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Abstract. Face 2-colourable triangulations of complete tripartite graphs Kn,n,n

correspond to biembeddings of Latin squares. Up to isomorphism, we give all such
embeddings for n = 3, 4, 5 and 6, and we summarize the corresponding results for
n = 7. Closely related to these are Hamiltonian decompositions of complete bipartite
directed graphs K∗

n,n, and we also give computational results for these in the cases
n = 3, 4, 5 and 6.

2000 Mathematics Subject Classification. 05B15, 05C10.

1. Introduction. A number of recent papers [2, 5, 6] have dealt with biembeddings
of pairs of Steiner triple systems (STSs) in both orientable and nonorientable surfaces.
Such a biembedding corresponds to a face 2-colourable triangulation of a complete
graph Kn. The vertices of the graph form the points of the Steiner triple systems and
the triangular faces in each of the two colour classes respectively form the triples of
each system. We here recall that an STS(n) may be formally defined as an ordered pair
(V,B), where V is an n-element set (the points) and B is a set of 3-element subsets of
V (the triples), such that every 2-element subset of V appears in precisely one triple.
Such systems are known to exist if and only if n ≡ 1 or 3 (mod 6). We say that two
STS(n)s are biembedded in a surface if there is a face 2-colourable triangulation of Kn

in which the face sets forming the two colour classes give copies of the two systems.
We will take the colour classes of face 2-colourable embeddings to be black and white.

One may consider embeddings which involve other types of combinatorial design.
Embeddings of complete tripartite graphs are discussed in [7, 11] and form a useful
tool in recursive constructions for biembeddings of Steiner triple systems. A face 2-
colourable triangulation of the complete tripartite graph Kn,n,n may be considered
as a biembedding of a pair of transversal designs TD(3, n); such a design comprises
an ordered triple (V,G,B), where V is a 3n-element set (the points), G is a partition
of V into three disjoint sets (the groups) each of cardinality n, and B is a set of 3-
element subsets of V (the triples), such that every unordered pair of elements from V
is either contained in precisely one triple or one group, but not both. As with STSs, the
vertices of the embedded graph Kn,n,n form the points of the designs, the tripartition
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determines the groups, and the faces in each colour class form the triples of each
design. The connection with Latin squares is that a TD(3, n) determines a main class
of Latin squares by assigning the three groups of the design as the identifiers of the
rows, columns and entries (in any one of the six possible orders) of the Latin square.
Thus a face 2-colourable triangulation of Kn,n,n may be considered as a biembedding
of two Latin squares.

Before proceeding, we here review some basic aspects of notation and terminology
which are important for our discussion. For further details we refer the reader to
texts such as [3, 9, 10]. Two Latin squares of the same order n will be regarded as
isomorphic if they belong to the same main class, i.e. if there exist three bijections
mapping the row, column and entry identifiers of the first square to those of the
second (not necessarily in the same order) which map the first square to the second.
We assume that the reader is familiar with the description of topological embeddings
by means of rotation schemes. Our embeddings will always be in surfaces rather than
pseudosurfaces (the latter result from surfaces by repeating a finite number of times
the operation of identifying a finite number of points on a surface). Equivalently, in
the description of an embedding by means of a rotation scheme, the rotation about
each vertex comprises a single cycle. In Section 4 we make use of voltage graphs to
construct certain embeddings. When discussing isomorphisms and automorphisms of
embeddings, we allow in the orientable case mappings which reverse the orientation
and, in the case of face 2-colourability, mappings which reverse the two colour classes.

An embedding of a graph G is said to be regular if and only if for every two
flags, i.e. triples (v1, e1, f1) and (v2, e2, f2), where ei is an edge incident with the vertex
vi and the face fi, there exists an automorphism of the embedding which maps v1 to
v2, e1 to e2 and f1 to f2. This definition of regularity is equivalent to requiring that
the automorphism group of the embedding be as large as possible. Thus, in the case
G = Kn,n,n, an embedding is regular if and only if its automorphism group has order
12n2; there being 3n2 edges each of which is incident with two vertices and two faces.

We point out that the definition of regularity varies somewhat between authors; see
[1, p. 36] for a discussion of the terminology. The definition of regularity given above,
called by some authors reflexive regularity, requires the admission of automorphisms
which reverse the orientation of the surface in the orientable case. However, many
authors require that any global orientation of the surface is preserved and this means
that their regular embeddings may be less symmetric.

Our first observation is easily proved but, possibly, surprising.

PROPOSITION 1. A triangulation of Kn,n,n is orientable if and only if it is face 2-
colourable.

Proof. Suppose that Kn,n,n has tripartition {A, B, C}. If an orientable embedding
is given, then triangles with clockwise orientation (A, B, C) may be coloured black
and those with clockwise orientation (A, C, B) may be coloured white. Conversely,
suppose that a face 2-colourable triangulation is given. If a black triangle of the
embedding with vertices a ∈ A, b ∈ B, c ∈ C is oriented, say clockwise, as (A, B, C),
then all black triangles incident with a also have clockwise orientation (A, B, C), while
the white triangles incident with a have orientation (A, C, B). Since the vertices of
these triangles span B ∪ C, all remaining black triangles have clockwise orientation
(A, B, C) and all remaining white triangles have clockwise orientation (A, C, B). It
follows that the rotation scheme for the embedding satisfies Ringel’s rule R∗ (see
[10, p. 28]) and therefore represents an orientable embedding. �
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Our second observation relates face 2-colourable embeddings of Kn,n,n to certain
orientable embeddings of Kn,n.

