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Abstract
The virtual model control (VMC) method establishes a direct correlation model between the end-effector and the
main body by selecting appropriate virtual mechanical components. This approach facilitates direct force control
while circumventing the necessity for complex dynamic modeling. However, the simplification inherent in this
modeling can result in inaccuracies in the calculation of joint driving torques, ultimately diminishing control pre-
cision. Moreover, VMC typically depends on predefined models for control, which constrains its adaptability in
dynamically complex environments and under varying movement conditions. To address these limitations, this paper
proposes the BP-VMC method, which is based on a backpropagation neural network (BPNN). Initially, a quadruped
robot model was established through kinematic analysis. Subsequently, a decomposed VMC model was developed,
and BPNN was introduced to facilitate the adaptive tuning of virtual parameters. This approach resulted in the
creation of a virtual mechanical component model with adaptive capabilities, compensating for errors arising from
simplified modeling. Finally, a simulation control system was constructed based on the BP-VMC control framework
to validate the optimization of control performance. Simulation experiments demonstrated that, in comparison to
traditional VMC methods, the BP-VMC method exhibits enhanced control accuracy and stability, achieving a 30%
reduction in trajectory tracking error, a 40% reduction in velocity tracking error, and a 20–30% improvement in
instability indices across various working conditions. This evidence underscores the BP-VMC method’s robust
adaptability in dynamic environments.

1. Introduction
Research on legged robots has its origins in the 1960s. In comparison to wheeled and tracked robots,
legged robots demonstrate superior adaptability to various terrains and enhanced capabilities for travers-
ing obstacles, which allows them to perform tasks in intricate environments [1–4]. As advancements in
robot control technology continue, legged robots have increasingly emerged as a focal point of research
interest [5–7]. These robots are characterized as time-varying, strongly coupled, and multivariable
dynamic systems that are significantly affected by gravitational forces, resulting in substantial compu-
tational requirements for motion control. Among the different types of legged robots, quadruped robots
are noted for their exceptional performance in terms of load-bearing capacity, diverse movement pat-
terns, and effective motion control [8]. Presently, the control strategies employed for quadruped robots
can be broadly categorized into two main types: model-based control methods and model-independent
control methods [9, 10].

Model-based control methodologies generally entail the development of a model of the robotic sys-
tem through the analysis of kinematics and dynamics, followed by the planning of a desired trajectory
[11, 12]. Subsequently, feedback control is employed to progressively align the actual motion trajectory
with the intended trajectory. Notable examples of model-based control techniques include Zero Moment
Point control [13, 14], Three-Part Control (3 PC) [15, 16], and virtual model control (VMC) [17, 18].
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In contrast, model-independent control strategies do not depend on the dynamic model of the robot;
rather, they operate based on input-output signals and pertinent real-time data. This characteristic allows
for the maintenance of stable robot operation even in the presence of model inaccuracies or uncertainties.
A prominent example of this approach is the central pattern generator-based motion control method
[19–22]. With advancements in machine learning technologies, an increasing number of researchers
have introduced model-independent control strategies that leverage intelligent algorithms [23–26].

An examination of pertinent research findings reveals that model-independent control methods oper-
ate independently of precise dynamic models. These methods attain control objectives by continuously
modifying the control output in response to feedback derived from interactions with the environment,
demonstrating significant adaptability. However, the absence of guidance from specific models poses
challenges in maintaining reliable control stability within complex environments. Conversely, model-
based control methods depend on dynamic models, which facilitate robots in executing desired motion
trajectories with enhanced accuracy, control precision, and stability. Theoretically, optimal control
outcomes can be realized when based on an accurate dynamic model. Nevertheless, in practical applica-
tions, the dynamic factors involved are often intricate and complex, complicating the modeling process.
Furthermore, the models that are developed typically pertain to specific operational conditions, thereby
constraining their adaptability in multifaceted environments.

Taking all factors into consideration, the VMC method belongs to the category of model-based con-
trol methods, but it simplifies the dynamic modeling process by directly establishing a correlation model
between the end-effector and the robot body. Furthermore, VMC constructs virtual models in the form of
equivalent and universal mechanical components, which possess broad generality. By adjusting relevant
virtual parameters, it can be adapted to different motion control models. Therefore, it is feasible to pro-
pose an optimized adaptive VMC method that realizes model-based control while enhancing adaptability
and robustness.

The VMC method approaches from the perspective of intuitive control, envisioning virtual mechan-
ical components connecting the robot’s body (internal action points) with the external environment
(external action points), such that the generated virtual forces can drive the robot to perform correspond-
ing actions. Then, based on the principle of virtual work, the virtual forces are mapped into torques in
the joint space, serving as the output targets for the joint motors. Chew [27] implemented walking con-
trol for biped robots based on VMC and proposed an adaptive VMC using sliding mode control theory.
Later, Massachusetts Institute Of Technology, combining model predictive technology, achieved con-
trol of complex actions like jumping on the Cheetah3 robot [28, 29]. Zhang [30] et al. proposed a joint
torque servo and active compliance control method for robot legs based on VMC, and subsequently,
Chen [31] et al. transformed the force distribution problem into a QP optimization problem to achieve
motion control under optimal foot force.

Numerous research initiatives pertaining to VMC concentrate on the prediction and allocation of
the requisite virtual forces, thereby optimizing control during the final output phase. Nonetheless, the
formulation of the virtual model, particularly the selection of virtual parameters, exerts a direct influ-
ence on the control efficacy of VMC. Variations in virtual models yield distinct dynamic characteristics
within VMC systems. The attainment of adaptive modeling of the virtual model, tailored to the spe-
cific demands of motion and the fluctuations in the motion environment, can substantially improve the
adaptability of the VMC controller and enhance its overall control performance [32, 33].

Therefore, this paper proposes a VMC method based on backpropagation neural network (BPNN)
optimization from the perspective of constructing virtual models. In this method, a BPNN is used to
equivalently replace the virtual parameter matrix in VMC. Leveraging the self-training capability of
BPNN, adaptive tuning of virtual parameters, that is, adaptive modeling of virtual mechanical compo-
nents, is achieved. Depending on changes in the environment or motion state, BPNN can also effectively
achieve adaptive optimization of the model and virtual parameters, thus improving the adaptability of
the controller. The main achievements are:

1. Adaptive tuning of virtual parameters, which realizes adaptive modeling of the virtual component
model. This enables the VMC controller to automatically adjust parameters based on different
environments and task requirements, improving the robot’s adaptability and flexibility.
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2. Optimized trajectory and velocity tracking performance, effectively reducing tracking errors.
This ensures that the robot can maintain precise and stable movement under different motion
targets.

3. Enhanced control stability and motion stability. The robot can maintain a stable operating state
even in dynamic environments, reducing the risk of losing control.

The framework of this article is shown in Figure 1. In Sections 2 and 3, a quadruped robot model
is established based on kinematic analysis, and a virtual control model is constructed accordingly. In
Sections 4 and 5, the control systems and frameworks for VMC and BP-VMC are developed. In Section 6,
the improved BP-VMC control algorithm is applied to the gait planning and motion trajectory control
of the quadruped robot, and a comparative analysis is conducted with VMC as the control group.

