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Any Lipschitz map f : M — N between two pointed metric spaces may be extended
in a unique way to a bounded linear operator f : F(M) — F(N) between their
corresponding Lipschitz-free spaces. In this paper, we give a necessary and sufficient
condition for f to be compact in terms of metric conditions on f. This extends a
result by A. Jiménez-Vargas and M. Villegas-Vallecillos in the case of non-separable
and unbounded metric spaces. After studying the behaviour of weakly convergent
sequences made of finitely supported elements in Lipschitz-free spaces, we also
deduce that f is compact if and only if it is weakly compact.
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1. Introduction

Let (M, d) be a metric space equipped with a distinguished point denoted by 0y €
M. We let Lipy (M) be the Banach space of Lipschitz maps from M to R, vanishing
at 0ps, equipped with the norm

Li = Ssu —_— .
p(f) z;éng d(JU, y)

For « € M, we denote by d(z) the bounded linear functional on Lip, (M) defined by
(f,0(z)) = f(x), f € Lipy(M). The Lipschitz-free space over M, denoted by F (M),
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Compact and weakly compact Lipschitz operators 1003

is the Banach space
F(M) :=spanl'l {§(z) : © € M} C Lipy(M)*.

We refer the reader to [12] or [20] (where they are called Arens—Eells spaces)
for more information on these spaces, including a proof of the next fundamental
‘linearization’ property which will be the cornerstone of our study.

PROPOSITION 1.1. Let M and N be two pointed metric spaces. Let f: M — N be
a Lipschitz map such that f(0pr) = On. Then, there exists a unique bounded linear
operator f: F(M) — F(N) with ||f|| = Lip(f) and such that the following diagram
commutes:

f

A
o
)Tf(N)

More precisely, for every v = Y37 a;6(x;) € F(M), f(7) = 330, aid(f ().

In this paper, operators of the kind f: F(M) — F(N) will be called Lipschitz
operators. The above linearization property carries some metric information about
f and the metric spaces M, N themselves. Of course, passing from a Lipschitz
map to a linear map has a price and the difficulty is to analyse the structure of the
associated Lipschitz-free spaces. A very natural yet widely unexplored topic consists
in the study of how metric properties of f are transferred to linear properties of f,
and vice-versa (see e.g., [1]).

M
|
(M

F

In this paper, we investigate the compactness properties of f and character-
ize them in terms of metric conditions on f. Recall that an operator T': X — Y
between Banach spaces is compact if the image by T of the unit ball of X, denoted
by Byx, is relatively compact in Y. Similarly, we say that T is weakly compact if
T(Bx) is relatively weakly compact in Y. It is obvious that any compact operator is
also weakly compact, while the converse is not true in general. A disguised study of
compact Lipschitz operators has probably been initiated by Kamowitz and Schein-
berg in [17] and then pursued by Jiménez-Vargas and Villegas-Vallecillos in [16]
(see also [15] where vector-valued Lipschitz functions are considered). Indeed, in
the last mentioned papers, the authors consider composition operators on Lipschitz
spaces which appear naturally as the adjoints of our Lipschitz operators f. To be
more specific, noting that

f € Lipy(M) — Zaié(xi) — Z aif(x;)| € F(M)*

is an isometric isomorphism, we get that (]?)* = CYy, where Cj:Lipy(M) —
Lipy(N) is the composition operator given by Cy(g) =go f, g € Lipy(M). Of
course, by Schauder’s theorem, f is compact if and only if (f)* is compact, so

https://doi.org/10.1017/prm.2022.29 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.29

1004 A. Abbar, C. Coine and C. Petitjean

one can tackle the problem either working with Cy or working with f. In [16], the
authors proved the next characterization.

Theorem ([16, theorem 1.2]). Let M be pointed separable metric spaces and
let f: M — M be a Lipschitz map vanishing at Op;. Assume that M is bounded and
separable. Then the composition operator Cy : g € Lipy(M) — go f € Lipy(M) is
compact if and only if

(i) f(M) is totally bounded in M.

(ii) f is uniformly locally flat, that is, for each € > 0, there exists 6 > 0 such that
d(f(x), f(y)) < ed(z,y) whenever d(z,y) < 0.

A few comments about the above statement are necessary. First, as it is proved in
[10, theorem 8.7.8], the very same result holds for Lipschitz maps f : M — N where
N is any pointed metric space. Notice also that the separable assumption is absent
in [16, theorem 1.2], but, as is this written in [10], the method of the proof needs
M to be separable. Finally the above condition (i) is called ‘supercontractive’ in
[16], but we also sometimes see it as the ‘the little Lipschitz condition’ (since the
space of uniformly locally flat Lipschitz functions is often called the little Lipschitz
space, see [20]).

Our first main result extends the previous theorem in the case of any metric
spaces M and N (in particular not separable and unbounded). In fact, when M is
unbounded, one needs an additional assumption to take into account the behaviour
of the function f at infinity. To prove our result, we are dealing directly with
f instead of its adjoint C'¢. Hence, even when M is bounded, our proof is different
from that of [16].