PROPOSITION 2. Given an orientable embedding of Kn,n in which all face boundaries
form Hamiltonian cycles, a face 2-colourable triangulation of Kn,n,n may be constructed by
inserting a new vertex into the interior of each face and joining it by new non-intersecting
edges to all the vertices on the boundary of that face. Conversely, given a face 2-colourable
triangulation of Kn,n,n with tripartition {A, B, C}, by deleting all vertices in one of the sets
A, B or C, together with all (open) incident edges, we may form an orientable embedding
of Kn,n in which all the face boundaries form Hamiltonian cycles.

Proof. Given an orientable embedding of Kn,n in which all the face boundaries
form Hamiltonian cycles, by counting edges, the number N of such faces is given by
2n × N = 2n2. Thus N = n. If the bipartition is {A, B} then the Hamiltonian cycles
alternate points of A with points of B. Inserting a new vertex c into the interior of a face
and adding the edges as described results in oriented triangles incident with c which
alternately have the forms (c, ai, bj) and (c, bk, al) where ai, al ∈ A and bj, bk ∈ B. The
former may all be coloured black and the latter white, giving a proper face 2-colouring
of the resulting Kn,n,n embedding. The converse follows immediately. �

Given an orientable embedding of Kn,n in which all the face boundaries form
Hamiltonian cycles, by assigning an orientation, we obtain a decomposition of
the complete bipartite directed graph K∗

n,n into directed Hamiltonian cycles. For
any decomposition of K∗

n,n into directed Hamiltonian cycles, we may define the
neighbourhood of a vertex x to be the graph formed on the n vertices adjacent to
x by joining two vertices with an edge if and only if they are both adjacent to x
in the same Hamiltonian cycle. We say that a decomposition of K∗

n,n into directed
Hamiltonian cycles is perfect if the neighbourhood of every vertex is a single cycle.
Plainly, a decomposition arising from an orientable embedding of Kn,n is perfect.
Conversely, a perfect decomposition gives an orientable embedding of Kn,n in which
all the face boundaries form Hamiltonian cycles because the neighbourhood of each
point defines the rotation about that point. Thus we have established the following
result.

PROPOSITION 3. There is a one-to-one correspondence between orientable embeddings
of Kn,n in which all the face boundaries form Hamiltonian cycles, and perfect
decompositions of the complete bipartite directed graph K∗

n,n into directed Hamiltonian
cycles.

As a consequence of the above propositions, we may search for biembeddings
of Latin squares either directly or by first examining decompositions of K∗

n,n into
directed Hamiltonian cycles and then restricting attention to those decompositions
which are perfect. In an attempt to verify our computational results, we have used
both approaches, and then reconciled the corresponding outputs. In making this
reconciliation, account has to be taken of the fact that up to three different (i.e.
nonisomorphic) Kn,n embeddings may result from deleting in turn each of the three sets
of the tripartition in an embedding of Kn,n,n. The cases of K1,1,1 and K2,2,2 correspond
respectively to a spherical embedding of a triangle and an octahedron. In order to
avoid trivial cases, throughout the remainder of this paper we assume that n ≥ 3.
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2. Hamiltonian decompositions of K∗
n,n . Perhaps surprisingly, no enumeration of

Hamiltonian decompositions of K∗
n,n for small n seems to have been undertaken. This

paper rectifies this deficiency for n = 3, 4, 5 and 6. We take the bipartition of K∗
n,n to

be {A, B} where |A| = |B| = n. The points of A will be denoted by ai and those of B by
bi. Given a decomposition D1, we may form a decomposition D2 by reversing all the
cycles; we regard D1 and D2 as identical decompositions. The automorphism group of
the decomposition D will be denoted by Aut(D). A directed Hamiltonian cycle such as
(a0, b1, a1, b0, a2, b3, a3, b2) will be given more succinctly as 01102332; by convention
all cycles start with a0.

The decompositions were found by an exhaustive backtracking program.
Without loss of generality, it was assumed that each decomposition of K∗

n,n
contains the cycle a0b0a1b1 · · · an−1bn−1. Isomorphisms between decompositions were
then easily determined because of the limited number of possibilities: the cycle
a0b0a1b1 · · · an−1bn−1 can only map to one of n possible 2n-cycles, and there are
only 2 × 2n ways of defining each such mapping. The automorphism group of each
decomposition was also easily found in a similar manner.

n = 3. Up to isomorphism, there is a unique decomposition and this is perfect.
The cycles are: 001122, 011220, 021021. The automorphism group has order 36; nine
of these mappings preserve the bipartition and direction of the cycles, nine exchange A
and B but preserve the direction, nine preserve the bipartition but reverse the direction
of the cycles, and nine exchange A and B and reverse the direction.

n = 4. Up to isomorphism, there are four decompositions of which one is perfect.
They are as follows.

1. 00112233, 01102332, 02132031, 03122130. |Aut(D)| = 32, all mappings preserve
the bipartition and 16 preserve direction.

2. 00112233, 01102332, 02132130, 03122031. |Aut(D)| = 16, all mappings preserve
the bipartition and eight preserve direction.

3. 00112233, 01122330, 02132031, 03102132. |Aut(D)| = 64, 16 mappings preserve
the bipartition and directions, 16 reverse the bipartition but preserve the direction, 16
preserve the bipartition but reverse direction, and 16 reverse the bipartition and the
direction. This decomposition is perfect.