2. Quadruped robot model
In the control of leg movement, the more degrees of freedom (DOF) a leg has, the more flexible the
movement becomes, but also the more complex the control becomes. Considering the primary move-
ment needs of quadruped robots, each leg typically has three DOFs, which, respectively, achieve hip
abduction, thigh swing, and shank swing. The hip abduction DOF mainly serves as a corrective control
function based on stability. Therefore, when analyzing the kinematic model of a quadruped robot during
locomotion, the hip abduction DOF is temporarily excluded. The main focus is on analyzing the thigh
and shank swing DOFs.

The quadruped robot model studied in this paper adopts a front elbow-rear knee configuration, as
shown in Figure 2. Compared to other leg configurations, this configuration exhibits a more compact
overall structure, a uniform distribution of mass, and reduced self-motion fluctuations, all of which
contribute to the stability of the robot during its movement. To facilitate the subsequent description of
the positional relationships between various joint points, three coordinate systems are defined: the body
coordinate system B − XYZ with the centroid of the body as the reference, the hip coordinate system
H − xyz with the hip joint as the origin and the y-axis aligned with the rotation axis, and the foot-end
coordinate A − xyz system with the end-point A of the leg as the origin.

In the process of walking motion control, the main approach is to control the rotation angles of the
thigh and shank swing to achieve changes in the position output of the leg’s end-effector, thus fulfilling
the purpose of controlling the legged movement of the robot. This involves issues related to the kinemat-
ics analysis of the robot, which requires both the ability to derive the end-effector position output based
on the input of the actuated joints and to determine the required input of the actuated joints based on the
desired position output of the end-effector. This ensures the certainty of the robot’s motion control.

Due to the symmetrical structure of the legs of the quadruped robot, the right rear leg is selected for
analysis without loss of generality. The single-leg structure is shown in Figure 3. θ0 represents the angle
of the passive joint established at the interface between the foot-end and the ground, θ1 and θ2 represent
the angles of the active joints, A is the endpoint of the leg, H is the hip joint of the robot’s leg, B is the
center of mass of the robot, and the subscript i(i = 1, 2, 3, 4) indicates relevant parameters of the ith leg.

Let the lengths of the four rods be represented by the variables l1, l2, l3 and l4, with the stipulation that
l1 = l3. The length of the robot body is denoted as 2l0, the height of the centroid is denoted as h0, the
length of the thigh is denoted as la, and the length of the shank is denoted as lb. The relationships among
these variables are articulated through the equations la = l1 and lb = l4 − l2. The forward kinematics
mapping relationship from point A to point B can be derived as follows:

A
BT =

⎡
⎣ x

z
θ

⎤
⎦ =

⎡
⎢⎣

lbcθ0 − lac (θ2 − θ1 − θ0) + l0c (θ0 − θ2) − h0s (θ0 − θ2)

lbsθ0 + las (θ2 − θ1 − θ0) + l0s (θ0 − θ2) + h0c (θ0 − θ2)

θ0 − θ2

⎤
⎥⎦ (1)
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Figure 1. Framework of this paper.

By taking the partial derivatives of the joint angles, the Jacobian matrix is obtained as follows:

A
BJ =

⎡
⎢⎣

−lbsθ0 − lasθ+2−1−0 − l0sθ+0−2 − h0cθ+0−2

lbcθ0 − lacθ+2−1−0 + l0cθ+0−2 − h0sθ+0−2

1

−lasθ+2−1−0

−lacθ+2−1−0

0

lasθ+2−1−0 + l0sθ+0−2 + h0cθ+0−2

lacθ+2−1−0 − l0cθ+0−2 + h0sθ+0−2

−1

⎤
⎥⎦
(2)

where θ+2−1−0 = θ2 − θ1 − θ0, and the same applies to other instances.
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Figure 2. Quadruped robot model.
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Figure 3. Analysis of single-leg structure.

Figure 4. VMC algorithm framework.

In practical applications, the establishment of an accurate dynamics model is challenging due to
the frequent fluctuations in the robot’s motion state and the presence of various external environmen-
tal disturbances. As shown in Figure 4, the VMC algorithm ignores the dynamic factors of the robot
and constructs a virtual component model. It establishes a correlation model between the control force
exerted by the end-effector and the robot’s body utilizing the Jacobian matrix, thereby illustrating supe-
rior characteristics in force control. This method fully considers the generalized coordinates of the
robot’s body and end-effector, effectively achieving control over the robot’s body motion state.

3. Virtual model control
3.1 VMC model
The core idea of VMC is to analyze the main effective force based on the overall motion control objec-
tives of the robot. This approach disregards the specific driving mechanisms of the robot and instead
employs appropriate virtual mechanical components to produce an equivalent force, thereby yielding
a virtual force. Utilizing the Jacobian matrix, this virtual force is subsequently transformed into actual
driving torques, facilitating the simplification of the robot’s motion control model.

The motion control of a robotic system primarily encompasses the regulation of forward velocity
along the X direction, the management of the centroid elevation along the Z direction, and the adjustment
of the tilt angle about the centroid. Therefore, three sets of virtual component models are constructed
accordingly to connect the external action points (environment) with the internal action points (robot
body) to achieve control of the three DOFs. The principle structure is shown in Figure 5. The focus in the
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Figure 5. The VMC principle structure.

X direction is on velocity control, so only a virtual damping component is applied. However, accurate
control of the centroid position is required for the centroid height in the Z direction and the tilt angle of
the robot’s centroid, so both virtual spring and damping components are applied simultaneously.

Let the desired state of the robot be denoted as Xd = [ xd zd θd ]T and the current state asX = [ x z θ ]T .
The virtual forces and torques generated from the transition from the current state to the desired state
are ⎡

⎣ Fx

Fz

Mθ

⎤
⎦ =

⎡
⎣ Kx

Kz

Kθ

⎤
⎦

⎡
⎣ xd − x

zd − z
θd − θ

⎤
⎦ +

⎡
⎣ Bx

Bz

Bθ

⎤
⎦

⎡
⎣ ẋd − ẋ

żd − ż
θ̇d − θ̇

⎤
⎦ (3)

where Kx, Kz, and K θ represent the virtual spring stiffness in the X, Z , and θ directions, respectively,
while Bx, Bz, and Bθ represent the virtual damping coefficients in the X, Z , and θ directions, respectively.

In the horizontal direction, only dampers exist, so Kx = 0. The directions of these virtual components
are all referenced from the ground coordinate system (absolute coordinate system) {O}.