THEOREM A. Let M,N be complete pointed metric spaces, and let f: M — N be
a base point-preserving Lipschitz mapping. Then f : F(M) — F(N) is compact if
and only if the next assertions are satisfied:

(Py) For every bounded subset S C M, f(S) is totally bounded in N;

(P3) f is uniformly locally flat, that is,

X
lim —————~ =0;
d(z,y)—0 d(.’I},y)

(P3) For every (Tpn,Yn)n C M := {(z,y) €e M x M | © # y} such that
lim d(z,,0) = lim d(y,,0) = oo, either

e (f(xzn), f(yn))n has an accumulation point in N x N, or

e liminf M

=0.
n—+too  d(zn,Yn)

It turns out that in the proof of * = in theorem A, which will be provided in § 2,
most of the time we only use the weaker assumption that f is weakly compact.
This suggests that there should be a close relationship between compact Lipschitz
operators and weakly compact Lipschitz operators. Another clue is contained in
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[14]. Let us denote lipy(M) the subspace of Lip,(M) made of uniformly locally
flat functions. Then we say that lip,(M) separates the points (of M) uniformly
if there exists C' > 0 such that, for every x # y, there exists a C-Lipschitz map
f €lipg(M) with |f(z) — f(y)] = d(z,y). Now [14, corllary 2.4] states that if M
is a compact metric space such that lip,(M) separates the points uniformly, then
the composition operator Cy : g € Lipy(M) +— go f € Lipy(M) is weakly compact
if and only if it is compact. Let us point out that for a compact metric space M,
lipg (M) separates points uniformly if and only if M is purely l-unrectifiable (that
is, does not contain any bi-Lipschitz image of a subset of R with positive Lebesgue
measure; see [5, theorem A]). This recent characterization underlines the fact that
the assumptions in [14, corllary 2.4] are rather restrictive. We shall prove in § 3
that this result is actually true for every metric space M.

THEOREM B. Let M, N be complete pointed metric spaces, and let f: M — N be
a base point-preserving Lipschitz mapping. The next conditions are equivalent

(i e F(M) — F(N) is compact;
(i) f:F(M)— F(N) is weakly compact;
Cy : Lipy(N) — Lipo(M) is compact;

)
)
(iid)
() Cy : Lipy(N) — Lipy(M) is weakly compact;
)

(v) Cf : Lipy(N) — Lipy(M) is weak”-to-weak continuous.

The key ingredient for proving theorem B will be a structural result concerning
weakly convergent sequences of finitely supported elements in Lipschitz-free spaces.
We recall that v € F (M) is said to be finitely supported if v € span{d(x) : © € M}
and then the support of 7, denoted by supp(7), is the smallest subset S C M such
that v € F(S). In what follows, for every k € N, FS;(M) stands for the set of all
~v € F(M) such that supp(vy) contains at most k points of M.

THEOREM C. Let M be a complete metric space. If a sequence (Vn)n C FSk(M)
weakly converges to some v € F(M), then v € FSp(M) and (yn)n actually con-
verges to 7y in the norm topology.

The previous theorem can be deduced as a direct consequence of the deep result
[3, theorem 5.2] and [1, lemma 2.10]. Since the proof from [3] is rather elaborated,
for the convenience of the reader, we shall provide a different proof which is based
on some recent developments in the theory of Lipschitz-free spaces.

Notation and background. If X is a Banach space, then we let X* be its
topological dual, By be its unit ball and Sx be its unit sphere.

Throughout the paper, M, N are complete pointed metric spaces and the distin-
guished points will be denoted by 0p; and Op respectively, or simply 0 if there is
no ambiguity. We will write

M ={(z,y) € M x M |z # y}.

https://doi.org/10.1017/prm.2022.29 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.29

1006 A. Abbar, C. Coine and C. Petitjean

We will use the notation

B(p,r) ={x € M | d(x,p) < r}
rad(S) = sup{d(z,0) |z € S}

where p € M and S C M. Next, if (z,), is a sequence of elements of M, we will
say that (x,,), goes to infinity if lim,, d(x,,0y) = oo. For convenience, let us recall
the vector spaces

Lip(M) = {f € K™ | f is Lipschitz}
Lipy (M) = {f € Lip(M) | f(0) = 0}.
We also wish to recall some important features of the Lipschitz-free space over M,
F(M) :=spanlll {§(x) : = € M} C Lipy(M)*.

First, F(M) is actually an isometric predual of Lip, (M), that is F(M)* = Lip,(M).
Moreover, if 0y € K C M, then F(K) is isomorphic to a subspace of F(M) in the
following way

F(K) ~span{dy(z) | * € K} C F(M).

According to this identification, the support of v € F(M) is the smallest closed
subset K C M such that v € F(K). It is denoted by supp(y). In particular and
according to the terminology introduced before, FSy (M) is the set of elements v €
F (M) such that supp(v) is finite and |supp(v)| < k (where |A| denote the cardinal
of a subset A C M). We refer to [6, 7] for more background information on the
support. We mention here a very simple particular case of theorem C in the case of
some sequences in FS1(M). We will use this fact in § 2 without mention, and it can
be easily proved by considering the Lipschitz function y € M — d(x,y) — d(x,05).
Fact: If (x,), C M is such that 6(x,) — 0(x) weakly, then §(x,) — d(x) in the
norm topology (which is equivalent to saying that x, — x in M ).