4. 00112233, 01302312, 02132031, 03322110. |Aut(D)| = 32, of which 16 mappings
preserve the bipartition. Each Hamiltonian cycle in this decomposition appears with its
reverse so that each automorphism may be considered as both preserving and reversing
the directions. We call such a decomposition reversible.

n = 5. Up to isomorphism, there are 14 decompositions of which four are perfect.
All 14 are shown in Table 1 with the notation (M; m1, m2, m3, m4) denoting that
|Aut(D)| = M and that there are m1 mappings which preserve direction and bipartition,
m2 mappings which preserve direction and reverse the bipartition, m3 mappings which
reverse direction and preserve the bipartition, and m4 mappings which reverse direction
and reverse the bipartition.

n = 6. Up to isomorphism there are 18 969 decompositions. Of these 59 are
perfect and a further seven are reversible. Reversible decompositions correspond to
Hamiltonian decompositions of the undirected K6,6. The 59 perfect decompositions are
given in Table 2 in the same format as those for the n = 5 case. The seven Hamiltonian
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Table 1. All decompositions of K∗
5,5.

1 0011223344 0110233442 0213243041 0412203143 0314213240 (2;1,0,1,0)
2 0011223344 0110233442 0312243041 0214203143 0413213240 (2;1,0,1,0)
3 0011223344 0110233442 0324124031 0420413213 0221431430 (1;1,0,0,0)
4 0011223344 0112233440 0213243041 0314203142 0410213243 (100; 25,25,25,25) perfect
5 0011223344 0112233440 0241302413 0314203142 0432104321 (20;5,5,5,5)
6 0011223344 0112233440 0241302413 0320421431 0421431032 (20; 5,5,5,5) perfect
7 0011223344 0112243043 0214233140 0310213442 0413203241 (10; 5,0,5,0) perfect
8 0011223344 0112243043 0241341320 0423103142 0332144021 (2;1,0,1,0)
9 0011223344 0112243043 0241341320 0442102331 0314214032 (2;1,0,1,0)
10 0011223344 0112243043 0241342310 0332144021 0413203142 (2;1,0,1,0)
11 0011223344 0113243042 0210342143 0412402331 0314413220 (1;1,0,0,0)
12 0011223344 0113243042 0410322143 0214402331 0312413420 (2;1,1,0,0)
13 0011223344 0113244032 0214302143 0312413420 0410422331 (4; 1,1,1,1) perfect
14 0011223344 0110322443 0240231431 0320413412 0421421330 (2;1,0,1,0)

Table 2. Perfect decompositions of K∗
6,6.