The desired joint torque is denoted as τ d = [ τ0 τ1 τ2 ]T . Since θ0 is a passive joint, τ0 = 0.
Based on the formula τ = JTF, it yields⎡

⎣ 0
τ1

τ2

⎤
⎦ =

⎡
⎢⎣

−lbsθ0 − lasθ+2−1−0 − l0sθ+0−2 − h0cθ+0−2 −lasθ+2−1−0 lasθ+2−1−0 + l0sθ+0−2 + h0cθ+0−2

lbcθ0 − lacθ+2−1−0 + l0cθ+0−2 − h0sθ+0−2 −lacθ+2−1−0 lacθ+2−1−0 − l0cθ+0−2 + h0sθ+0−2

1 0 −1

⎤
⎥⎦

⎡
⎣ Fx

Fz

Mθ

⎤
⎦
(4)

It can be derived from the above formula that

Fx = 1

lbsθ0 + lasθ+2−1−0 + l0sθ+0−2 + h0cθ+0−2

[
lbcθ0 − lacθ+2−1−0 + l0cθ+0−2 − h0sθ+0−2 1

] [
Fz

Mθ

]
(5)

Substituting into formula (4) yields

[
τ1

τ2

]
=

⎡
⎢⎣

lal0sθ1 − lah0cθ1 + lalbsθ+1−2

lbsθ0 + lasθ+2−1−0 + l0sθ+0−2 + h0cθ+0−2

−lasθ+2−1−0

lbsθ0 + lasθ+2−1−0 + l0sθ+0−2 + h0cθ+0−2

− lbl0sθ2 − lbh0cθ2 + lblasθ+1−2

lbsθ0 + lasθ+2−1−0 + l0sθ+0−2 + h0cθ+0−2

−lbsθ0

lbsθ0 + lasθ+2−1−0 + l0sθ+0−2 + h0cθ+0−2

⎤
⎥⎦

[
Fz

Mθ

]

(6)
where θ0 = θ + θ1.

The subscripts f and r represent the front and hind legs, respectively, while Af and Ar represent
the foot-end coordinate systems of the front and hind legs, respectively. The quadruped model can be
regarded as the parallel connection of four single-leg models. By combining these single-leg models, it

https://doi.org/10.1017/S0263574725000244 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725000244


Robotica 7

x

z
x

z

A

B
l0 h0

H

Figure 6. Stance phase VMC.

yields ⎡
⎢⎢⎣

τlf

τrf

τlr

τrr

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Alf
B JT

Arf
B JT

Alr
B JT

Arr
B JT

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Flf

Frf

Flr

Frr

⎤
⎥⎥⎦ (7)

3.2 Decomposed VMC model
In the global VMC, the overall virtual force Fall acting on the robot’s body is considered as the final
effective force. Consequently, within the developed quadruped model, Fall is utilized to substitute the
vector [ Flf Frf Flr Frr ]T in formula (7), yielding an 8 × 3 Jacobian-like matrix. This matrix facili-
tates the formulation of a mathematical relationship between the total virtual force and the driving joint
torques associated with each leg. The resolution of this relationship necessitates operations involving an
8 × 8 matrix, thereby complicating the computational process. To address this complexity, the literature
[34] introduces a decomposed VMC methodology, which segments the overarching control objective
into distinct components for each leg based on specific principles. For each leg, corresponding models
are developed for both the stance and swing phases. Through the coordinated control of each leg, the
comprehensive control objective is ultimately realized.

The motion of the robot body primarily involves traction force in the X direction, support force in
the Z direction, and the tilting angle θ around the center of mass. By analyzing the motion objectives
along the X, Z , and θ directions, it becomes clear that the desired movements of the robot’s body in
these directions can be effectively attained through the precise regulation of force exerted by each leg in
the X and Z directions.

Therefore, under the stance phase and the swing phase, corresponding virtual component models
are constructed as shown in Figures 6 and 7. During the stance phase, the motion state of the body
is controlled primarily through the interaction between the foot-end and the ground. The foot-end A
is the external action point, and the hip H is the internal action point. Therefore, two sets of virtual
spring-damping components in the X and Z directions are constructed at H. During the swing phase,
the position of the foot-end is controlled mainly through the active joint torque of the hip. The hip H is
the external action point, and the foot-end A is the internal action point. Therefore, two sets of virtual
spring-damping components in the X and Z directions are constructed at A.

3.2.1 Stance phase
After decomposing the virtual forces required for the robot’s motion, the virtual forces applied by each
individual leg to the hip joint are obtained as

f =
[

fx

fz

]
=

[
kx

kz

] [
xd − x
zd − z

]
+

[
bx

bz

] [
ẋd − ẋ
żd − ż

]
(8)
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where kx, kz, bx and bz represent control gains (parameters of the virtual component); xd, zd, ẋd and żd

represent the desired position and motion velocities of the robot platform.
To ensure motion stability, it is necessary to avoid fluctuations in the height of the robot body, thus

setting żd = 0. z and ż represent the real-time position and velocity of the foot-end relative to the hip
coordinate system {H} in the Z direction. x and ẋ represent the displacement and measured velocity of
the robot in the X direction. These values are derived from forward kinematics model.

The forward kinematics model of the foot-end relative to the hip coordinate system {H} is[
x
z

]
=

[
la cos θ1 − lb cos θ2

la sin θ1 − lb sin θ2

]
(9)

By taking the partial derivatives of the joint angles, the Jacobian matrix is obtained as

H
A J =

[−lasθ1 lbsθ2

lacθ1 −lbcθ2

]
(10)

When a force is applied at the foot-end, the hip coordinate system serves as the reaction coordinate
system. During the stance phase of the leg, a virtual force f needs to be applied at the hip. Consequently,
applying f at the foot-end, the following can be derived:

τ = −H
P JTf (11)

Expanding formula (11) yields[
τ1

τ2

]
= −

[−lasθ1 lacθ1

lbsθ2 −lbcθ2

] ([
kx

kz

] [
xd − x
zd − z

]
+

[
bx

bz

] [
ẋd − ẋ
żd − ż

])
(12)

3.2.2 Swing phase
The motion of the foot-end can be decomposed into two sets of spring-damper components along the X
direction and Z direction of the hip coordinate system. The virtual force applied at the foot-end can be
expressed as

f ′ =
[

f ′
x

f ′
z

]
=

[
k′

x

k′
z

] [
xd − x
zd − z

]
+

[
b′

x

b′
z

] [
0 − ẋ
0 − ż

]
(13)

In the application of VMC, there are no predetermined constraints regarding the trajectory of the
foot’s swing. The primary requirement is that the trajectory must fulfill the control objectives associated
with the swing phase, specifically reaching the designated target position within the specified timeframe
and elevating the leg sufficiently to avoid ground obstacles.

The virtual force is converted into joint torques through the single-leg Jacobian matrix, as

τ ′ =H
P JTf ′ (14)

Expanding formula (14) yields[
τ ′

1

τ ′
2

]
=

[−lasθ1 lacθ1

lbsθ2 −lbcθ2

] ([
k′

x

k′
z

] [
xd − x
zd − z

]
+

[
b′

x

b′
z

] [
0 − ẋ
0 − ż

])
(15)
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Observing the established decomposed VMC models for the stance phase and swing phase, it
becomes evident that the overall control effectiveness of these models is contingent upon the virtual
parameter matrices K and B. In conventional VMC algorithms, the values assigned to the parameters
within the K and B matrices are typically derived through empirical trial-and-error approaches. Once
these values are established, they remain static and are not subject to modification. However, during the
execution of motion, various factors, including alterations in the motion state and variations in terrain
conditions, can significantly influence the performance of the controller. The rigidity of these parame-
ters consequently limits the adaptability and robustness of the controller, making it challenging to ensure
optimal control outcomes. To mitigate this limitation, this paper proposes the integration of a BPNN to
facilitate the adaptive adjustment of the parameters within the K and B matrices. This approach aims
to enhance the adaptive capabilities of the controller, thereby improving both the control accuracy and
dynamic performance of the VMC controller across diverse motion conditions.

