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FUNDAMENTAL THEOREM OF PREHOMOGENEOUS
VECTOR SPACES OF CHARACTERISTIC p

TATSUO KIMURA, TAKEYOSHI KOGISO AND MAKIKO FUJINAGA

For a local field of characteristic 0, the functional equations of zeta distributions
of prehomogeneous vector spaces have been obtained by M. Sato, Shintani, Igusa,
F. Sato and Gyoja. In this paper, we shall consider the case of local fields of
characteristic p > 0.

1. if-REGULAR P.V.'S

We fix a local field K of characteristic p > 0. Let G be a connected linear algebraic
group, p its rational representation of G on a finite-dimensional vector space V, all
defined over an algebraic closure K of K. We call a triplet (G, p, V) a prehomogeneous
vector space (abbreviated P.V.) if V has a Zariski-dense G-orbit Y,

Any point of Y is called a generic point and the isotropy subgroup Gy = {g e
G; p{g)y — y} of a generic point y is called a generic isotropy subgroup. Note that we
have dimGy = dimG — dim V if and only if y £ Y. A non-zero rational function f{x)
on V is called a relative invariant of (G, p, V) if f(p(g)x) = x{g)f{x) holds for any
g e G and x e Y where \ : G -t GL\ is a rational character of G.

The complement S of Y is a Zariski-closed set which is called the singular
set of the P.V. (G,p,V). Now we assume that (G,p, V) is defined over K, that
is , G,p,V a r e a l l d e f i n e d o v e r K. L e t St = {x € V;fi(x) = 0 } (i = l,...,l)

be the if-irreducible component of the .ftT-rational points 5^- of 5 of codimen-
sion one defined by a X-irreducible (not necessarily absolutely irreducible) polyno-
mial fi(x) ( i = l , . . . , / ) . Then fi(x),..., fi(x) are algebraically independent rel-
ative invariants and any relative invariant f(x) in K(V) is of the form f(x) =
c • fi{x)mi • • • fi{x)m' (ceK*, (m i , . . . ,TO | ) eZ l ) . We call A ( X ) , . . . , / I ( I ) the basic
if-relative invariants of (G, p, V). Let \i be the rational character of G corresponding
to fi (i = 1,...,/). Let X(G)K be the group of if-rational characters of G, X\(G)K

its subgroup corresponding to if-relative invariants. Then X\(G)K is a free Abelian
group of rank I generated by Xi> • • • > Xi •
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Let G\ be a subgroup of G generated by the commutator subgroup [G, G] and a
generic isotropy subgroup. This does not depend on the choice of a generic point. For
X £ X(G)K, it is in Xi(G)K if and only if X\GI — 1- F°r a relative invariant f(x) of
(G, p, V), we can define a rational map iff : Y —> V* by

¥>/(*)=* 77ZV ' ^ r W ' • • •' 77ZT ' TTrW

where V* is the dual vector space of V and we identify V and V* with K by taking
a pair of dual bases. This definition does not depend on the choice of bases. We
sometimes denote <ff(x) by gradlog/(a;). By a direct calculation, we have

(1) (ff(p(g)x) = p*(g)ipf(x) for g G G and x € Y where p* denotes the
contragredient representation of p, and

(2) (dp(A)x,<pf{x)) = dx(A) for x £ Y and A € Lie (G) where dp (re-
spectively dx) is the infinitesimal representation of p (respectively the
infinitesimal character of x) of the Lie algebra Lie (G) of G.

DEFINITION 1.1: A relative invariant is called non-degenerate if iff : Y —> V*
is dominant. If there exists a non-degenerate relative invariant f(x) in K(V), we say
that (G, p, V) is a K-regular P.V. In this case, <fif{Y) is a Zariski-dense G-orbit in V*,
and hence the dual triplet (G,p*,V*) is also a P.V. For a generic point y € Y*, the
dominant morphism ip : G —> V* defined by ip(g) — p*(g)y is called an open orbit
morphism. If there is a non-degenerate relative invariant / such that tpf : Y —> V*
is separable and also an open orbit morphism ip : G —> V* is separable, we say that
(G, p, V) is a separable if-regular P.V. In this case, the Hessian

of log / is a non-zero relative invariant corresponding to the character XQ 1 with Xo(g) —
det p(g)2 for g e G. Hence we have detp(#)2 € X\{G)K for a separable ^-regular P.V.
In general,we denote by YK, SK, et cetera, /T-rational points of Y, S, et cetera. We write
X*(G)K (respectively X*(G)K, Y*,S*, et cetera) for (G, p*, V*) which corresponds to
Xi(G)K (respectively X(G)K,Y,S, etcetera) for (G,p,V).