1 001122334455 021021344553 011320354254 041225314350 031524324051 051423304152 (2; 1, 0, 1, 0)
2 001122334455 021021344553 011324354250 031425324051 041520314352 051223304154 (4; 2, 0, 2, 0)
3 001122334455 021021344553 014250351324 052043511432 031240542531 041541522330 (2; 1, 0, 1, 0)
4 001122334455 021021354354 011520344253 041223314550 051324324051 031425304152 (24;12, 0,12, 0)
5 001122334455 021021354354 031520344251 041325324150 051224314053 011423304552 (2; 1, 0, 1, 0)
6 001122334455 021021354354 051420324153 011325344052 031524304251 041223314550 (12; 6, 0, 6, 0)
7 001122334455 021021354354 052440325113 015315342042 041223314550 032514305241 (24; 6, 6, 6, 6)
8 001122334455 021023344551 031425304152 041521324053 011324354250 051220314354 (12; 6, 0, 6, 0)
9 001122334455 021023344551 041321354052 051224304153 031520314254 011425324350 (2; 1, 0, 1, 0)
10 001122334455 021023344551 053041522413 013240532514 043521431250 035420311542 (2; 1, 0, 1, 0)
11 001122334455 021023354154 052034425113 035045122431 041553213240 014314253052 (1; 1, 0, 0, 0)
12 001122334455 021023354154 052440325113 035042251431 014315342052 041245532130 (2; 1, 1, 0, 0)
13 001122334455 021024354153 051321304254 041523314052 031220344551 011425324350 (4; 2, 0, 2, 0)
14 001122334455 021024354153 032132504514 052051133442 042315524031 014354122530 (2; 1, 1, 0, 0)
15 001122334455 021024354351 042552411330 013253204514 053140541223 031521503442 (2; 1, 0, 1, 0)
16 001122334455 021025314354 011552233440 032412503541 042051324513 052153143042 (1; 1, 0, 0, 0)
17 001122334455 021320344551 033140251254 013542241053 052150431432 042352411530 (4; 2, 0, 2, 0)
18 001122334455 021320344551 033142251054 013540241253 052350411432 042152431530 (4; 2, 0, 2, 0)
19 001122334455 021320344551 033052254114 013523541240 051024314253 042150431532 (6; 3, 0, 3, 0)
20 001122334455 021320344551 035425311240 014253351024 041541305223 052150431432 (2; 1, 0, 1, 0)
21 001122334455 021320344551 035241351024 011254253043 052140531432 041542233150 (2; 1, 0, 1, 0)
22 001122334455 021324354051 041520314253 031021344552 011425324350 051223304154 (36;18, 0,18, 0)
23 001122334455 021324354051 041520314253 031425304152 051021324354 011223344550 (144;36,36,36,36)
24 001122334455 021324354051 041520314253 031041542532 011445522330 051243502134 (36; 9, 9, 9, 9)
25 001122334455 021324354051 052350311442 042145125330 013415522043 031025324154 (6; 3, 0, 3, 0)
26 001122334455 021325304154 033442511520 014514235032 054310522431 041240213553 (2; 1, 0, 1, 0)
27 001122334455 021325344150 041521304352 033551124024 054220531431 014510325423 (6; 3, 0, 3, 0)
28 001122334455 021325344150 052052431431 011253354024 035421451032 041551304223 (2; 1, 0, 1, 0)
29 001122334455 021420354153 011334422550 041531402352 031245243051 051043213254 (12; 6, 0, 6, 0)
30 001122334455 021420354153 011350452432 053440231251 041552432130 033142251054 (12;12, 0, 0, 0)
31 001122334455 021420354153 011352452430 053140231254 041550432132 033442251051 (12; 6, 0, 6, 0)
32 001122334455 021425314053 041523513042 031250243541 011334455220 051032432154 (4; 2, 0, 2, 0)
33 001122334455 021524314053 041320354251 031025324154 051421304352 011223344550 (36;18, 0,18, 0)
34 001122334455 021524314053 041320354251 031241502534 011445522330 051043542132 (36;18, 0,18, 0)
35 001122334455 021024355143 041540532132 051254233041 011352452034 031442253150 (2; 1, 0, 1, 0)
36 001122334455 021024355143 052053124134 035225144031 041321504532 011542542330 (2; 1, 0, 1, 0)
37 001122334455 021024355143 013415235240 044513215032 031254253041 054220533114 (1; 1, 0, 0, 0)
38 001122334455 021324355140 033150422514 013412452053 044115302352 054310325421 (4; 1, 1, 1, 1)
39 001122334455 021423355140 052032411354 031531502442 043045125321 013410522543 (6; 3, 0, 3, 0)
40 001122334455 021425305143 032032541541 043112452350 051334402152 013553104224 (12; 3, 3, 3, 3)
41 001122334455 021425305143 044523311250 051354324021 031041355224 015320341542 (4; 1, 1, 1, 1)
42 001122334455 021425315043 013445231052 054254133021 035140351224 043241155320 (2; 1, 1, 0, 0)
43 001122334455 021024413553 042331154052 052043143251 014225135034 032154124530 (1; 1, 0, 0, 0)
44 001122334455 021024453153 031520543241 051421304352 011325425034 041223355140 (2; 1, 0, 1, 0)
45 001122334455 021324413550 031432452051 041540233152 051034214253 011225304354 (2; 1, 0, 1, 0)
46 001122334455 021425403153 051243502134 044115233052 014532541320 031042243551 (2; 1, 0, 1, 0)
47 001122334455 021425403153 051054324321 044113355220 013415235042 031251453024 (4; 1, 1, 1, 1)
48 001122334455 021425403153 041352413520 053442231051 011550432432 033021451254 (6; 3, 0, 0, 3)
49 001122334455 021425413053 043513204251 031245315024 011552233440 052143541032 (2; 1, 0, 1, 0)
50 001122334455 021025415334 053142205413 044035231251 011552432430 035045142132 (1; 1, 0, 0, 0)
51 001122334455 021325405431 014553341220 051421503243 031042513524 044115302352 (2; 1, 0, 1, 0)
52 001122334455 021425405331 043512432150 031551304224 052034411352 014532541023 (2; 1, 1, 0, 0)
53 001122334455 021425435130 014024351253 031521503442 041045522331 053241132054 (2; 1, 0, 1, 0)
54 001122334455 021524415330 011435522043 032132451054 041350253142 054034231251 (2; 1, 0, 1, 0)
55 001122334455 021421503543 041352402531 014510532432 052330411254 031551344220 (4; 2, 0, 2, 0)
56 001122334455 021435215043 032542541031 014512205334 053024411352 042315513240 (12; 3, 3, 3, 3)
57 001122334455 021051354324 031425304152 051354324021 014550341223 044253311520 (24;12, 0, 0,12)
58 001122334455 021054354321 052440325113 014553341220 035241302514 042315315042 (24;12, 0, 0,12)
59 001122334455 021351354024 014250341523 031425304152 044553311220 051054324321 (48;12,12,12,12)

decompositions of K6,6 are given in Table 3 with the notation (M; m1, m2) denoting
that |Aut(D)| = M and that there are m1 mappings which preserve the bipartition and
m2 which reverse the bipartition.

3. Face 2-colourable triangulations of Kn,n,n . The principal method employed to
tabulate face 2-colourable triangulations of Kn,n,n was based on taking representatives
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Table 3. Hamiltonian decompositions of K6,6.

1 001122334455 021324354051 041520314253 (72;36,36)
2 001122334455 021425314053 043023154251 (4; 4, 0)
3 001122334455 021524314053 041320354251 (36;36, 0)
4 001122334455 021425403153 043513205241 (2; 1, 1)
5 001122334455 021425413053 043513204251 (2; 2, 0)
6 001122334455 021423503541 043152402513 (6; 6, 0)
7 001122334455 021351354024 014250341523 (24;12,12)

of the main classes of Latin squares of order n. For 4 ≤ n ≤ 7 these are given in [3], and
for n = 3 there is just one main class. Having selected one such square, its triples are
regarded as triangles with the common clockwise orientation (row, column, entry). In
any biembedding containing this Latin square, the rotation about each point contains
n known ordered pairs; what remains unknown is the ordering of these pairs. By
considering all possible orderings and rejecting those which give rise to pseudosurfaces,
all biembeddings containing the given square may be determined. Working through
the main classes of Latin squares of order n, each new biembedding was checked for
isomorphism with those found previously. Finally, the results for n ≤ 6 were reconciled
with those of Section 2. For n = 7 the large number of biembeddings to be checked
required the use of an effective invariant in order to establish the isomorphism classes.
The invariant used was as follows.