4. BP-VMC system
4.1 BP neural network
The BPNN [35], as illustrated in Figure 8, comprises an input layer, one or more hidden layers, and an
output layer. Each neuron within the network is interconnected with all neurons in the preceding layer.
The process of signal transmission occurs in two primary phases: forward propagation and backward
propagation. During forward propagation, function signals traverse through the layers until they arrive at
the output layer, where the output value is determined based on the synaptic weights that exist between
the neurons. An error signal is produced by evaluating the discrepancy between the network’s output
value and the intended output value. This error signal is subsequently propagated backward through the
layers until it reaches the input layer. By modifying the weight matrices between each layer, the network
aims to minimize the error, progressively aligning with the training objective.

4.1.1 Transmission and calculation of signals
The input and output of the BPNN’s input layer in this paper are{

I0
i (n) = xi(n)

O0
i (n) = I0

i (n)
i = 1, 2, · · · , M (16)

where the superscript represents the network layer corresponding to the signal, with 0, 1, and 2 referring
to the input layer, hidden layer, and output layer, respectively. The subscript i denotes the node number
in the input layer, and M represents the total number of nodes in the input layer.
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The input variables for the VMC controller are

x1 = e(n)
x2 = e(n) − e(n − 1)

(17)

where e(n) represents the control system error

e(n) = xin(n) − yout(n) (18)

The induced local field and output of the hidden layer in the neural network are, respectively{
I1

j = ∑M
i=0 O0

i (n)w1
ij(n)

O1
j = h(I1

j )
j = 1, 2, · · · , Q (19)

where w1
ij represents the synaptic weights of the hidden neurons and Q is the number of nodes in the

hidden layer. The activation function for the hidden neurons is chosen as the hyperbolic tangent function.

h (x) = ex − e−x

ex + e−x
(20)

The induced local field and output of the output layer in the neural network are, respectively{
I2

l = ∑Q
j=0 O1

j (n)w2
jl(n)

O2
l = g(I2

l )
l = 1, 2, · · · , T (21)

where w2
jl represents the synaptic weights of the output neurons and T is the number of nodes in the

output layer. The output of each node in the output layer corresponds to the target training parameter.
Since the parameter values K and B in this paper are non-negative, the activation function of the output
layer is chosen as a non-negative sigmoid function.

g (x) = ex

ex + e−x
(22)

Simultaneously, due to the output range of the activation function being [0, 1], the weight matrix P for
the VMC parameters is defined and incorporated into the control law of the VMC controller, resulting
in

u(n) =
T∑

l=1

PlO
2
l (n)xl(n) (23)

Substitute into the quadruped robot model to obtain the final output value.

yout(n) = FVMC (u(n)) (24)

4.1.2 Neural network training algorithm
Using the BP learning algorithm, the synaptic weights of the neural network are iteratively corrected.
The cost function of the system is defined as

ε(n) = 1

2
e2(n) = 1

2

(
xin(n) − yout(n)

)2 (25)

To adjust the synaptic weights of the network according to the gradient descent method, the adjust-
ment is performed by searching in the direction of the negative gradient of the synaptic weight
coefficients with respect to ε(n), and an inertia term is added to enable faster convergence of the search.
It yields

�w2
jl(n) = −η

∂ε(n)

∂w2
jl(n)

+ α�w2
jl(n − 1) = ηδ

2
l (n)O1

j (n) + α�w2
jl(n − 1) (26)

where η is learning rate and α is momentum factor.
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According to the chain rule of differentiation, the local gradient δ
2
l (n) can be expressed as

δ
2
l (n) = − ∂ε(n)

∂I2
l (n)

= − ∂ε(n)

∂yout(n)

∂yout(n)

∂u(n)

∂u(n)

∂O2
l (n)

∂O2
l (n)

∂I2
l (n)

(27)

As shown in formula (24), ∂yout(n)
∂u(n)

is associated with the specific model of the control system. If accu-
rately calculated during each iteration of optimization, it will significantly increase the computational
complexity and potentially affect the response speed of the controller. Therefore, ∂yout(n)

∂u(n)
is approxi-

mated as a sign function sgn
(

∂yout(n)
∂u(n)

)
, and the errors resulting from this simplified calculation can be

compensated for by adjusting the learning rate appropriately.
Substituting formulas (21) and (23) into (27), it yields

δ
2
l (n) = e(n)sgn

(
∂yout(n)

∂u(n)

)
xl(n)g′ (I2

l (n)
)

(28)

Therefore, the synaptic weight adjustment formula for the neurons in the output layer of the
network is

�w2
jl(n) = ηδ

2
l (n)O1

j (n) + α�w2
jl(n − 1) (29)

Similarly, the synaptic weight adjustment formula for the neurons in the hidden layer is

�w1
ij(n) = ηδ

1
j (n)O0

i (n) + α�w1
ij(n − 1) (30)

where δ
1
j (n) represents the local gradient for the neurons in the hidden layer, as

δ
1
j (n) = h′ (I1

j (n)
) T∑

l=1

δ
2
l (n)�w2

jl(n) (31)

4.1.3 BPNN structure parameters
As indicated in Sections 4.1.1 and 4.1.2, the performance of the BPNN is notably influenced by the
number of hidden layers and neurons utilized. The VMC control system of the quadruped robot, where
the BPNN is applied in this paper, is a complex continuous system with multiple inputs and multiple
outputs. To achieve optimal real-time performance of the control system during operation, it is imper-
ative that the BPNN not only provides effective function approximation but also minimizes structural
complexity and improves learning efficiency.

Robert Hecht-Nielsen has proven that any continuous function within a closed interval can be approx-
imated by a BP network with one hidden layer [36]. Consequently, the number of hidden layers is selected
as 1.

The quantity of hidden neurons influences the performance of the neural network in terms of fitting.
Having too few neurons may cause “underfitting,” whereas having too many can lead to “overfitting”
and a higher computational burden [37]. In this paper, the BPNN is designed with four input nodes
(comprising three input variables and one bias) and two output nodes (representing the output values).
To reduce the likelihood of “overfitting,” the guideline for choosing the number of hidden neurons is to
keep it below twice the size of the input layer. After thorough analysis and simulation, the final decision
is made to set the number of hidden neurons at 5.

Therefore, the final BPNN structure is established as “4 × 5 × 2.”

4.2. BP-VMC controller structure
Neural networks represent a category of machine learning techniques that emulate the operational prin-
ciples of biological neural systems, demonstrating capabilities for self-learning, self-organization, and
adaptability. In the context of control systems, these networks facilitate adaptive control for complex
systems characterized by uncertainties, significant nonlinearities, temporal variations, and delays.
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Figure 9. Schematic diagram of BP-VMC control principle.

Figure 10. Schematic diagram of BP-VMC with IC.

Since the essence of the VMC algorithm is to adjust the control input based on the error between the
desired state and the actual state. Similarly, the BPNN employs error signals to inform the adjustment
of weights and biases within neuron nodes, utilizing the backward propagation of these error signals
to minimize output error. Therefore, combining VMC with BPNN and training the virtual parameter
matrices K and B through the backpropagation algorithm enables adaptive adjustment of the VMC
controller, allowing it to accommodate various systems and environments. The schematic diagram of
the BP-VMC control system proposed in this paper is shown in Figure 9.

