < a, < ... does (1) imply that

the sequence u is convergent. N.G. de Bruijn and P. Erd8s
n .

proved that a necessary and sufficient condition for (1) to imply
the convergence of u is that the sequence {a } be infinite
n n

and that the greatest common divisor of the a  should be 1.
n

The condition (1) is very strong and is ''mearly equivalent"
to Cauchy's criterion for convergence. We discuss various
conditions which are weaker than (1).

Assume first that the sequence u satisfies

n
(2) lim lim | u
n-—-o r r

Condition (2) means that to every € > 0 there exists no =n (¢)
o

such that for n>n_we have Iu -u [ < e except for
o nta n
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finitely many r (the number of exceptional r may of course

depend on n). Denoting the sequence a1 < a2 <... by A

we shall prove

THEOREM 1 (2) implies the convergence of {un} if

and only if A satisfies the following two conditions:

(1) to every integer d > 1 there are infinitely many k with
2, ;‘50 (mod d),

(II1) ak+1 - ak does not tend to infinity as k — o .

First we prove that (I) and (II) are necessary. This is

clear for (I) since if (I) is not satisfied for a certain d > 1
then the sequence u with
n

u =0 if n=0(modd) and u = 1 otherwise,
n n

clearly satisfies (2) and does not converge.

Next we show that (II) is necessary. Suppose A does not

satisfy (II), i.e. a7 3 -0 as k—-o . Put

n:ai+a.+. +a. +14

1 2 r
where a_, 1is the greatest a not exceeding n, a, the
1
1 2
greatest a not exceeding n-a, , or a, is the greatest a
1
1 r
not exceeding n- (a, + ... + a, ), and 0< ¢ < ai (thus
3 =
1 ‘r-1

if a1 =1, £ 1isalways 0 ). Put
(3) u =0if i =1 and u =1 if i F1,

n r n r
e.g. if (i>1 ) n=a +a, then u =0, whileif n=a_  + a

o i 1 n i 2
then un=1 . Thus u is infinitely often 0 and infinitely
n
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often 1 and hence does not converge. On the other hand it is
easy to see that the sequence (3) satisfies (2) since from

ak+1 - ak - 00 we obtain that ak+1 - ak >n for k> ko(n) and

hence for these k we have from (3) u -u =0, so that
n+ak

(2) is satisfied. This shows that our conditions are necessary.
Next we show that our conditions are sufficient, in other

words we shall show that if A satisfies (I) and (II) and the
infinite sequence {u } satisfies (2), then {u } converges.
n n

Since (II) is satisfied, there is a T for which

(4) a -a =T

has infinitely many solutions. First we show that for every i

(5) lim (
{ - ©

- = 0.
Y +)T T Yer T

Let € > 0 be given; to prove (5) we shall show that for
all £ >2 ()
o

(6)

lui+(!l +1)T ~ Yitg T! <€

From (2) it follows that for sufficiently large fixed £ (f =£ (g ))
and every r > ro(e L)

(7) | <e/2 and

o, T+a_ “YaT

lui+(A¢ +1)T+a_ " Y +1)TI <e/2

Since (4) has infinitely many solutions there is a k (in fact

a =T, k>r (¢,2).
o

infinitely many such k) for which a1 %

Thus from (7)
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(8) [u, - u, | <¢/2 and
it+f T+ak+1 g T

- < 2
Iui+(1+1)T+ak ui+(1+1)T| e/

(6) follows from (8) by subtraction (since i+({ +1)’I‘+ak =

i+f T+ak+1). (6) implies that for every s and i

(9) ;n_l» oo(ui+(/z +5)T  Vitg )

From (9) we shall now deduce that for every fixed i

(10) lim

u.
‘ o it T

exists. If (10) did not exist there would exist an infinite sequence
of integers §  , )\ satisfying
J J