Consider a fixed embedding of Kn,n,n, and denote by ρu the rotation around a
vertex u. Since ρu is a cyclic permutation, for each two neighbours v and w of u there
are n1 and n2 such that w = ρn1

u (v) and w = ρ−n2
u (v) (where 1 ≤ n1, n2 ≤ 2n − 1 and

n1 + n2 = 2n). Denote by d(u; v,w) the minimum of n1 and n2. Now if d(u; x, v) = 1 and
d(u; v, y) = 1, x �= y, then d(v; x, y) = 2. However if d(u; x, v) = 3 and d(u; v, y) = 3,
x �= y, then d(v; x, y) can be any even number from 2 to n. (The number d(v; x, y) is
even because x and y belong to the same set of the tripartition.) For each vertex v, let
Iv be the sum of 2n numbers given by

Iv =
∑

u

(d(v; x, y) : where d(u; x, v) = d(u; v, y) = 3 and x �= y),

where the sum extends over all vertices u of Kn,n,n for which uv is an edge. Then for
n = 7, {Iv : v ∈ V (Kn,n,n)} is a satisfactory set of invariants.

For n ≤ 6 we specify a representative biembedding from each isomorphism class
by means of a vector (i, j, p1, p2, p3) where i, j give the main class numbers of the
two squares as in [3], and p1, p2, p3 specify permutations applied respectively to the
rows, columns and entries of the second square. From these the biembedding may
be constructed as explained in the case n = 3 below. We use I to denote the identity
permutation. In no case do we need to permute rows, columns and entries with each
other. We also give information about the automorphism group of each biembedding
E with a second vector (M; m1, m2, m3, m4) denoting that |Aut(E)| = M and that
there are m1 mappings which preserve orientation and colour classes, m2 mappings
which preserve orientation and reverse the colour classes, m3 mappings which reverse
orientation and preserve the colour classes, and m4 mappings which reverse orientation
and reverse the colour classes.

In the case n = 7 the number of biembeddings is so large that it is only feasible to
summarize the results in the form of tables showing which pairs of squares biembed
and how many nonisomorphic biembeddings there are for a given pair. We also give a
little more information about this case in Section 4.
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n = 3. There is just one biembedding given by (1, 1, I, I, 201), (108; 27,

27, 27, 27). This biembedding is regular. To obtain the biembedding, take main class
#1 Latin square representative as

0 1 2
1 2 0
2 0 1

.

This forms the first square. To form the second, apply the permutation ( 0
2

1
0

2
1 ) to the

entries to get

2 0 1
0 1 2
1 2 0

.

The rows and columns of each square are indexed by 0, 1 and 2. Then take the
nine points of K3,3,3 to be 0r, 1r, 2r, 0c, 1c, 2c, 0e, 1e, 2e. Black triangles with clockwise
orientation (r, c, e), are read from the first square so that, for example, the (0, 2) entry
2 gives the triangle (0r, 2c, 2e). White triangles with clockwise orientation (r, e, c) are
read from the second. The resulting rotation scheme is

0r : 0c 0e 1c 1e 2c 2e

1r : 0c 1e 1c 2e 2c 0e

2r : 0c 2e 1c 0e 2c 1e

0c : 0e 0r 2e 2r 1e 1r

1c : 0e 2r 2e 1r 1e 0r

2c : 0e 1r 2e 0r 1e 2r

0e : 0r 0c 1r 2c 2r 1c

1e : 0r 1c 1r 0c 2r 2c

2e : 0r 2c 1r 1c 2r 0c

This biembedding has its (full) automorphism group of order 108 with 27
automorphisms in each of the four classes described above. In this particular example,
the embedding could equally well be specified by the vector (1, 1, 120, I, I) since the
second square may also be obtained from the first by applying the permutation ( 0

1
1
2

2
0 )

to the rows.

n = 4. There are two main classes of Latin squares but only one biembedding
given by (2, 2, I, 3201, I), (192; 48, 48, 48, 48). This biembedding is regular.

n = 5. There are two main classes of Latin squares and three biembeddings.
1. (1, 1, I, 40123, I), (300; 75, 75, 75, 75), regular,
2. (1, 1, I, 14023, I), (20; 5, 5, 5, 5),
3. (1, 1, 10234, 30412, 10234), (12; 3, 3, 3, 3).

The second main class does not feature in any biembedding.
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Table 4. Biembeddings for n = 6.

1. (1, 1, I, 541032, I), (432; 108, 108, 108, 108), regular,
2. (1, 1, 410325, 345012, 410325), (108; 27, 27, 27, 27),
3. (1, 2, 103245, 450132, 013245), (72; 36, 0, 36, 0),
4. (1, 2, 103245, 430512, 013245), (24; 12, 0, 12, 0),
5. (1, 2, 301425, 210534, 031425), (18; 9, 0, 9, 0),
6. (2, 2, I, 451023, I), (48; 12, 12, 12, 12),
7. (2, 2, 154203, 045312, 021435), (36; 9, 9, 9, 9),
8. (2, 2, 042135, 451023, I), (24; 6, 6, 6, 6),
9. (2, 2, 042135, 153024, I), (12; 3, 3, 3, 3),
10. (2, 8, 214035, 214350, 201345), (3; 3, 0, 0, 0),
11. (5, 5, 013254, 013254, 240513), (4; 1, 1, 1, 1),
12. (5, 5, 542310, 542310, 240513), (4; 1, 1, 1, 1),
13. (5, 5, 043215, 102354, 240513), (2; 1, 0, 0, 1),
14. (6, 6, 204135, 130425, 103254), (4; 1, 1, 1, 1),
15. (8, 8, 041523, 354012, 240135), (6; 3, 3, 0, 0),
16. (9, 9, I, 524031, I), (12; 6, 0, 0, 6),
17. (9, 9, 041325, 520134, I), (6; 3, 0, 0, 3),
18. (9, 9, 032154, 531024, I), (4; 2, 0, 0, 2),
19. (9, 9, 032154, 324150, 402315), (2; 1, 0, 0, 1),
20. (11, 11, 450213, 305124, 104325), (6; 3, 0, 0, 3),
21. (11, 11, I, 520413, I), (4; 2, 0, 0, 2),
22. (11, 11, I, 450213, I), (2; 1, 0, 0, 1),
23. (11, 11, 305124, 450213, I), (2; 1, 0, 0, 1),
24. (11, 11, 315042, 543210, 302145), (2; 1, 0, 0, 1),
25. (11, 11, 315024, 421530, 102345), (2; 1, 1, 0, 0),
26. (11, 11, 032145, 520431, 312045), (2; 1, 1, 0, 0),
27. (11, 11, 105324, 520431, 304125), (2; 1, 1, 0, 0),
28. (11, 12, 103245, 254013, 103245), (3; 3, 0, 0, 0),
29. (12, 12, I, 534012, I), (36; 18, 0, 0, 18).