The control law of the BP-VMC controller can be expressed as

τ = JTf = JT (K(n)δx + B(n)δẋ)[
K(n)
B(n)

]
= BPNN (xd,δx)

(32)

During the development of the motion controller, the inherent mass characteristics of the robot are
often neglected, leading to notable deviations in z-axis height control. A thorough analysis of the control
law reveals that the VMC resembles to a PD controller, posing challenges in mitigating these deviations.
To address this issue, the integration of an error compensation term into the z-axis controller is proposed
to counterbalance the robot’s self-weight. However, given the variations in compensation requirements
caused by differing motion states and external disturbances, the integral compensation (IC) method
is adopted. This methodology accumulates errors and adjusts the control output accordingly, thereby
eliminating steady-state errors and enhancing the precision of motion control. Additionally, the integral
coefficient within the integral compensator can be autonomously tuned using the BPNN, negating the
need for manual parameter adjustments. Therefore, based on the block diagram in Figure 9, the BP-VMC
control block diagram with IC is obtained as shown in Figure 10.
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Figure 11. BP-VMC controller scheme.

The control law of the BP-VMC with IC controller is

τ = JTf = JT
(
K(n)δx + B(n)δẋ + I(n)

∫
δxdt

)⎡
⎣ K(n)

B(n)
I(n)

⎤
⎦ = BPNN (xd,δx)

(33)

5. BP-VMC controller scheme
The quadruped robot controller scheme is shown in Figure 11, which mainly includes a trajectory gener-
ator, VMC controller, and quadruped robot model. Initially, the trajectory generator generates the desired
trajectory curve based on the preset velocity and periodicity conditions, outputting the corresponding
desired position of the foot-end in real time. Subsequently, the actual current position of the foot-end
obtained from the quadruped robot model is compared with the desired position of the foot-end, and the
resulting error signal is transmitted to the virtual parameter generator. In the virtual parameter generator,
the BPNN modifies and optimizes the virtual parameters based on the error signal and calculates the
corresponding virtual force to be passed to the Jacobian matrix. Ultimately, the Jacobian matrix com-
bines the driving joint angle signal obtained from the quadruped robot model and the received virtual
force signal to calculate the corresponding joint driving torque, which drives the quadruped robot model
to achieve the corresponding movement, resulting in a new foot-end position signal. This new signal is
then compared with the desired foot-end position to obtain a new error signal, initiating the next control
cycle.

The trajectory generator generates corresponding foot trajectory curves based on the desired velocity
and motion cycle, guiding the quadruped robot to move according to the desired motion state. The
velocity of the quadruped robot is closely related to its gait cycle and stride length. Therefore, controlling
the stride length and stride frequency of the quadruped robot in the direction of travel can achieve the
purpose of velocity control. As a result, the trajectory planning formulas for the trot gait at the foot-ends
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Table I. Simulation parameter settings.

Parameter Value
l1, l2, l3, l4 0.24 m, 0.12 m, 0.24 m, 0.4 m
LB, WB, HB 1 m, 0.3 m, 0.2 m
MB, M1, M2, M3, M4 20 kg, 1 kg, 1 kg, 1 kg, 2 kg
(VMC) kx, kz 5600 N/m, 1.51 × 104N/m
(VMC) bx, bz 1300 N/(m/s), 2560 N/(m/s)
Initial height H0, lifting height H 0.35 m, 0.08 m
(BPNN) learning rate η, momentum factor α 0.8, 0.3

(a) (b) (c)

Figure 12. Virtual parameter generator.

are shown in formulas (34) and (35).

x =
⎧⎨
⎩

S
[

u
Tm

− 1
2π

sin
(

2πu
Tm

)]
u ∈ [0, Tm]

S
[
− u

Tm
+ 1

2π
sin

(
2πu
Tm

)]
u ∈ [−Tm, 0)

(34)

z =
{

H
2

(
1 − cos 2πu

Tm

)
u ∈ [0, Tm]

0 u ∈ [−Tm, 0)
(35)

where Tm represents the swing phase period, and in the trot gait, Tm = 1/2T . u is the given periodic
time signal, u ∈ [ − Tm, Tm]. The stride length S is determined by the tracking velocity, S = vxdTm. H
represents the desired leg lift height, usually H = constant.

The VMC controller is mainly composed of a Jacobian matrix and a virtual parameter generator.
The Jacobian matrix reflects the mapping relationship between the joint actuators and the end-effectors,
which is determined by the specific structure of the quadruped robot. The main role of the virtual param-
eter generator is to determine the parameter values of the virtual components and calculate the output
virtual force at the foot-end. Three types of virtual parameter generators are designed (Figure 12), which,
respectively, achieve the output of virtual parameters in the form of fixed values, BPNN training, and
BPNN training with IC.

6. Simulations
6.1 Building of simulation system
In order to assess the control accuracy and stability of the BP-VMC algorithm, a simulation control
system was developed based on the control framework diagram (refer to Figure 11) for conducting
simulation experiments. The models of the quadruped robot and the ground were created utilizing the
Simscape Multibody module, wherein the kinematic joints and physical interactions were specified.
The controller module was implemented in Simulink. The simulation environment and control system
for the quadruped robot, as illustrated in Figures 13 and 14, comprise a trajectory generator, a VMC
controller, a single-leg model, and a body model. The VMC controller is further categorized into a
Jacobian matrix and a virtual parameter generator. The virtual parameter generator was configured in
three distinct forms: fixed value (Figure 15(a)), BP network training generation (Figure 15(b)), and BP
training with IC (Figure 15(c)) for comparative simulation experiments. The simulation parameters are
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Time 6.5sTime 6.25sTime 6s

Time 7.25sTime 7sTime 6.75s

Time 8sTime 7.75sTime 7.5s

Figure 13. Quadruped robot simulation environment.

Figure 14. Simulation model of control system.

detailed in Table I. The fixed parameter values of the VMC are established as the self-tuning parameter
values of the BP-VMC during the initial 4 s of the simulation, thereby ensuring a consistent initial
performance of the controller.

6.2 Trajectory tracking
The simulation analysis was conducted using the trot gait as the primary motion gait for the quadruped
robot. The complete gait cycle time was set to T = 1 s, with the swing phase and support phase each
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(a)

(c)

(b)

Figure 15. Simulation model of virtual.

Figure 16. Desired velocity.

Figure 17. Desired foot trajectory.

accounting for 50% of the motion cycle [38], that is, Tsw=Tst = 0.5 s. The desired tracked motion velocity
curve and foot-end trajectory are shown in Figures 16 and 17. The main motion process is as follows:
the robot remains stationary in the quadrupedal stance for the first 4 s to enter an initial equilibrium
state, ensuring consistency in the initial state; from 4 to 10 s, the robot gradually accelerates from 0 to
0.4 m/s; from 10 to 18 s, the robot maintains a constant velocity of 0.4 m/s; and from 18 to 24 s, the robot
gradually decelerates from 0.4 m/s to 0.

Simulations and comparative experiments were conducted using both VMC and BP-VMC methods.
The parameter settings for traditional VMC are shown in Table I, and the parameter values for BP-
VMC are presented in Figures 20 and 23. According to formulas (8) and (13), the virtual forces and
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Figure 18. Stride length in the X direction.

Figure 19. Absolute error in the X direction.

virtual parameters in the X and Z directions are independent. Therefore, the simulation results in the X
and Z directions were analyzed separately, and the final comparison was made based on the foot-end
trajectories throughout the entire simulation process. Since the first 4 s are for adjusting the robot’s
initial equilibrium state, the subsequent error analysis uses data obtained after this 4-s simulation.