PROPOSITION 1 . 2 . Assume that (G,p,V) and (G,p*,V*) are K-regular

P. V. 's. Then we have the following assertion.

/ • i \ \ r {(~*\ V*/f~*\
1 1 1 j \ \ \ \ j r l j { — yVi l i j r l i v - .

(2) For a non-degenerate K-relative invariant f, the map ip — gradlog/ :
F - > 7 ' is bijective.
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P R O O F : Since ip(Y) is a Zariski-dense G-orbit in V*, we have ip(Y) = Y*, that
is, ip is surjective. Since p*{g)'p{x) = ip(p(g)x), we have Gx C Gv(x) for x € Y. Now
let /* be a non-degenerate relative invariant in K(V*), and put y>* — g radlog/* :
Y* -> Y. Similarly we have Gy C Gxi for y = ip(x) and x' = <p*{y), and hence
Gx c Gy C Gx/. Since z ' = p(50)z for some 90 € G, we have Gxi - goGxg^x D Gx.
Since dim Gx> = dim G x , the algebraic group Gxi and Gx have the same connected
component H of the identity. Since Gx> = goGxgQl is isomorphic to G x , the numbers
of their connected components coincide, that is, [Gxi : H] — [Gx : H] with Gxi D Gx.
This implies Gx/ = G x , and hence Gx = Gy with y = ip(x).

Thus we have Gi = G\ and hence X\(G)K = X*(G)K. Note that Xi{G)K =
{x € X ( G ) K ; x l d = ! } • Now assume that y>(a;i) = ^(3:2) with x2 = p(g)x\ for
some g £ G. Then we have <p(a;i) = ^(£2) — <fi{p(g)xi) = P*(g)<p(xi) and hence
g 6 GV(X1) = G X l , that is, x2 = p{g)x\ = X\. Thus <p is injective. D

PROPOSITION 1 .3 . Assume that (G,p,V) and (G,p*,V*) are K-regular
P.V.'s. Then we have # p{G)K\YK = # ^ ( G ) K \ F ^ .

PROOF: Let / be a non-degenerate relative invariant in K(V) and put ip =
gradlog/. Then for any x G YK, we have ip{p(G)K • x) = p*{G)K • <p(x) C Y£,
that is, tp maps an orbit in YK to an orbit in Y£.

By Propositionl.2, this map (p is injective, and hence # p{G)K\YK = # P*(G)K\^K

Similarly we have # P*(G)K\Y£ ^ # p{G)K\YK. D

PROPOSI T I ON 1.4. Assume that (G, p, V) is a separable K-regular P. V. Then
its dual (G, p*,V") is also a separable K-regular P.V.

PROOF: Let / be a separable non-degenerate relative invariant in K(V) and put
<p = gradlog/ : Y -> Y*. First we show that tp is injective. Assume that ip(x) = v?(x').
Since dx(A) = (dp(A)a;,i^(a;)) = -(a:,dp*(j4)(p(a;)), we have {x - x', dp* (A)ip(x)) = 0
for all A e Lie(G). Since ip : G ~> V* with ip{g) — p*(g)ip{x) is separable, we
have {dp*(A)(p(x); A € Lie(G)} = V*, and hence x - x' = 0, that is, x = x'. For
any g E G V ( X ) ( D G X ) , we have ip{p{g)x) = p*(g)<p(x) = <p(x). As 9? is injective,
we have p(g)x = x, that is, g € Gx. This implies that Gx = Gv(x) and hence
Xi(G)K = X*(G)K. A rational character x corresponding to / is in X\(G)K and
hence x"1 € X{(G)K. This implies that there exists a relative invariant /* in K(V*)
satisfying f*(p*(g)y) = x(5)"V'(») for g € G and yeY*.

Put <p* = gradlog/*. Then we have {ip*(y),dp*(A)y) - -dx{A). Since dx{A) =
(dp{A)x,tp(x)) = -(x,dp*(A)v?(a;)), we have {x - (p*(y),dp*(A)y) = 0 for y = ip{x)
and all A € Lie (G).