n = 6. There are 12 main classes of Latin squares and 29 biembeddings. These
are given in Table 4. Main classes 3, 4, 7 and 10 do not feature in any biembedding.

n = 7. There are 147 main classes of Latin squares and 23 664 biembeddings.
These are summarized in the 16 sub-tables of Table 5. The Latin squares partition into
groups such that biembeddings only exist inside these groups. Each sub-table specifies
the main class numbers of the squares along the top and left borders, and the entries
in the body of each sub-table give the numbers of nonisomorphic embeddings. The
number at the top left specifies the number of main classes included in that sub-table.
It is interesting to note that inside each sub-table the number of zero entries (indicated
by -) is small. Of the 23 664 biembeddings, 4 761 are biembeddings of a Latin square
with itself. Although all 147 squares appear in Table 5, several squares do not biembed
with themselves. Precisely one of the biembeddings is regular (see Section 4.2 for
details).

4. Remarks on the computational results.

4.1. Reconciling the results of sections 2 and 3. For each face 2-colourable
triangulation of Kn,n,n with 3 ≤ n ≤ 6, three perfect decompositions of K∗

n,n may
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be obtained as described in Proposition 2. For n = 3, the three decompositions
obtained from the unique biembedding given in section 3 are isomorphic with the
unique perfect decomposition of K∗

n,n given in section 2. The same is true for n = 4.
The decompositions of K∗

5,5 obtained by deleting respectively R = {0r, 1r, 2r, 3r, 4r},
C = {0c, 1c, 2c, 3c, 4c}, E = {0e, 1e, 2e, 3e, 4e} from each embedding of K5,5,5 are shown
in Table 6 with the embeddings numbered as in section 3, and the decompositions as
in section 2 (Table 1). Note that each of the perfect decompositions of K∗

5,5 appears in
precisely one row, as predicted by Proposition 2.

Table 5. Summary of K7,7,7 results.

1 6
6 284

1 78
78 65

1 87
87 284

2 105 136
105 248 353
136 353 372

3 1 3 7
1 249 8 49
3 8 3 2
7 49 2 27

3 2 4 5
2 6 7 3
4 7 91 61
5 3 61 87

3 90 124 125
90 190 114 119
124 114 88 97
125 119 97 249

6 52 76 112 141 143 147
52 3 2 28 10 28 16
76 2 - 7 - 5 6
112 28 7 61 65 180 106
141 10 - 65 11 68 34
143 28 5 180 68 82 141
147 16 6 106 34 141 12

6 71 81 108 109 121 140
71 3 14 19 9 29 21
81 14 86 78 80 81 143

108 19 78 36 38 115 68
109 9 80 38 45 75 86
121 29 81 115 75 42 88
140 21 143 68 86 88 104

8 8 10 46 77 84 129 135 146
8 - - 38 12 4 - 9 -
10 - - - 2 4 - - -
46 38 - 107 24 21 194 51 80
77 12 2 24 6 6 45 7 22
84 4 4 21 6 8 30 7 18
129 - - 194 45 30 131 57 46
135 9 - 51 7 7 57 19 52
146 - - 80 22 18 46 52 59

8 12 15 51 65 68 79 97 130
12 - - 2 2 - 3 5 -
15 - - 12 16 3 20 17 -
51 2 12 1 11 9 8 6 43
65 2 16 11 12 23 44 39 46
68 - 3 9 23 4 19 27 10
79 3 20 8 44 19 28 42 56
97 5 17 6 39 27 42 65 39
130 - - 43 46 10 56 39 -

9 57 63 66 82 86 92 119 120 122
57 22 26 39 68 57 52 47 68 29
63 26 4 15 24 18 21 24 14 5
66 39 15 32 42 50 44 42 42 19
82 68 24 42 30 64 98 57 99 39
86 57 18 50 64 46 105 50 89 19
92 52 21 44 98 105 60 35 88 19
119 47 24 42 57 50 35 43 48 28
120 68 14 42 99 89 88 48 47 17
122 29 5 19 39 19 19 28 17 -