6.2.1 X direction
An examination of Figure 18 reveals that the BP-VMC exhibits superior real-time tracking performance
compared to the VMC, aligning more closely with the desired trajectory. To quantitatively assess the
tracking efficacy, the error curve presented in Figure 19 has been generated. At lower velocities, the
tracking errors for both controllers are comparable, with BP-VMC demonstrating a marginally reduced
error relative to VMC. However, as the velocity escalates, the error values for both controllers increase,
with a notable abrupt change in the error curve for VMC, which reaches a maximum error of 3.470 ×
10−2 m. In contrast, BP-VMC maintains a maximum error of only 1.997 × 10−2 m. Throughout the entire
evaluation period, the root mean square error (RMSE) for VMC tracking is recorded at 1.356 × 10−2,
whereas the RMSE for BP-VMC tracking is 1.019 × 10−2, representing 75.15% of the RMSE associated
with VMC.

Based on the simulation results in Figures 18 and 19, along with the KX parameter variation curve of
BP-VMC in Figure 20, it can be observed that during the swing phase, the KX value increases, leading to
an increase in the controller’s stiffness. This results in faster tracking response and smaller tracking errors
for BP-VMC. Furthermore, by analyzing the BX parameter variation curve of BP-VMC in Figure 19, it
is found that at the moment when there is a sudden error change in VMC, the BX parameter of BP-
VMC increases, which increases the damping coefficient of the controller. This effectively suppresses
the occurrence of sudden error changes and enhances the control stability.
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Figure 20. BP-VMC parameters in the X direction.

Figure 21. Height between the foot-end and the center of mass.

Figure 22. Absolute error in the Z direction.

6.2.2 Z direction
The results of height control in the Z direction are presented in Figure 21. Overall, both the VMC
and the BP-VMC demonstrate the capability to accurately track the reference values. During the swing
phase, the control performance of both VMC and BP-VMC is comparable, as they closely align with the
reference curve, indicating effective tracking capabilities. However, during the support phase, notable
discrepancies arise in the control performance of the two methods. The transition between phases –
specifically from bipedal to quadrupedal and back to bipedal support – induces fluctuations in the height
of the robot’s center of mass. This phenomenon is clearly illustrated in the curve depicted in Figure 21.

To further quantify the tracking performance, the error curve illustrated in Figure 22 is obtained. The
maximum error value of VMC is 2.852 × 10−2 m, with RMSE of 9.848 × 10−3. The maximum error
value of BP-VMC is 1.595 × 10−2 m, with RMSE of 7.584 × 10−3. The RMSE of BP-VMC is 77.01%
of VMC’s RMSE, and its maximum error value is significantly smaller than VMC’s, indicating that
BP-VMC has higher tracking accuracy.

Analysis of the fluctuation trends in the respective curves indicates that, at lower velocities, the
height fluctuations of VMC and BP-VMC exhibit a high degree of consistency. However, as the velocity
escalates, the height fluctuations associated with VMC experience a marked increase, characterized by
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Figure 23. BP-VMC parameters in the Z direction.

Figure 24. Height of BP-VMC with IC.

pronounced peaks. Conversely, the height fluctuations of BP-VMC remain relatively stable, showing
minimal variation from low-velocity conditions and lacking abrupt changes in response to alterations in
the motion state. Consequently, the comparative results suggest that BP-VMC exhibits superior control
stability and adaptability in contrast to VMC, thereby facilitating consistent motion state control across
varying motion conditions.

Furthermore, it is evident that a significant steady-state error exists in the height control within the Z
direction. This is due to the neglect of the robot’s self-weight in the process of virtual model construction,
and there is no integral term to compensate for the steady-state error. Consequently, an integral compen-
sator has been incorporated into the Z direction controller to rectify the steady-state error attributable
to the robot’s self-weight. The simulation outcomes following the implementation of this compensa-
tion are illustrated in Figure 24. While the introduction of the error integral compensator does influence
the response speed of the controller, it effectively mitigates the steady-state error, thereby significantly
enhancing the precision of height tracking control in the Z direction.

6.2.3 Foot trajectory
During the simulation process, the stride length of the robot’s foot movement varies with the change in
tracking velocity, achieving velocity tracking. Based on the above simulation results, the foot trajectory
curves of VMC and BP-VMC are plotted separately, as shown in Figure 25.

Observing the foot trajectory curve of VMC, while its overall shape resembles the desired trajectory
curve, there are significant discrepancies in the precise numerical tracking. The curve overall has a
noticeable offset compared to the reference curve, indicating a relatively obvious control error in the
motion control. Additionally, during the support phase, there are pronounced fluctuations in the height
of the foot-end, which leads to significant differences in the lower part of the VMC foot trajectory curve
compared to the reference curve.

The foot trajectory curve of BP-VMC demonstrates a substantial degree of alignment with the desired
trajectory curve. Throughout both the swing and support phases, the curve exhibits minimal deviation
from the desired trajectory curve. In comparison to the foot trajectory curve of VMC, BP-VMC maintains
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(b)(a)

Figure 25. Foot-end movement trajectory.

a more stable foot height during the support phase, without obvious height fluctuations, and shows a
greater consistency with the desired trajectory curve.

To more intuitively compare the trajectory tracking accuracy of the two controllers, the average
geometric distance between the corresponding points on the simulation result curve and the reference
trajectory curve is taken as the average tracking error.

D =
∑n

i=0

√
(xi − Xi)

2 + (yi − Yi)
2

n
(36)

where (xi, yi) represents the point on the simulation result curve and (Xi, Yi) represents the point on the
reference trajectory curve.

Based on this, the average tracking errors for VMC and BP-VMC are, respectively, obtained as
follows:

DVMC = 1.448 × 10−2, DBP−VMC = 0.974 × 10−2 (m)
The tracking error of BP-VMC is 67.27% of VMC’s. Combining the comparison of the curve results

in Figure 25, it can be seen that the control accuracy and stability of BP-VMC are significantly better
than VMC, achieving more precise foot trajectory tracking control.

6.3 Velocity tracking
In addition to trajectory tracking, velocity tracking constitutes a vital aspect of motion control in
quadruped robots. In the velocity tracking simulation experiment, the velocity curve depicted in
Figure 26 represents the desired tracking velocity, which incorporates various velocity values and work-
ing conditions during both the acceleration and deceleration phases. The resultant centroid velocity
curve is depicted in Figure 27. During the trotting gait, the two diagonal pairs of legs alternate between
supporting and swinging phases. This transition between legs results in fluctuations in the centroid
velocity, due to the reaction force generated when the swinging leg makes contact with the ground.

To facilitate a more intuitive comparison between the velocity curve from the robot and the desired
motion velocity curve, the centroid velocity curve is subjected to smoothing. By designating one swing
phase cycle as the sampling period, the simulation time is partitioned into n cycles, during which the
displacement of the robot is documented for each cycle. This methodology enables the calculation of the
average velocity for each cycle, yielding a sequence of discrete velocity points arranged in chronological
order. Subsequently, these points are interconnected with a smooth curve to effectively illustrate the
velocity curve throughout the robot simulation process.

t = TSW , n = T
t
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Figure 26. The desired velocity curve for velocity tracking.