Since the open orbit morphism ip is separable, we have {dp*(A)y; J4 € Lie (G)} =
V*, and hence tp*(y) = x eY, that is, <p*{Y*) = Y. This implies that Y and Y*
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are biregularly isomorophic. Hence /* is separable non-degenerate, and an open orbit
morphism ip* : G —> V is separable, that is, (G, p*,V*) is a separable if-regular
p.v. D

Note that in the case of ch(K) — 0, a if-regular P.V. is automatically a separable
if-regular P.V. and the proof of Proposition 1.4 gives the equivalence between ir-
regularity of (G, p, V) and that of (G, p*, V*).

Now we shall consider a sufficient condition to ensure that # P(G)K\YK is finite.

LEMMA 1 . 5 . Let X be a homogeneous space of the connected algebraic group
G over K where the action is defined over K. Let Ksep be the separable closure of K
in K. Then X(Ksep) is a homogeneous space of G(Ksep).

PROOF: Since X(Ksep) is dense in X = X{K) (see Borel [2]), we may take
XQ £ X(Ksep). Since the map / : G —> X with f{g) = g • xo is defined over Ksep, the
fibre f~1(x) of each x € X(KBep) is also defined over ATsep. Since the set X[K) is
homogeneous by G(K), we have f-^x)^ ^ 0. f-^x)^^) is dense in / " ^ ( S f )
and f~1(x)(Ksep) C G(Ksep) which implies g-xo = x. Thus X(Ksep) is a homogeneous
space of G(Ksep)- D

By this lemma, we can use Galois cohomology to investigate X(K) as a G(K)-

space.

Professor J.P. Serre kindly told us of the following theorem with the proof which
was explained by Tits to him.

THEOREM 1 .6 . Let K be a local Seld of characteristic p > 0 (or more generally-
let K be a field complete with respect to a discrete valuation, and with the residue
Geld k of type (F) in the sense of Serre [18],). Let G be a connected smooth reductive
group over K. Then if1 (if, G) is finite.

PROOF: (After Serre's letter on 9th September 1992.) Let K' be the maximal
unramified extension of K. The field K' is known to be of dimension at most 1. (in
the sense of [18, II, Section 3]). By a theorem of Steinberg (for K' perfect) and of Borel-
Springer (for K' imperfect - see [1, II, p.761] we have HX{K', G) = 0. Hence the Galois
cohomology of G over K is killed by K', that is, it is equal to Hl(K'/K,G). We may
now apply a theorem of Bruhat-Tits [3, Theorem 3.12]; this says that HX{K'IK,G) is
contained in a finite union of cohomology sets Hl{k, d), where the Gi 's are algebraic
linear groups (not neccessarily connected) over k. Since k is type (F), each H1(k,Gi)
is finite (see [1, II, p.404, Theorem 6.2], or [18, III, Theorem 4]. Hence Hl{K,G) is
finite. D

Let B be a subgroup of GLn(Ksep) and A a normal subgroup of B. Then G =
Gal(Ksep/K) acts on them. For a 1-cocycle b G Z1(G,B), let \,A be the twist of A by
b = {bs}, t h a t is, ^A = A , b u t G a c t s on bA by soa = bs • s(a) • bj1 for s € G, a € A .
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We learned the following lemma from Professor A. Gyoja.

LEMMA 1.7. There exists a bijection between HX{G, A) and HX(G, 6-4).

PROOF: Since Hx(G,GLn) = {1}, there exists a 6 GLn satisfying bs = a~x • s(a)
{seG). Define / : GLn -> GLn by f(x) = a~xxa. Then we have

s o f(x) = 68 • s(a~xxa) • bj1 = a~x • s(x) • a — f(s(x)),

and hence we can identify ^A = f(A). For {as} 6 Z1(G,A), we make correspond
{/(as)} € Zx(G,bA). This gives a bijection between HX{G,A) and Hx(G,bA). D

THEOREM 1.8. Let G be a smooth reductive group over K, not necessarily con-
nected. Then Hl{K,G) is finite.

PROOF: Let G° be a connected component of G. Then G/G° is a finite group.
Since 1 -> G° -> G ->• G/G° -> 1 is exact, we have Hl(K,G°) -> HX{K,G) ->
Hl (K, G/G°) is exact as distinguished point sets. By [18, Chapter III, Section
4, Proposition 8], we have #Hl(K,G/G°) < +oo. By Theorem 1.6, we have
#HX(K,G°) < +oo. By Lemma 1.7 and [18, Proposition 35], we have #HX{K,G) <
+oo. D

PROPOSITION 1.9. Let (G,p,V) be a P.V. defined over K with a reductive
generic isotropy subgroup. Then #p(G)K\YK is finite.