We also wish to mention that the Lipschitz-free space over M is isometrically
isomorphic to the Lipschitz-free space over its completion M in a very natural
way. Indeed, it is readily checked that f € Lipy(M) +— f],, € Lipy(M) is a weak”*-
to-weak™ continuous isometry. Hence, if I : M — N is the unique extension of
f:M — N, then f: F(M) — F(N) and f: F(M) — F(N) are conjugate one to
another, so one of them is compact if and only if the other one is. The only place
where we need completeness is in theorem A. Indeed, in the proof, we use the fact
that if IV is complete, then a totally bounded subset of IV is relatively compact.
However, one could restate this theorem by replacing N by its completion. So one
can deduce the general statements (without completeness) from our statements
(with completeness). Since there is no real loss of generality, we will assume that
M and N are always complete.

To conclude this introduction, let us state the next particular case of Urysohn’s
lemma that we shall use several times throughout the paper. It allows us to separate
two or more points of M by an element of Lip, (M ). Since we are dealing with metric
spaces, a concrete simple formula can be given for the Lipschitz map, but it can
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also be easily deduced from McShane extension’s theorem, see e.g. [20, theorem
1.33 and corollary 1.34].

LEMMA 1.2. Let M be a pointed metric space, let p € M,p # Oy and let € €
(0,d(p,0pr)/4). Then there exists f € Lipy(M) such that f =1 on B(p,e) and f =0
on M\ B(p,2¢).

2. A metric characterization of compact Lipschitz operators

The main objective of this section is to prove theorem A. The proof will be based
on the next easy but smart observation from [11] (see theorem 2.3 therein). This
result concerns not only compact operators but also weakly compact operators, and
so it will be useful in § 3 as well. We shall provide its short proof for completeness.

PROPOSITION 2.1 [11]. Let M, N be pointed metric spaces and let f: M — N be
a base point-preserving Lipschitz mapping. Then f:F(M)— F(N) is (weakly)
compact if and only if

6(f(x)) = 6(f(y))
ey et
is relatively (weakly) compact in F(N).

Proof. We will only prove the statement for compact operators, the proof being
verbatim the same in the case of weakly compact operators. Notice that

where M = {d(z,y) " (6(z) — 8(y)) | # # y € M}. Since M C Br(nr), if fis com-
pact then f(/\/t) must be relatively compact. Conversely, it follows from the
Hahn-Banach separation theorem that Bz, = conv.M, the closure being taken
for the norm topology. Now observe that

~ ~ ~

F(Bran)  Jleomem) c wne(f(M) ¢ @ (F(M)).

So, if f(M) is relatively compact, then conv(f(M)) is compact (see e.g., [8, theorem
5.35] for norm compactness and [9, theorem 10.15] for weak compactness), and

therefore f(Bz(ar)) is relatively compact. O

In the proof of theorem A, we will use proposition 2.1 repeatedly and hence, we
will work with sequences of finitely supported elements in Lipschitz-free spaces. By
[1, lemma 2.10], the set FSy(M) of elements of F(M) whose support contains at
most k elements is weakly closed in F(M) (in particular, it is norm closed). We
will use this fact in various places.
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LEMMA 2.2. Let k€N and (yn)n = (Zf 1 ai(n)d(x;(n) ) CFSp(M) be a
sequence converging weakly to an element v € FSp(M). Then, for every p €
supp(7), there exists 1 < m < k such that hm_ilrnf d(xm(n),p) =0.

n—-1+0o0o

Proof. Let us write v = 22:1 a;6(p;) where 1 <1<k, a; #0 and pq,...,p are
pairwise distinct elements of M \ {0p/}. Aiming for a contradiction, assume that
there exists 1 < j <[ such that none of the sequences (z;(n)),, 1 <i <k, has a
subsequence converging to p;. Then, there exists € > 0 and a strictly increasing
sequence (N, )m C N such that, for every m and every 1 < i < k, d(z;(nm),p;) > .
Hence, by lemma 1.2 we can find h € Lip,(M) such that h(p;) = 1, h(p;) =0if i # j
and h = 0 outside of B(p;,¢/2). Now, simply notice that since +,,,, — < in the weak
topology we have

0= <h,%m> - <h,’V> = aj,

which is a contradiction. O

LEMMA 2.3. Let f: M — N be a Lipschitz map such that f(Op) =On. Let
(Zns Yn)n C M and let (my,), C F(N) be defined by

_ 0(f(n)) = 6(f(yn))
" d($n,yn) ’

Assume that (my,), weakly converges to v € F(N).
(4) If d(an,yn) — 0 then v = 0.
(i) If d(@p,yn) — o0 then v = 0.

(iii) If there exists o > 0 such that d(zy,yn) = « and v # 0 then (d(zp, yn))n is
bounded and (f(xy), f(yn))n has an accumulation point in N x N.

Proof. Notice that (my,), C FS2(N) which is weakly closed so v = ad(p) + bd(q) €
FSo(N) where either p # g or p=¢g =0. Let us prove (1). If v # 0 then we can
assume that a # 0, p # On and, according to lemma 2.2, that (f(xy))n or (f(yn))n
has a subsequence converging to p. Since d(z,,y,) — 0, both subsequences con-
verge, that is, there exists an increasing sequence (ny)r C N such that (f(xn,))k
and (f(yn,))r are converging to p. The same lemma ensures that b =0 so that
my, — ad(p). Now, let h € Lipy(N) be such that h takes the value 1 on a ball
around p. Then, for k large enough, (h,m,,) = 0 while the limit over k of this term
s (h,ad(p)) = a, therefore a = 0. This is a contradiction so we must have v = 0.