18 29 36 38 43 45 50 55 60 91 93 103 104 107 113 116 123 126 142
29 4 7 13 26 5 6 7 16 20 14 39 18 28 34 7 7 4 5
36 7 - 5 15 3 5 10 4 18 8 15 5 13 18 4 11 5 9
38 13 5 9 22 7 14 11 8 21 14 36 9 20 19 8 20 4 12
43 26 15 22 34 22 22 34 18 63 27 47 33 62 86 19 30 12 58
45 5 3 7 22 11 9 8 22 24 10 38 20 18 23 8 13 4 4
50 6 5 14 22 9 14 18 9 27 10 31 22 25 36 6 16 - 25
55 7 10 11 34 8 18 10 15 37 10 40 24 31 37 5 16 1 11
60 16 4 8 18 22 9 15 5 35 16 15 5 26 37 6 16 22 25
91 20 18 21 63 24 27 37 35 27 32 48 30 71 65 15 46 16 21
93 14 8 14 27 10 10 10 16 32 9 34 20 20 40 17 14 3 25
103 39 15 36 47 38 31 40 15 48 34 33 21 69 96 28 45 24 55
104 18 5 9 33 20 22 24 5 30 20 21 4 36 35 11 31 15 17
107 28 13 20 62 18 25 31 26 71 20 69 36 40 60 14 41 14 51
113 34 18 19 86 23 36 37 37 65 40 96 35 60 43 21 26 22 37
116 7 4 8 19 8 6 5 6 15 17 28 11 14 21 11 15 4 3
123 7 11 20 30 13 16 16 16 46 14 45 31 41 26 15 14 7 16
126 4 5 4 12 4 - 1 22 16 3 24 15 14 22 4 7 - 2
142 5 9 12 58 4 25 11 25 21 25 55 17 51 37 3 16 2 10

19 16 17 32 41 42 48 49 56 83 85 89 94 101 106 117 118 127 131 133
16 14 19 9 13 3 12 3 4 3 13 20 13 13 22 21 30 2 6 9
17 19 8 6 9 8 13 2 13 18 5 17 22 8 7 14 16 7 3 9
32 9 6 6 12 1 15 4 10 7 3 15 16 13 5 11 10 3 4 10
41 13 9 12 24 17 27 2 23 25 13 52 21 10 20 34 28 25 11 18
42 3 8 1 17 6 6 3 6 10 11 13 6 9 13 15 20 4 6 5
48 12 13 15 27 6 18 8 11 7 17 31 37 14 28 35 30 17 27 11
49 3 2 4 2 3 8 2 8 7 2 5 8 8 1 4 14 3 5 -
56 4 13 10 23 6 11 8 4 11 10 13 16 26 13 20 20 3 11 2
83 3 18 7 25 10 7 7 11 15 13 22 27 1 15 18 22 9 6 11
85 13 5 3 13 11 17 2 10 13 4 22 14 11 1 12 31 8 5 2
89 20 17 15 52 13 31 5 13 22 22 36 43 12 19 72 39 15 20 16
94 13 22 16 21 6 37 8 16 27 14 43 25 10 23 50 23 20 17 14
101 13 8 13 10 9 14 8 26 1 11 12 10 15 15 17 7 6 6 6
106 22 7 5 20 13 28 1 13 15 1 19 23 15 14 22 14 12 19 11
117 21 14 11 34 15 35 4 20 18 12 72 50 17 22 38 48 11 15 26
118 30 16 10 28 20 30 14 20 22 31 39 23 7 14 48 40 34 33 26
127 2 7 3 25 4 17 3 3 9 8 15 20 6 12 11 34 11 9 8
131 6 3 4 11 6 27 5 11 6 5 20 17 6 19 15 33 9 15 13
133 9 9 10 18 5 11 - 2 11 2 16 14 6 11 26 26 8 13 10
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Table 5. Continued

26 9 14 19 20 26 27 31 34 35 37 40 47 54 61 62 67 70 72 80 88 95 99 100 128 132 134
9 15 10 12 17 16 13 10 10 14 12 8 17 14 7 18 18 6 3 12 15 5 5 25 13 12 18
14 10 8 2 11 7 7 4 6 6 10 4 6 8 8 7 5 - 1 11 3 5 4 6 9 4 2
19 12 2 11 22 20 11 21 9 21 27 7 5 19 28 26 10 3 4 9 35 19 1 30 22 20 18
20 17 11 22 25 12 18 17 7 20 16 19 19 17 27 16 17 8 9 6 32 6 7 18 23 22 17
26 16 7 20 12 5 20 17 7 16 21 12 21 14 12 20 11 10 3 6 22 6 13 20 25 17 20
27 13 7 11 18 20 22 18 6 23 15 20 26 10 19 13 17 6 4 6 17 16 14 20 16 19 19
31 10 4 21 17 17 18 22 12 17 25 25 16 10 11 13 24 17 6 8 19 6 23 21 26 11 19
34 10 6 9 7 7 6 12 6 7 8 9 8 9 4 4 5 7 4 4 8 16 10 11 6 4 13
35 14 6 21 20 16 23 17 7 13 8 17 25 14 20 15 19 12 5 9 18 7 7 20 25 29 37
37 12 10 27 16 21 15 25 8 8 16 14 30 13 14 9 11 11 4 12 13 9 10 15 20 19 25
40 8 4 7 19 12 20 25 9 17 14 8 19 13 13 15 14 5 4 5 19 10 8 19 17 20 11
47 17 6 5 19 21 26 16 8 25 30 19 11 21 23 17 16 2 7 6 30 17 7 39 27 17 22
54 14 8 19 17 14 10 10 9 14 13 13 21 19 26 19 20 6 9 9 9 15 13 26 20 16 36
61 7 8 28 27 12 19 11 4 20 14 13 23 26 10 29 17 14 7 18 21 7 12 12 15 19 25
62 18 7 26 16 20 13 13 4 15 9 15 17 19 29 15 22 6 7 11 17 14 13 25 26 16 20
67 18 5 10 17 11 17 24 5 19 11 14 16 20 17 22 14 12 3 14 17 5 9 16 22 23 27
70 6 - 3 8 10 6 17 7 12 11 5 2 6 14 6 12 2 8 5 15 4 1 7 8 5 11
72 3 1 4 9 3 4 6 4 5 4 4 7 9 7 7 3 8 2 3 2 6 3 3 7 8 4
80 12 11 9 6 6 6 8 4 9 12 5 6 9 18 11 14 5 3 10 17 10 6 14 7 3 14
88 15 3 35 32 22 17 19 8 18 13 19 30 9 21 17 17 15 2 17 18 10 14 22 30 29 36
95 5 5 19 6 6 16 6 16 7 9 10 17 15 7 14 5 4 6 10 10 7 8 5 16 11 16
99 5 4 1 7 13 14 23 10 7 10 8 7 13 12 13 9 1 3 6 14 8 3 10 6 15 8