PROOF: Let H be a generic isotropy subgroup of a point in YK • Then there exists
a bijection between p{G)K\YK and Ker (HX(K,H) -> HX{K,G)) (see Serre [18]). By
Theorem 1.8, Hl{K,H) is finite, and hence p{G)K\YK is a finite set. D

EXAMPLE 1.10. Let G be the subgroup of GLn consisting of all lower triangular
matrices. Let V be the totality of symmetric n x n matrices and define p by p(g)x —
gxtg for all g € G and x € V. Since dim G = dim V, a generic isotropy subgroup is
a finite subgroup and hence we have # p(G)K\Yx = v < +oo by Proposition 1.9.

Moreover detx is a non-degenerate iiT-relative invariant. By tr(xy) (x,y € V),
we identify V with its dual V*. Then (G,p,V) and (G,p*,V*) are Jf-regular
P.V.'s. Hence, by Proposition 1.3, we have # p*{G)K\Y^ = v < +oo.

PROPOSITION 1 .11 . Let (G, p, V) be an irreducible regular P.V. defined over
K. Then we have #p(G)K\YK < +oo.

PROOF: By a classification of irreducible P.V.'s (see Chen [5]), we know that a
generic isotropy subgroup is reductive. D

2. ZETA DISTRIBUTIONS

Let K be a local field of characteristic p > 0. Assume that (G, p, V) and its dual
(G,p*,V*) are if-regular P.V.'s. Moreover we shall assume that YK = Yi U • • - U Yv
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decomposes into a finite union of p(G)A--orbits Yi (1 ^ i ^ v), that is, # p(G)K\Yx =
v < +oo. Then by Proposition 1.3, we have Y£ = Y{ U • • • U Y*.

Let fi(x),..., fi(x) (respectively f*(y), • •., f?(y)) be basic .ftT-relative invariants
of (G,p, V) (respectively (G,p*,V*)). Let Xi (respectively Xi) be the corresponding
character of f{ (respectively / / ) . Then we have Xi(G)K = (xi, • • •, Xi) a n d X\{G)K

 =

( X i , - - - , x r > -
By Proposition 1.2, we have X\(G)K — X{(G)K so that there exists a unique

matrix U = (uy) 6 GLj(Z) satisfying Xi = fl X™'3 • Since detp(^)2 g XX(G)K, we

have detp(5)2 = x " 1 •••X?A' for some A = (Ai , . . . , A,) € ((1/2)Z)' and de tp ' ( 5 ) 2 =

Xi2Al •••X*2*'* ^ some A* = (AJ.. . . .A;) G ((1/2)Z)'. Since detp*(S) = detp(^)"1 ,
we have A* = —AC/.

EXAMPLE 2.1. For simplicity, we deal with the case n = 2 in Example 1.10. Then we
have

The basic if-relative invariants of (G, p, V) (respectively (G, p*, V*)) are fi(X) =

x and /2(^Q — de tX (respectively f{{X) — z, f%{X) — de tX) corresponding to

Xi(g) = a2, X2(g) = a2b2 (respectively xl(g) = b'2, x2(5) = a~2b~2) for

a 0

in G. Hence xi = X1X2 * a n d X2 = X2 * so t Qat v/e have

Since

we have A = A* = (0,3/2).

Let {e i , . . . ,£„} be the complete set of representatives of K* /Kx2 in K* . Then
we have YK = yx U • • • U Yv with Yt = {y € VK; /2(») = £jmod i f x 2 } (i = l , . . . , i / ) .

Let u/*) : ifx —> C x (i = 1,... ,1) be a quasicharacter, that is, a continuous
homomorphism.
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For w = (wW,.--,w' ' ') and the basic if-relative invariants f(x) = (fi(x),...,
i

fi(x)), we write ui(f(x)) instead of \J ^xHfi(x)) f°r simplicity of notation.