We now prove (2). We aim for a contradiction. If v # 0, we may assume that
a # 0 and p # On and by lemma 2.2, up to extracting a subsequence, that (f(z,))n
converges to p. Since (f(zy,)), converges and d(z,, y,) — +00, we have

=0.

Therefore (d(zy, yn) 10(f(yn)))n C FS1(N) must converge to an element v =
c6(r). We then distinguish two cases :
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e If for some subsequence, (f(yn,))r is bounded, then m,, — 0 and this is a
contradiction.

e If for some subsequence, d(f(yn,),0) — +oo, then (f(yn,))r is eventually far
from r. Similarly as in (1), one can show that ¢ must be equal to 0 by using a
Lipschitz map taking the value 1 at r and 0 outside of a ball centred at r. So

my, — 0, yet another contradiction.

Let us finish with the proof of (3). As above, since v # 0 we can assume that
a#0, p#0y and (f(zy)), converges to p. We only need to show that (f(yn))n
has a convergent subsequence. If b # 0 and ¢ is not equal to Oy or p, then lemma
2.2 ensures that (f(y,))» has a subsequence converging to g. So assume that b =0
or g = Oy, that is, m, — ad(p). Up to extracting another subsequence, we may
assume that d(z,,y,) converges to p € (0, +0o0]. If p = +o0 then v =0 by (2), so
we actually have that p € (0, +00). Therefore

(f(zn)) = (f(yn)) — a'é(p) weakly

where a’ = ap. Since §(f(z,)) — I(p), we have

6(f(yn)) — a"6(p) weakly

where a” =1 —d'. If @’ # 0 then by lemma 2.2, f(y,) has a subsequence converging
to p, and if @’ = 0 then f(y,) — On. O

We need one last lemma before the proof of theorem A. For convenience, let us
recall (P3) in this statement.
(P3) For every (2, yn)n C M := {(z,y) € M x M | © # y} such that lim d(z,,0)
= lim d(ys,0) = oo, either
e (f(zn), f(yn))n has an accumulation point in N x N, or

e liminf M

=0.
n—too d(zn,yn)

LEMMA 2.4. Let M be an unbounded metric space, N be any metric space and
f: M — N be any map. If [ satisfies (Ps) then [ is radially flat, that is
d(f(z),0) _

d(LIOI)n—»oo d(l‘, 0) B

Proof. Assume that f satisfies (Ps). Let (2,), C M be such that d(x,,0) — +oo.
We will show that there exists a subsequence (z,, )x such that

d(f(@ns), 0)

— 0.
d(itnk,()) k— 400

In view of applying Property (Ps3), we first construct by induction an increasing
sequence (ng)r C N and a sequence (yn, )r C M such that for every k € N

(1) d(y’ﬂk?O) > k;
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(i) d(@ny,yn,) = k;

(111) d(xnk ) ynk) - d(y"k ’ O) s 2,
A ()0) 1

iv < -,

We proceed by induction and start with the base case k= 1. Since M is
unbounded, there is an element y € M such that d(y,0) > 1. We fix such y. The
inequality

d(zn,y) = d(z,,0) — d(y,0)

yields d(z,,y) — oo so that

n—-+o0o
Wy AU
d(zn,y) — d(y,0) n—+oo d(zn,y) — d(y,0) n—too
Hence, we can find ny € N large enough so that
d(@n,,y) d(f(y),0)
d(zn,,y) =1, ! <2 and <1
)21 G y) — d(3,0) A(n.9) — d(5.0)
We then set y,,, = y. Assume now that y,,,,...,yn, € M are constructed with n; <

ng < --- < mnyg. We can find y € M such that d(y,0) > k + 1. We now proceed as
above, and we find ng1 € N such that n, < ngy1 and

d(‘rnk+l7y) d(f(y)70) < 1

d(xnk+1,y) > k + 1; é 2 and

d(x’l’bk+1 ) y) - d(y) O)

We can now set y,, ., =y and by construction, the sequence (yn, )x C M satisfies
the desired properties.

In particular, d(y,, ,0) — 400, so we can apply (Ps3) to (z,,)r and (yn, )r and
we keep denoting by (2, )r and (yy, )r the subsequences that we obtain. Hence, we
AU @n) S 0n)

d(:E7lk ;ynk)

Ad(zn,,,,y) —d(y,0) ~ k+1

either have f(x,,) — p and f(yn,) — ¢ for some p,q € N or
Note that if we are in the first case, then we also have

d(f (@i ), f(yni))

— 0 2.1

because d(zy, ,Yn, ) — +00, and that is the property we will need. Indeed, by the
triangle inequality

d(f(2n,),0) < d(f (@ny ), f (Yny)) + d(f(Yni),0)
d(gjnk ’ O) h d(xmc ’ ynk) - d(y”k ’ 0) d(‘rnk ) ynk) - d(ynk ’ O)

d(a"’ﬂlwynk) d(xnk’ynk) - d(ynk70) d($nk7ynk) - d(ynk7 0)
and the right-hand side converges to 0 by (éi), (iv) and (2.1). O
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THEOREM A. Let M, N be complete pointed metric spaces, and let f: M — N be
a base point-preserving Lipschitz mapping. Then f: F(M) — F(N) is compact if
and only if the next assertions are satisfied:

(P1) For every bounded subset S C M, f(S) is totally bounded in N;