Figure 27. Centroid forward velocity in the direction of motion.

Figure 28. Average centroidal velocity within cycle.

{
�xi = X (i) − X (i − 1)

vi = �xi
t

i = 1, 2, . . . , n (37)

where T is the total simulation time and X(i) is the position of the robot recorded during the ith cycle.
Consequently, the centroid velocity curves and error curves presented in Figures 28 and 29 have been

derived. At tracking velocities of 0.1 and 0.2 m/s, both VMC and BP-VMC demonstrate the capability to
sustain velocity tracking with tiny errors and stable outputs. However, as the tracking velocity exceeds
0.3 m/s, there is a noticeable increase in tracking error values, accompanied by significant fluctuations in
the velocity curve of VMC. In contrast, BP-VMC continues to exhibit a relatively stable velocity output,
thereby indicating its superior control stability in comparison to VMC. This suggests that BP-VMC is
more effective in maintaining a consistent velocity output across varying tracking conditions.
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Figure 29. Velocity tracking absolute error.

Figure 30. VMC attitude angle.

To more intuitively compare the accuracy of velocity tracking errors between VMC and BP-VMC,
the RMSE is used to quantify their velocity tracking errors.

R =
√∑n

i=1 ei2

n
i = 1, 2, . . . , n (38)

The calculated RMSE for VMC and BP-VMC are, respectively:

RVMC = 5.914 × 10−2, RBP−VMC = 3.278 × 10−2

The error value of BP-VMC is 55.43% of VMC’s, indicating that BP-VMC’s velocity tracking
accuracy is optimized by 44.57% compared to VMC.

6.4 Stability analysis
The stability margin serves as a metric for evaluating a robot’s stability in a static condition; however, it
is inadequate for assessing stability during locomotion. The stability of the robot’s body while in motion
is linked to its attitude angles (α, β, γ ) [39]. Consequently, the instability vector � can be defined as
the absolute deviation between the actual attitude angles of the robot’s body and the target angles. The
instability associated with the robot’s movement can subsequently be quantified by computing the L2
norm of �.

� = ( |αi − αd| , |βi − βd| , |γi − γd|
)

(39)

‖�‖2 =
√

|αi − αd|2 + |βi − βd|2 + |γi − γd|2 (40)
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Table II. Range of attitude angle fluctuations.

Roll angle α Pitch angle β Yaw angle γ

VMC −0.09 ∼ 0.04 rad −0.05 ∼ 0.04 rad −8 × 10-4 ∼ 8 × 10-4 rad
BP-VMC −0.05 ∼ 0.05 rad −0.03 ∼ 0.03 rad −8 × 10-4 ∼ 8 × 10-4 rad

Table III. Mean value of attitude angle absolute deviation and instability metric.

Mean value VMC BP-VMC
Roll angle absolute error 1.596 × 10−2 1.184 × 10−2

Pitch angle absolute error 1.255 × 10−2 0.764 × 10−2

Yaw angle absolute error 2.059 × 10−4 2.011 × 10−4

Instability metric ‖�‖2 2.278 × 10−2 1.500 × 10−2

Figure 31. BP-VMC attitude angle.

Utilizing the velocity curve presented in Figure 26 for simulation purposes, the attitude angle curves
for the VMC and BP-VMC control simulations are obtained as shown in Figures 30 and 31. The
fluctuation ranges of the attitude angles are also listed in a table format (Table II).

Based on the observed trend in the curve, it is evident that as velocity increases, the fluctuation
range of the VMC also expands, exhibiting pronounced asymmetric fluctuations. This suggests that
there is a certain difference in the control of the four legs, which leads to instability in the motion state.
In contrast, the attitude angle fluctuations of the BP-VMC during variable-velocity movement remain
largely confined within a consistent range, and the curve demonstrates a high degree of symmetry. This
indicates that the BP-VMC sustains a stable motion state through adaptive parameter adjustments, while
also ensuring a high level of consistency in the motion control across the four legs.

In order to facilitate a more intuitive comparison of the motion stability between VMC and BP-
VMC, we calculated the absolute deviations of each attitude angle as well as the instability indices,
based on the relevant formulas (39) and (40) (refer to Figure 32 and Table III). The comparative analysis
indicates that the mean standard deviation of BP-VMC across the three primary attitude angles is less
than that of VMC. Especially in the roll and pitch angles, the standard deviation of BP-VMC is 74.18%
and 60.88% of VMC, respectively, indicating a smaller angle deviation and a more stable attitude. The
mean value of the instability metric for VMC is 2.278 × 10−2, while the mean value for BP-VMC is
1.500 × 10−2, representing a 34.15% improvement. Additionally, both controllers’ maximum instability
indices occur during the transition between high and low velocities. The maximum instability metric for
VMC reaches 9.488 × 10−2, while BP-VMC only reaches 5.595 × 10−2. This suggests that under varying
velocity conditions, BP-VMC can maintain good control stability and suppress significant changes in
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Figure 32. Attitude angle absolute deviation and instability metric.

Figure 33. 10◦ slope.

the body’s attitude angle to a certain extent. Overall, whether analyzing the entire simulation period or
any specific time point, the stability of the BP-VMC controller is superior to VMC.

To facilitate the subsequent research on control in complex terrain environments, we further verify
the stability of BP-VMC under sloped terrain conditions. The slope gradient is set to 10◦, and the walking
velocity is 0.4 m/s, as shown in Figures 33 and 34.

The curve results in Figures 35–36 are listed in Table IV. Under sloped conditions, the instabil-
ity metrics for VMC and BP-VMC are 4.140 × 10−2 and 3.063 × 10−2, respectively, with BP-VMC
showing a 26.01% improvement in stability. Therefore, using the BP-VMC control strategy in complex
environmental conditions will provide the quadruped robot with better stability.

6.5 Variable stride frequency (VSF) working condition
In previous simulation experiments, the robot worked under conditions where the stride frequency
remained constant and the stride length varied according to the tracking velocity. To further verify the
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Table IV. Range of attitude angle fluctuations and instability metric mean value.

Roll angle α Pitch angle β Yaw angle γ

Instability
metric
‖�‖2

VMC −0.057 ∼ 0.028 rad −0.222 ∼ -0.172 rad −7 × 10-4 ∼ 7 × 10-4 rad 4.140 × 10-2

BP-VMC −0.035 ∼ 0.044 rad −0.198 ∼ -0.165 rad −8 × 10-4 ∼ 8 × 10-4 rad 3.063 × 10-2

Figure 34. Walking velocity curve.

VMC attitude angle VMC instability metric

(a) (b)

Figure 35. VMC attitude angle and instability metric.

BP-VMC attitude angle BP-VMC instability metric

(a) (b)

Figure 36. BP-VMC attitude angle and instability metric.

performance optimization effect of the BP-VMC controller, additional simulations were conducted under
conditions where the stride length remained constant and the stride frequency varied. The constant stride
length was set at S = 0.15 m, and the variation curve of the motion period T is shown in Figure 37, which
forms the desired foot trajectory as depicted in Figure 38. Other parameters remain consistent with those
in Table I.
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Table V. Relevant error data under VSF working condition.