(11) gjz)\jsi(rnodT), §1<§2<..., §j<)\j

and

(12) [u -u I>c

for a certain positive absolute constant c. From (2) we obtain
that for sufficiently large j and r

(13) " | <c/4 and |u

J

I“g_+a \.+a -u)\‘l<c/4.
J T j r

From the first part of (11) we have £ - A =sT , and so from
J J

(9) we have for sufficiently large r

(14) ' - u 4a ] <cl/4 (§j+ar=i+lTof (9‘));

u
+
gj ar )\_] r

(13) and (14) imbply ]ug - u)\ ] < 3c/4 which contradicts (12),

J J
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and hence (10) is proved.

If the limit in (10) does not depend on i then {u }
- n

converges and our theorem is proved. Assume thus that for
two values i1 $12 (mod T)

=e , 1 ce , @ <a. .
ST T4 Y g% %
) 1 { —- © 2

(15) lim
1

2
Choose ¢ < (az-a1)/2T and let £ be so large that for all

n> (T and all r except possibly for finitely many exceptions

(16) ’un+ar - un[ <e ,

and choose { o 5° large that for every £ >{ , { 1 >{
o

o
(17) lu - u, ]>(a -a )2,
i 2 1
11+£ T 12+1 1T
Denote by ji’ ...,j those residue classes (mod T) for which
r
the congruence a ajs (mod T) has infinitely many solutions.
n
By (1), (ji’jZ’ .«.,j »T) = 1 and therefore the congruence
r
r
1 = j = i, -1 d T), < <
(18) XSJS i, - (mod T) O_Xs T

is solvable (in fact every residue class (mod T) can be
represented in the form (18). We can find arbitrarily large
a's satisfying (an ajs(mod T) has infinitely many solutions)

a sjs(modT) 1<s<r

Put

. r v r
2
(19) v=i+L T+ Z X a =i+{ T+ Z b, ,y= Z X <T (by (18))
s m cg s
s=1 s i=t s=1
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where X of the b's are equal to arn . From (19) and (18)
s
we have

20 = i , L >
(20) v 12+11T 1_2

We evidently have by (19), (as in the proof of Problem 35)

(21) |u - u, | < u, - u, |
v 11+£T 11+£T+b1 11+2T

lu, - u, |+ ...
11+£ T+b1+b2 11+ﬂ T-f-b1
iu r u r-1 l
i+ T+ Z b, i+ T+ Z b,
1 . j 1 .
J:']_ v _]:1

Now since each b is an a, we have from {16) and (17) that for
sufficiently large { and sufficiently large b's each summand
at the right side of (21) is less than ¢ . Thus from (20), (21)
and the definition of € we obtain by the last inequality of (19)

r
2
| <ye = ¢ T X <eT < (a_-a)/2.
i=1 ] 2 1

(22)  |u, -u,
12+21T 11+£T

(22) contradicts (17) and this contradiction proves the convergence
of {u } and hence the proof of our theorem is complete.
n

We also considered the following modification of (2):

(23) lim lim |u -u | =0
nt+a n
n r r
We proved

THEOREM 2 (23) implies the convergence of {u } if
n
and only if for every infinite sequence of integers b1 < b2 <..

there is a t such that the sequence
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(24) {a_+b} t<r<w, 1<i<t
v <

contains all but a finite number of the integers 1,2,....

We suppress the proof of Theorem 2. It is easy to see
that (24) is equivalent to the following condition which is perhaps

more manageable: Let b1 < b2 < ... be any infinite sequence of

integers; then all but a finite number of the natural numbers
are of the form {a +b,) where i and j are natural numbers.
i

Assume that we modify (2) as follows: To every € >0

there exists an n such that for n>n we have [u -u | <e
o o n+a n

k
except for at most t values of k where t depends only on
€ 3

¢ and not on n . We do not know what is the necessary and
sufficient condition on the sequence {ak} that this should

imply that {un} converges.

University College London
England
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