(P2) f is uniformly locally flat, that is,

lim ——————= =0;
d(z,y)—0 d(l‘, y)

(P3) For every (Tpn,Yn)n C M := {(z,y) € M x M | x # y} such that
lim d(z,,0) = lim d(y,,0) = oo, either

n—oo

e (f(xn), f(yn))n has an accumulation point in N x N, or

n—too d(Tn, Yn)

REMARK 2.5. Assume that the condition (Ps) is satisfied. Then, if (2, yn)n C M is
d(f(zn), f(yn))
d(l'mdyn)
such that liminf S )2/ (Une))

k—+too  d(Zny, Yny)
hence (f(zn), f(yn))n, has an accumulation point in N x N. This tells us that we
can reformulate condition (P3) by :

such that does not converge to 0, there is a subsequence (2, , Yn, )k

> 0. This implies that (f(xn,), f(Yn,))r and

(P4§) Forevery (Tpn,Yn)n C M :={(z,y) € M x M | x # y} such that lim d(z,,0)
= lim d(y,,0) = oo, either
e (f(zn), f(yn))n has an accumulation point in N x N, or

NRRCONIS)

=0.
n—teo d(Zn,yn)

Proof. We first prove the * =’ direction.
We start with f compact implies (P;). Let S be a bounded subset of M and let
(zn)n be a sequence in S. By assumption (and proposition 2.1), the sequence

_ (7 _9n) _ ((f(zn))
has a convergent subsequence (my, )r. Denote by v the limit of (my, ). If v =0,
then

d(f(‘rnk)’ ON) = ||m7lk ||d(x'fbk7OM) k—> 0

—00
because (x,, ) is bounded. In that case, f(z,,) — Oy and we are done. Hence, it
only remains to consider the case when v # 0. By lemma 2.3, this can only happen
if d(zp,,,0nr) does not tend to 0. But then, we can find a subsequence, still denoted
by (ng)r for convenience, such that d(z,,,0n) = o > 0 for every k. By the same
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lemma, we then must have a subsequence of (f(x,, ))r which converges and this
finishes the proof of (Py).

We now show that f compact implies (Ps). Let (24, )n, (yn)n be two sequences in
M such that d(z,,y,) — 0. By proposition 2.1, the sequence

(i)

has a convergent subsequence. However it follows immediately from lemma 2.3(i)
that the limit is 0. N N

It remains to prove that f compact implies (Ps). We already know that if f is
compact then f satisfies (P»), which will be of use. Let (zy,)n, (Yn)n be two sequences
in M such that z,, # y, for every n. Assume that (z,), and (y,), tend to infinity,
that is, nhHH;O d(z,,0) = nlL»H;o d(yn,0) = co. Again, we let

8(f(@n)) = 0(f(yn))
d(z, yn)

My 1=

and (my,), has a convergent subsequence, which we keep denoting by (my),, for
simplicity. Let v be the limit of (m,,),. Notice that

A/ (). ()

my| =
bl = = )

We distinguish two cases: up to extracting a further subsequence, we will need to

consider the cases when d(x,,,y,) converges to 0 and when there exists « > 0 such

that d(z,,y,) > « for every n. In the first case, we get by (FP») that m, — 0 so

that ||my| — 0. In the second case, if v # 0, we have by lemma 2.3(iii) that there

exist p,q € N and an increasing sequence (ny)r C N such that f(z,,) — p and

f(Yyn,) — ¢. Finally if v = 0 then again ||m,| — 0. In all cases, f satisfies (Ps).
Let us now prove the ‘ <= direction. We keep using the notation

T (5(f(:z:n)) - 5(f(yn))>n

d(zyn, yn)

where z,, # y, € M for every n € N. By proposition 2.1, we have to show that
this sequence admits a convergent subsequence in F(N). Up to extracting a sub-
sequence, we only have to distinguish three cases : when both (z,,), and (y,), are
bounded, when one of them is bounded while the other one goes to 400, and when
both go to +o0.

(i) If (zn)n and (yn)n are bounded, by (P;) there exists an increasing sequence
(nk)r C N such that (f(x,,))r converges to a point p € N and (f(yn,))x
converges to some ¢ € N. Since the sequence (d(xy, , Yn,, ))x is bounded, up to
a further extraction, we may assume that it converges to some p > 0. Since
f is uniformly locally flat, if p = 0 then (my,, )i converges to 0. If p > 0, then
it is readily seen that (m.,,, ). converges to p~1(d(p) — 6(q)).
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(ii) If (zp)n is bounded while d(y,,0) — oo, thanks to (P ) there exists an increas-
ing sequence (ny)r C N such that (f(x,,))r converges to a point p € N.
Therefore we may write for every k& € N:

0(f(#ny)) = 6(f (yn))

T T A v,
_ 0(f(xn,)) = 0(0) . 6(0) = 0(f(yny)) d(0,yn,)
d(Zny s Yny ) d(0,Yn, ) ATy Yny )

On the one hand,

H(S(f(xnmé(O)H _ A @) 0)
d(n, s Yny,) A(Zny s Yny) koo

On the other hand, f is radially flat thanks to lemma 2.4 so that

H ynk))H _ A ) 0)
0 Yny,) d(Yny,0) koo

Since the triangle inequality implies that klim d(0,yn,, )"t d(zny, Yny ) = 1, we
—00

obtain that (my, ) converges to 0.