VMC BP-VMC
RMSE in the X direction (m) 1.245 × 10−2 0.966 × 10−2

RMSE in the Z direction (m) 8.701 × 10−3 3.746 × 10−3

Mean tracking error of the foot trajectory (m) 1.384 × 10−2 0.933 × 10−2

Mean absolute deviation of roll angle (rad) 1.692 × 10−2 1.596 × 10−2

Mean absolute deviation of pitch angle (rad) 1.259 × 10−2 0.798 × 10−2

Mean absolute deviation of yaw angle (rad) 2.005 × 10−4 2.137 × 10−4

Mean value of instability metric 2.353 × 10−2 1.872 × 10−2

Figure 37. Motion cycle curve.

Figure 38. Desired foot trajectory.

Figure 39. Stride length in the X direction under VSF working condition.

Since this working condition mainly involves tracking a fixed stride length under different movement
cycle conditions, the analysis focuses primarily on trajectory tracking and motion stability. The resulting
curves are presented in Figures 39–44.

The relevant error data for trajectory tracking and stability assessment are presented in Table V. The
RMSE in the X direction, the RMSE in the Z direction, and the mean tracking error of the foot trajectory
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Figure 40. Absolute error in the X direction under VSF working condition.

Figure 41. Height between the foot-end and the center of mass under VSF working condition.

Figure 42. Absolute error in the Z direction under VSF working condition.

(a) (b)

Figure 43. Foot-end movement trajectory under VSF working condition.
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Figure 44. Attitude angle absolute deviation and instability metric under VSF working condition.

characterize the accuracy of trajectory tracking. These above values of BP-VMC are 77.59%, 43.05%,
and 67.41% of VMC, respectively, suggesting that BP-VMC achieves enhanced control accuracy and
reduced tracking errors. Furthermore, the mean absolute deviations of the roll angle, pitch angle, and
yaw angle, along with the mean value of the instability metric, characterize the motion stability through-
out the control process. BP-VMC exhibits comparable mean absolute errors in the roll and yaw angles
relative to VMC; however, the mean absolute error in the pitch angle and the mean value of the instabil-
ity metric for BP-VMC are 63.38% and 79.56% of those for VMC, respectively. Consequently, BP-VMC
demonstrates superior control stability.

6.6 Comparison between BPNN optimization and fuzzy optimization
Several researchers have suggested the application of fuzzy algorithms to enhance VMC by adaptively
modifying the virtual parameter matrices K and B [32, 40]. In light of this, a Fuzzy VMC controller
was developed, as referenced in the literature [40], to evaluate the control performance of BP-VMC in
comparison to Fuzzy VMC under equivalent control conditions.

The performance of the BP-VMC and Fuzzy VMC controllers is compared from the aspects of stride
length tracking error, velocity tracking error, foot trajectory tracking error, and motion stability, resulting
in the curves shown in Figures 45–48. And these comparisons are also summarized in Table VI.

From the simulation results, both BP-VMC and Fuzzy VMC show significant improvements in con-
trol performance compared to traditional VMC. BP-VMC outperforms Fuzzy VMC in terms of control
accuracy and velocity tracking accuracy, while Fuzzy VMC is superior to BP-VMC in terms of motion
control stability.

The optimization principle of BPNN has been discussed in Section 4.1, and the principle of fuzzy
optimization is illustrated in Figure 49.

From the perspective of optimization principles, fuzzy algorithms are based on experience, where
fuzzy rule tables are artificially formulated according to the characteristics of the system to correct
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Table VI. Relevant error data under VSF working condition.

VMC Fuzzy VMC BP-VMC
RMSE in the X direction (m) 1.783 × 10−2 1.591 × 10−2 1.310 × 10−2

Mean tracking error of the foot trajectory (m) 1.949 × 10−2 1.751 × 10−2 1.402 × 10−2

RMSE for velocity tracking (m/s) 7.456 × 10−2 6.975 × 10−2 4.227 × 10−2

Mean value of instability metric 3.487 × 10−2 1.807 × 10−2 2.184 × 10−2

Figure 45. Tracking error of the stride length in the X direction for different controllers.

(a) (b) (c)

Figure 46. Foot-end movement trajectories of different controllers.

(a) (b)

Figure 47. Velocity tracking results of different controllers.

https://doi.org/10.1017/S0263574725000244 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725000244


30 Jianwen Liu et al.

Figure 48. Instability metrics of different controllers.

Figure 49. Fuzzy optimization principle block diagram.

and improve parameters. The rationality of rule formulation has a decisive impact on the final control
performance [41, 42]. However, it is difficult to qualitatively determine the rationality of fuzzy rule
formulation. And during use, fuzzy rules are also hard to adjust autonomously. The results obtained are
merely the optimal results under the established rule conditions, which can easily lead to local optimal
issues.

BPNN builds a neural network structure and autonomously learns and trains based on sample data,
making adaptive adjustments to parameters according to error conditions [43–45]. During the learning
and training process of the BPNN algorithm, the core weight matrix is continuously optimized and
adjusted, while also introducing inertia factors and learning rates, which can effectively avoid local
optimal problems and achieve global optimal results.

Therefore, from the analysis of optimization principles, BP-VMC can achieve global optimal control
better than Fuzzy VMC, and it also has broader applicability.

7. Conclusion
This paper focuses on the motion control necessities of quadruped robots and employs an intuitive and
effective control framework known as VMC, to simplify the dynamics modeling process of quadruped
robots. To address the insufficient dynamic performance and control accuracy caused by the simpli-
fied dynamics in VMC, an adaptive VMC method optimized by a BPNN is proposed. This approach
facilitates the adaptive modification of the virtual component model, thereby compensating for mod-
eling inaccuracies. Additionally, an error integral compensator (IC) is introduced into the height
controller in the Z direction, with the BPNN autonomously calibrating the integral coefficient to achieve
compensation for system inertia and external errors, further improving control accuracy.

In the simulation experiments, the parameter values of VMC were adaptively tuned by BPNN.
The simulation results of VMC showed that the tuned parameters achieved good control performance,
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demonstrating the reliability of BPNN parameter tuning. Subsequently, the control performance of BP-
VMC was analyzed with VMC as the control group. The experimental results showed that under the
conditions of fixed stride frequency and varying stride length, the BP-VMC method optimized the
errors in trajectory tracking and velocity tracking by 32.73% and 44.57%, respectively, compared to
VMC, while also improving the instability metric by 34.15%. Under the conditions of varying stride
frequency and fixed stride length, BP-VMC optimized the trajectory tracking and instability metric by
32.59% and 20.44%, respectively, compared to VMC, verifying the optimized effects of BP-VMC in
terms of accuracy in trajectory tracking, velocity tracking, and stability of motion control under dif-
ferent working conditions. Simultaneously, simulation comparison experiments between BP-VMC and
Fuzzy VMC were conducted. Through a comparative analysis of the simulation results and optimiza-
tion principles, the findings indicate that BP-VMC exhibits superior control accuracy and achieves better
global optimization compared to Fuzzy VMC.

Through the research presented in this paper, the VMC method has been optimized and improved,
enhancing its control adaptability, stability, and accuracy. This serves as an exploration and expansion
of the motion control methods for quadruped robots in complex environments, further promoting the
application of quadruped robots in military, rescue, agricultural, and other fields. Further research on
the motion control of BP-VMC under complex terrain conditions will be conducted in the future.
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