Let | | be the absolute value of K normalised by |TT| = q~l for a prime element
•K where q is the module of K. For s = (s\,..., S|), we write u>s = (| |S l , . . . , | | s ') so

that w.(/(a;)) = II \fi(x)\s'.
t=i

Let dx be the Haar measure on VK = Kn normalised by JRn dx = 1 where R is
the maximal compact subring of K. Since d{p(g)x) = |detp(#)| dx and u\(f(p(g)x)) —
|det p{g)\ u)\(f(x)), the measure dy{x) = (dx)/(u>\(f(x))) is a G-invariant measure on
Y.

For $ e S(VRT) where &{VK) denotes the Schwartz-Bruhat space of VK , we define
the integral

Zi(u>, $ ) = / w(f(x))*(x) dY(x) (i = 1 , . . . . i/).

Now any quasi-character CJ^ : Kx —> C x = { 0 £ C ; z ^ O } can be written
uniquely as w( i ) = | s ' • <j>t for some «i € C and fa : Rx ^ C* = {z e C; |z| = 1}
where R* is the set of units of R. Pu t Re wW = Re Si (i-l,...,l). The following
lemma is easy to prove and we omit the proof (see Sato [15]).

LEMMA 2 . 2 . If Re w( i ) > X{ (i=l,...,l), the integral Zi(u,$) is absoluteiy

convergent and holomorphic with respect to s = ( s i , . . . , sj) e (C/((27ri) /( logg))Z) =

Let 6'(VR-) = {2 : &(VK) -> C, where C is a linear mapping} be the space of
distributions on VK- By Lemma 2.2, the mapping $ i-> Zi(w,$) defines a distribution
on V/c when ite w(i) > A< (i = 1 , . . . , I).

For (G, p", V*), we can define a similar distribution ZJ(UJ) (j = 1 , . . . , v) given by

Now we fix a non-trivial additive character ip : K -> C f and define the Fourier

transformation &{VK) 9 $ ' >->• $* € 6(1 /*) by $*(z) = / v , $*(y)rp((x,y))dy where

dy is the Haar measure on VK dual to a fixed Haar measure on VK .

/ m ms ff (±. ,-^ . -K r\ . \
ror CJ

 =
 IUĴ  ' .. CĴ  -^), put to =

 UJ ^ 1 1 1 u) , . . . , II tu^ ' %l I .

Our purpose is to show tha t Zj(u>) and Z | (w) are continued analytically to all w
and satisfy the functional equation:

(2.1) Zi(w) --
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under some additional conditions where Zi(u>)($*) = Zi(ui,$*\. Recall that ui\* —

(| |A. . . . . . . I |A ? ) with det p*{g)2 = xT'1 • • • xf' •

Actually when K is a local field with ch(K) = 0, then (2.1) is obtained under
some conditions and it is called "the fundamental theorem of P.V. over K".

3. RATIONALITY FOR ALMOST ALL p

For a rational prime p, let Kp denote the local field with the constant field F p .
For / e Z[x i , . . . ,xn], we denote ( / m o d p) € Fp[xi,... ,xn] by fp. Then we have
the following theorem which was suggested by Professor M. Kashiwara.

THEOREM 3 . 1 . For almost all p, the integral

= f \fP{x)\Kp%{x)dpx

is a rational function of t = p~s where <J>p S &{Kp) and dpx is a Haar measure on

p •

PROOF: Let K = Q((i)) be the field of formal power series over Q, X = £}n

the affine space and XK — Kn. Let / denote the morphism X -> ft defined by
/ € "L[xi, .. -xn]; then there exists a nonsingular algebraic variety Y and a projective
morphism h : Y —¥ X both defined over K with the following property: let b denote
an arbitrary point of YK , OK the local ring of Y at b relative to K (consisting of
"functions" defined over K), and OJIK the ideal of non-units of OK ; then there exists an
ideal basis ( t / i , . . . , yn) of 9Jfo, elements u, v of QK — 9RK , and integers Ni ^ 0, Vi ^ 1
for 1 < i < n such that

»=i t=i

The existence of such a pair (Y, h) is guaranteed by Hironaka's theorem [7, p.109-
326]. Then for almost all p, the reduction modulo p is well-defined and we have similar
results for Kp,fp,... et cetera. Then by arguments similar to those in the Appendix
of Igusa [13], we obtain our result. D

REMARK 3.2. Let if be a number field. For / e OK[X\, . . . . xn], we have a similar
result to Theorem 3.1 for almost all prime ideals ^J of OK-

4. FUNCTIONAL EQUATIONS

LEMMA 4 . 1 . Let G denote a locally compact totally disconnected group, H a
closed subgroup of G, X = H\G, and UJ : G —> C x a quasicharacter. Put
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{T € &(X)';gT = w{g)~lT for all geG}. Then we have dimc £Y(W) ^ 1. Moreover
dime £x(w) = 1 if and only if AG "WIJJ =A# where AG,AJJ denotes the module of
G,H respectively.

