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With recent technical advances in spectroscopic imaging using electron energy loss spectroscopy (EELS) 
performed in an aberration-corrected STEM, we are now able to study the chemical and electronic 
structures of materials with atomic-resolution [1]. Challenges, however, remain; particularly for 
applications that require short acquisition times or those that are limited to low electron dose such as the 
mapping of beam sensitive materials. Improving the signal-to-noise ratio (SNR) of spectra recorded 
under low-dose conditions is, therefore, imperative for a range of spectroscopic applications. Here, we 
demonstrate the use and benefits of a direct electron detector (DED) for atomic-resolution spectroscopic 
mapping. Compared to traditional indirect detectors, these DEDs use active pixel sensor technology for 
direct detection of electrons without the use of an intermediate scintillator. As a result, DEDs offer 
improved detective quantum efficiency (DQE), narrow point spread function (PSF), and superior SNRs 
in dose-limited imaging applications [2-4]. 
 
We perform spectroscopic mapping at 300 kV on an aberration-corrected FEI Titan Themis equipped 
with a 965 GIF Quantum ER and a Gatan K2 Summit operated in electron counting mode. To test the 
performance of the set-up, a 150x150 pixel map was recorded on the perovskite oxide Nd0.5Sr0.5MnO3 
(NSMO) with a dwell time of 5 msec/pixel and a beam current of 100 pA. The benefit of low read-out 
noise and narrow PSF are visible in the electron energy loss spectrum shown in Figure 1a, which is the 
O-K edge background subtracted spectrum summed over the full map (total dwell time <2min). The low 
read-out noise ensures that even at a dwell time of 5 msec/pixel, a high SNR is observed across the full 
spectrum, including minor edges such as the Mn-L1 and Nd-M3 edges. In addition, the Sr-L edge at an 
energy loss of ~1940 eV is also clearly identified. Due to the size of the chip (i.e., 3710 channels), an 
energy range of >1800 eV is available at a moderate dispersion of 0.5 eV/ch, revealing all elements in a 
single spectrum in the case of NSMO. Importantly, the near edge fine structure remains visible because 
of the narrow PSF of the detector (Figure 1b). Finally, with greatly reduced read-out noise, standard 
powerlaw background subtraction can be performed accurately and atomic-resolution elemental maps 
can be extracted reliably including those at high energy losses such as the Sr-map (Figure 1c). The 
enhanced detector sensitivity in EELS is expected to play a large role for applications that require low 
electron dose or short dwell times such as low temperature experiments [5]. 
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Figure 1. (a) EELS edges from all elements present in Nd0.5Sr0.5MnO3 are recorded simultaneously 
using a 965 GIF Quantum ER plus K2 Summit in counting mode at a dispersion of 0.5 eV/ch. The large 
number of pixels available in the dispersive direction (i.e. 3710 pixels) gives access to an energy range 
of 1855 eV at 0.5 eV/ch. (b) O-K, Mn-L, and Nd-M edges from (a) after background subtraction. (c) 
Atomic-resolution elemental maps (150x150 pixels) obtained from the Mn-L, Nd-M, and Sr-L edges 
marked by dotted squares in (a). Due to the high signal-to-noise ratio in counting mode, even a short 
dwell time of 5 msec/pixel allows the extraction of the high-energy Sr-map at ~1940 eV with clear 
atomic contrast. (d) False colored images constructed from elemental maps in (c). Far-right map of Nd 
and Sr reveals local variations in relative doping across the sample. 
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