(iii) If d(zp,0) — +oco and d(yn,0) — +oo, then by (Ps) there exists (ng), C N
such that, either ||m,, || — 0or f(z,,) — pand f(yn,) — ¢ for some p,q € N.
In the first case we are done since (my,, )i, converges to 0. In the second case, up
to further extraction, we may assume that d(z,,,yn,) — p € [0, +00]. Hence,
m,, converges to 0 if p =0 or p = +oo and converges to p~1(§(p) — &(q))
otherwise.

In all cases, the sequence (m,,), admits a convergent subsequence. O

Of course, condition (P3) is always satisfied if the metric space M is bounded.
Similarly, condition (P») is always satisfied if the space is uniformly discrete, that
is, inf,-, d(x,y) > 0. On the other hand, if M = R = N with the usual metric |.|,
this condition means that f* = 0 and hence f = 0 because f(0) = 0. In particular,
according to theorem A, the only compact Lipschitz operator f: F(R) — F(R) is
0. Furthermore, (P3) may seem uneasy to check. The next result shows that we may
replace this property by a stronger yet simpler condition. Nonetheless, example 2.8
will show that this condition is not necessary.

COROLLARY 2.6. Let M, N be complete pointed metric spaces, and let f: M — N
be a base point-preserving Lipschitz mapping. If f satisfies

(P1) For every bounded subset S C M, f(S) is totally bounded in N;

(P3) f is uniformly locally flat, that is,

lim LTI,
d(z,y)—0 d(:l),y)
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(P4) f s flat at infinity, that s,

lim _— O’
d(z,0)—o0  d(z,y)
d(y,0)—o0

then f: F(M) — F(N) is compact.
Proof. Tt is readily seen that (P,) implies (Ps). |

REMARK 2.7. Assume that ]?is compact. It follows from proposition 2.1 (or the
proof of theorem A) and lemma 2.3 that f satisfies the following property

d(f (=), f(y))

=0.
d(z,y)—+o0 d(x,y)

This property is stronger than the condition ‘radially flat’ from lemma 2.4, but
weaker than the condition ‘flat at infinity’ from the previous corollary.

EXAMPLE 2.8. Property (P;) is not necessary. Consider (M, d) = (NU{0},]| - |) and
f: M — M obtained by f(2n) =0 and f(2n+1) =1. Then f is clearly Lips-
chitz and f: F (M) — F(M) is compact because its range is finite dimensional.
Even so, if we let =, =2n+1 and y, = 2n then d(x,,0),d(y,,0) — +oo while

W = 1 for every n. Consequently f does not satisfy (Py).

In fact, in the previous example, f satisfies a much stronger property: f(M) is
totally bounded.

COROLLARY 2.9. Let M, N be complete pointed metric spaces, and let f: M — N
be a base point-preserving Lipschitz mapping. If f(M) is totally bounded in N and

[ is uniformly locally flat, then f: F(M) — F(N) is compact.

Proof. It f(M) is totally bounded then clearly f satisfies (Py). Moreover if (x,,),
and (y,)n are two sequences in M going to infinity, then the sequences (f(z,))n
and (f(yn))n have a common convergent subsequence and so f readily satisfies (P3)
in theorem A. |

ExXAMPLE 2.10. f(M) totally bounded is not mnecessary. Take M =NU{0}
equipped with the metric given by d(n,0) = n! and d(n,m) =n! +m! if n # m.
Define f: M — M by f(0)=0 and f(n)=n—1if n>1. Then f(M)= M is
clearly not totally bounded while f is compact as it satisfies (P1), (Py) and (Py).

3. Weak compactness of Lipschitz operators

As we already mentioned in the introduction, theorem B is an easy consequence of
theorem C, which states that norm-convergence and weak-convergence are equiva-
lent for sequences in FS (M), plus some other classical results concerning (weakly)
compact operators. We postpone the proof of theorem C in order to first discuss
its use in the proof of theorem B.
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THEOREM B. Let M, N be complete pointed metric spaces, and let f: M — N be
a base point-preserving Lipschitz mapping. The next conditions are equivalent

Proof. The implication (i) == (ii) is obvious. Next, (ii) = (i) follows from
theorem C and proposition 2.1. Indeed, thanks to the Eberlein-Smulian theorem
(see [4, theorem 1.6.3] e.g.), a subset S of a Banach space X is (relatively) weakly
compact if and only if it is (relatively) weakly sequentially compact. So, theorem C
implies that a subset S C FS(M) is weakly compact if and only if it is compact in
the norm topology. Now observe that the set appearing in proposition 2.1 is a subset
of FS5(M) so that compactness and weak compactness are indeed equivalent. To
conclude, (i) <= (iii) follows from Schauder’s theorem (see e.g. [19, theorem
3.4.15]), (ii) <= (iv) follows from Gantmacher’s theorem (see e.g. [19, theorem
3.5.13]), and (ii) <= (v) follows from a classical result [19, theorem 3.5.14] due
to Gantmacher in the separable case and Nakamura in the general case. [J O

Theorem C is essentially contained in the very deep result [3, theorem 5.2], even
if one really needs to use the weak closeness of FS; (M) [1, lemma 2.10] in order to
obtain the statement we give. For the sake of completeness, we will take advantage of
some recent developments in the study of Lipschitz-free spaces in order to provide a
new direct proof of this result. First, we recall two useful facts. The first one shows
that the pointwise multiplication with a Lipschitz function of bounded support
always results in a Lipschitz function and, in fact, defines a continuous operator
between Lipschitz spaces.