PROOF: See Igusa [11, p.1015]. D

Let (G,p,V) and its dual (G,p*,V*) be iiT-regular P.V.'s with # p(G)K\YK =
v < +oo where if is a local field of characteristic p. Then, by Proposition 1.3, we have
YK = Y1U---UYv&ndY^ = Y{'U---LlY*, that is, #p*{G)K\Y£ = v.

As in Section 2, we can define the zeta distribution Zi(u>, $) (respectively Zf(w, $*))
which is convergent when Rew^ > Xj (respectively ReujW > A|) ( 1 < i < v,

We denote by Zi(u) the distribution defined by $ M- Zj(w, $), et cetera.

P R O P O S I T I O N 4 . 2 . We have

(1) Z*(uj*tv\*) e Cy?(w*WA«) and

(2) 5;(o;)€£y;(w*WA*)

C « , J ^ 1 , - • • • , ! ' , ) •

PROOF: By a direct calculation, we obtain our results. D

PROPOSITION 4 . 3 . Let K be a local field of characteristic p > 0 with the

module q. For iv = (LJ(1\ . . . , w'1') with u/*) = wSi • <f>{ ( 4>i(n) = 1 for a prime element

n), assume that Zi(w, $ ) and Zj(u>, $*) are rational functions of q~Sl,..-, q~3' • Then

for all $* G &(Y£), we have

for i , j = l , . . . , i > .

PROOF: Since Zi(w,$) and Z,-(w,$*) are rational functions, it is denned for all
UJ except poles and hence by Lemma 4.1 and Proposition 4.2, we have our result. u

THEOREM 4 . 4 . Let (G, p, V) be a K-regular P.V. satisfying the following con-

ditions:

(Cl) its dual (G,p*,V*) is a K-regular P.V. such that # P*(G)K\V£ < + o o ,

(C2) for x € S*K, there exists x € XX{G)K satisfying X(GX,K) £ R* where

Rx is the set of units of the maximal compact subring R of K, and

(C3) Zj(u; ,$) is a rational function of q~Sl,... ,q~s' where UJ — (u)(l\... ,w^}

with uW =uSi ( l ^ i ^ I).

Then we have the functional equation
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for all $* e 6 ( V £ ) for i,j = 1 , . . . , v where v = # P*{G)K\Y^.

PROOF: The condition (C2) corresponds to Sato [15, Lemma 2.2, p.474] for the
case of ch(K) = 0. Then the proof is similar to the case of ch{K) = 0 (using Proposition
4.3). (See Igusa [11] and Sato [15, p.477]). D

Now let (G, p, V) be a reductive Q-regular P.V. Then for almost all p, we have
the reduction modulo p and we obtain the .Kp-regular P.V. (Gp, pp, Vp) where Kp is a
local field with the constant field F p .

ASSUMPTION A. Assume that # Pp(G)K \SKP < +°o and for x £ SKP, there exists

X G X]_{Gp)Kp satisfying X(GP,X,KP) <£ Rp for almost all p.

Let (G, p, V) be a reductive Q-regular P.V. with Assumption A. Let / i , • • . , / ; be

basic Q-relative invariants with Z-coefficients. Denote | / i mod p\s^ • • • | / ; mod p\s^

%by \f^(x)\s and put Z?(s,$p) = f, ) \f^(x)\s %(x)dYp(x)%0I $ p G &{VKp).

THEOREM 4 . 5 . Let (G,p,V) be a reductive Q-regular P.V. with Assumption

A. Then for almost all rational primes p, the integral Zf(s, $p) (i — 1 , . . . , vp, YKV

= Y\ U • • • U YVp) is a rational function and satisfies the functional equation:

When 1 = 1, we have s* = (n/d) — s with n = dim V and d = deg / . In general,
for u) = ws = u>si • • • u>si, we have u>s* = ui*w\*.

PROOF: By Theorem 4.4 and using the results of Section 1 and Section 3, we
obtain our result. U
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