LEMMA 3.1 lemma 2.3 in [7]. Let M be a pointed metric space and let h € Lip(M)
have bounded support. Let K C M contain the base point and the support of h. For
f € Lipy(K), let T (f) be the function given by

f(@)h(z) ifre K (3.1)
0 ife ¢ K- '
Then Ty, defines a weak™-to-weak® continuous linear operator from Lipy(K) into

Lipy(M), and |[Ty|| < |[h]l + rad(supp(h)) [|A]] -

The function T}, (f) does not depend on the choice of K, as long as it contains the
support of i. Thus the requirement that 0 € K is not really a restriction, as one may
always use the set K U {0} instead. Since T}, is weak*-to-weak* continuous, there is
an associated bounded linear operator W;,: F(M) — F(K) such that W;,” = T},.

The second fact is the following, whose proof is inspired from [18, lemma 4.5].

https://doi.org/10.1017/prm.2022.29 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.29

1016 A. Abbar, C. Coine and C. Petitjean

LEMMA 3.2. Let M be a bounded metric space. If (yn)n C F(M) is a weakly null
sequence such that there exists € > 0 such that for every n #m € N,

d(supp(vs), supp(vm)) = inf{d(z,y) | € supp(vs), y € supp(ym)} > ¢,

then (yn)n converges to 0 in the norm topology.
In the proof below, for E a subset of M and n > 0, we let
[E]y :={z € M [ d(z, E) < n}.

Proof. Arguing by contradiction, we assume that (v,), does not converge to 0 in
the norm topology. We can extract a subsequence, still denoted the same way for
simplicity, such that:

30 >0, Vn €N, ||v,] > 0.
Furthermore, if for some k we have d({0}, supp(yx)) < g, then, by triangle inequal-
ity and using the assumption, we have, for any i # k d({0}, supp(y;)) > % Hence,
we can as well assume that d({0}, supp(y,)) > g for every n € N. In what follows,
denote o = g and we let R :=rad(M) be the radius of M.

We let (E),)n>0 be the increasing sequence of subsets of M given by

E, :={0}U U supp(vk)-
k=1

By assumption and the remark above, we have that
(x) VR eN, d(suppynt1,En) > a.

Let n; =1 and choose a positive hy € By, (a) such that [(h1,7n,)| > d/2. By
induction, we will build an increasing sequence of integers (nj)ren as well as
Lipschitz maps (hg)ken C 2Ra‘1BLip0(M) with the following properties:

o | (hr, i) | > 6/2,

o |(hi, ;)| < £ whenever i < k and j > k,

® hy =0, hy is zero on [Ey,_,]a/2 and (hg)x have mutually disjoint supports.
Assume that ng has been selected, as well as hy, ..., hy. Since (v,) is weakly-null,

we can pick ngy1 > ng such that

8
Y = ngy, Vi <k, [(hi, )| < e

Using the Hahn—-Banach theorem we then pick fri1 € Lipg(M) such that

Lip(fk+1) <1 and <fk+1ﬂ’ynk+1> = ||/ynk+1|| > 0. NeXt? we let Jk+1 € LipO(Enk-H)
be the map defined by g1 = fry1 on supp(yn,,,) and gry1 =0 on [Ey,, —1]a/2-
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We deduce from (%) that ggi1 is 2Ra~!-Lipschitz, and moreover (gr11,Vny,,) =
(fr41, Ynpsr) = Vs || > 6. We let g1 be either the positive or the negative part
of gg41. The choice is made so that |<§k+1,fynk+l>’ > 0/2. We now define

Ve € M, hgyi(x) = max <sup(§k+1(y) —2Rat d(z,v)) , 0> ,
yeSs

where S = E,, ., U[E,,]a/2. Notice that hiyq is the smallest positive 2Ra™!
-Lipschitz extension to the whole space M of giy1 (see [20, theorem 1.33]). In
particular, hg 1 is zero on [Ey, | /2 (and everywhere where i1 was zero). Now let
I <k and assume that hy(x) # 0. Then clearly = ¢ [E,, ] /2. But also hy(z) = 0 by
the choice of the constant of the extension above. So (hg); have mutually disjoint
supports. This finishes the inductive construction.

To conclude, letting h = supy, hy, we have h =Y _,~ | hy pointwise together with
|h|l; < 2Ra~!. Therefore h € Lipy(M) and for every k we have

|V ) ‘<’Vnkazh> | (Vs k) |_Z|7nm

k—1

[\')\oq
>

4
i=1

= |

contradicting the fact that (7, ), is weakly null. O

We are now ready to prove the desired structural result about finitely supported
sequences in Lipschitz-free spaces.

THEOREM C. Let M be a complete metric space. If a sequence (Vn)n C FSk(M)
weakly converges to some v € F(M), then v € FSp(M) and (yn)n converges to
in the norm topology.

Proof. Since FSy(M) is weakly closed by [1, lemma 2.10], if a sequence (y,)n C
FSi(M) weakly converges to some v € F(M), then v € FSi(M). Therefore, for
every n € N, v — v, € FSor(M). Consequently, to prove the result it is enough to
show that for every complete metric space M and for every k € N, any weakly null
sequence in FSy (M) is actually norm null. Furthermore, thanks to [2, theorem A],
there exists a bounded metric space B(M) such that F(M) is linearly isomorphic
to F(B(M)). The isomorphism T : F(M) — F(B(M)) preserves finitely supported
elements is the sense that v € FSi(M) if and only if T(y) € FSi(B(M)). So,
without loss of generality, we may assume that M is a bounded metric space. Finally
let us point out that it is enough to prove that (7, ), has a norm-null subsequence.
Indeed, assume that (7,), does not converge to 0. Then there exists € > 0 and a
subsequence (Y, (n))n such that ||y, )| > & > 0 for every n. Since (74, (n))n is still
weakly null, the proof below will show that we may extract a further subsequence
(Y1002 (n) )n Which is norm-null, but this contradicts the fact that ||y, )| > > 0.
We will proceed by induction on k € N. If k =1 and (v,), C FS1(M) is a weakly
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null sequence, we can write 7, = a,0(x,) where a,, € K and x,, € M. Let us denote
f:=4d(-,0) € Lip,(M). Since (V,)n is weakly null, it is readily seen that

17all = lan| d(2n,0) = [{f, )] — 0.

Let us fix k£ € N. Assume we have shown that, for every j < k, every weakly null
sequence in FS;(M) is in fact norm null. Let us consider a weakly null sequence
(Yn)n C FSki1(M). For every n € N, we will write

k+1

Yo = Z ai(n)é(zi(n)),

where a;(n) € K and z;(n) € M for every 1 <i < k+ 1. We will distinguish two
cases:

e There exists i € {1,...,k + 1} such that (x;(n)), has a convergent subsequence
to some 2z € M. For simplicity, we still denote the subsequence by (2;(n))s,.
Notice that ¢ € {1,...,k + 1} as above might not be unique. So, up to a further
extraction, we may assume that there exists ¢ >0 and 41,...,7; such that
(zi(n))n converges to x for every i € I := {i1,...,4;}, while (z;(n)), C M\
B(xz,e) whenever i € {1,...,k+1}\I.If j =k + 1, thatis I ={1,...,k + 1},
then the set K := {z;(n) [n € Nand 1 <i < k+ 1} U {2z} U{0} is a countable
compact metric space such that (v,), C F(K). Thanks to [13, theorem 3.1] (see
also [5]), F(K) has the Schur property so that (v,) is actually norm null, which
is what we wanted to prove. If j < k + 1, we let h be the map defined by h(z) = 1
if z € B(x,e/2) and h(z) =0 if z € M \ B(z,¢). It is easy to prove that h is
Lipschitz on B(x,e/2) UM \ B(z,¢) and using McShane’s extension theorem
(see e.g. [20, theorem 1.33 and corollary 1.34]), we can extend h to the all
M. Clearly, supp(h) C K := B(z,¢) U{0}. Now let T, be as in lemma 3.1 and
Wy, : F(M) — F(K) be its pre-adjoint operator. It is a routine check to see that
if e F(B(x,e/2)U{0}) then W (1) = p. Furthermore, there exists Ny € N
such that for every n > Ny and every ¢ € {i1,...,i;}, (xi(n)), C B(z,g/2).
Thus, by construction, we have:

k+1
Vn = No, Wiyn =Y ai(n)é(zi(n)).
=1

il

Since W}, is continuous and since (7, ), is weakly null, the sequence (Wpyy)n C
F(K) is weakly null as well. As j < k + 1, we may use the induction hypothesis
to deduce that (Wyv,)n is norm null in F(K). Recall that F(K) is a closed
subspace of F(M) so that (Wpv,), can be seen as a norm null sequence in
F (M), which in turn implies that the sequence (u,,), given by

k+1

pn =D ai(m)d(@i(n))
B
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has to be weakly null. So we use once more our induction hypothesis to get
that (un,), is norm null and finally

('Vn)n = (Whlyn)n + (Mn)n
is norm convergent to 0 as the sum of two such sequences.

There is no i € {1,...,k+ 1} such that (x;(n)), has a convergent subse-
quence. Then each set {z;(n) |n € N}, 1 <i < k+ 1, is not totally bounded.
Hence there exists ¢ > 0 and an infinite subset M of N such that for every
i and every n#m € M: d(z;(n),z;(m)) >e. We now claim that we can
extract an infinite subset My of M such that for every ¢ # j and every
n#m € M;: d(z;(n),z;(m)) > ¢e/2. Let us briefly sketch this extraction. We
write M = {ny,n2,...} and we let my :=n;. Since the sequences (z;(n¢))e,
1 <i<k+1, are e-separated, by the triangle inequality they must ‘escape’
the balls B(x;(m1),e/2), 1 < j < k+ 1, eventually. In other words, there exists
mgo € M such that m; < msy and for every n € Ml and 1 <4,j <k+1, n>
mo = d(z;(n),z;(m1)) > €/2. By the same argument, there exists mg € M
such that ms > mg and for every 4,j € {1,...,k+ 1} and every n € M, n >
mg = d(z;(n),zj(m1)) > /2 and d(z;(n),z;(msz)) > ¢/2. Continuing this
construction by induction provides the required My = {m,ms,...}. To con-
clude, notice that for every n # m € My, d(supp(y,), supp(ym)) > €/2. Since
(Yn)nem, is weakly null, we may apply lemma 3.2 to conclude that (v, )nen, is
norm null.

O
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