100 25 6 30 18 20 20 21 11 20 15 19 39 26 12 25 16 7 3 14 22 5 10 36 31 11 23
128 13 9 22 23 25 16 26 6 25 20 17 27 20 15 26 22 8 7 7 30 16 6 31 28 18 32
132 12 4 20 22 17 19 11 4 29 19 20 17 16 19 16 23 5 8 3 29 11 15 11 18 33 37
134 18 2 18 17 20 19 19 13 37 25 11 22 36 25 20 27 11 4 14 36 16 8 23 32 37 31

33 11 13 18 21 22 23 24 25 28 30 33 39 44 53 58 59 64 69 73 74 75 96 98 102 110 111 114 115 137 138 139 144 145
11 - - - - - - 1 - 1 - - - - - - 1 - - 7 - 5 1 2 1 1 2 1 2 - - - 2 -
13 - - 3 3 - - 1 1 5 1 4 2 3 1 1 2 4 4 3 1 1 8 6 1 5 1 5 - - 3 1 - 2
18 - 3 4 6 - 3 9 1 3 4 18 8 22 3 6 8 6 4 4 2 4 21 16 10 8 1 18 - - 4 - 15 -
21 - 3 6 12 3 - 7 - 2 19 14 12 22 4 9 9 7 13 3 3 2 26 14 9 3 4 23 2 1 10 6 8 8
22 - - - 3 6 2 2 - - 6 11 2 7 2 3 2 1 - 1 4 1 15 9 4 5 7 8 1 - 5 3 1 2
23 - - 3 - 2 4 4 4 2 - 1 4 2 - 2 3 - 3 7 1 7 5 5 3 7 1 12 3 - 2 - 4 2
24 1 1 9 7 2 4 2 - - 11 27 5 19 1 5 5 11 6 1 1 - 31 17 5 1 2 15 2 2 4 1 5 2
25 - 1 1 - - 4 - - - 1 2 - 1 - 4 1 2 - - 1 - - - - - 1 1 - - 1 5 1 -
28 1 5 3 2 - 2 - - 2 4 3 1 7 2 6 7 2 2 9 2 6 28 13 4 2 3 11 8 - 4 2 6 1
30 - 1 4 19 6 - 11 1 4 8 16 6 5 - 1 7 8 15 5 - 3 17 19 8 10 1 24 1 - 7 3 7 4
33 - 4 18 14 11 1 27 2 3 16 30 18 17 1 11 22 19 15 9 5 4 30 37 17 24 4 42 3 3 15 10 18 4
39 - 2 8 12 2 4 5 - 1 6 18 6 20 1 13 3 9 3 2 1 1 18 24 4 4 2 24 4 2 1 3 12 3
44 - 3 22 22 7 2 19 1 7 5 17 20 21 4 22 19 16 20 7 2 1 23 35 8 11 5 36 9 4 12 2 11 5
53 - 1 3 4 2 - 1 - 2 - 1 1 4 2 2 1 - 1 - 2 - 6 2 1 2 1 4 - 4 - 5 4 -
58 - 1 6 9 3 2 5 4 6 1 11 13 22 2 11 5 8 2 4 2 3 24 18 7 12 - 16 5 - 8 5 12 2
59 1 2 8 9 2 3 5 1 7 7 22 3 19 1 5 8 10 7 7 4 1 20 24 10 14 2 14 2 1 12 2 13 3
64 - 4 6 7 1 - 11 2 2 8 19 9 16 - 8 10 12 13 - 3 3 16 20 13 11 2 19 4 3 6 4 12 4
69 - 4 4 13 - 3 6 - 2 15 15 3 20 1 2 7 13 3 3 4 2 20 18 11 3 5 11 2 1 7 5 8 2
73 7 3 4 3 1 7 1 - 9 5 9 2 7 - 4 7 - 3 5 3 3 14 7 5 2 1 2 1 4 5 3 2 3
74 - 1 2 3 4 1 1 1 2 - 5 1 2 2 2 4 3 4 3 2 - 10 1 3 3 1 6 2 1 5 2 3 1
75 5 1 4 2 1 7 - - 6 3 4 1 1 - 3 1 3 2 3 - 4 6 7 3 1 1 1 1 3 4 4 2 -
96 1 8 21 26 15 5 31 - 28 17 30 18 23 6 24 20 16 20 14 10 6 63 49 34 11 25 45 6 6 17 6 30 7
98 2 6 16 14 9 5 17 - 13 19 37 24 35 2 18 24 20 18 7 1 7 49 24 21 21 9 50 7 7 12 1 28 13
102 1 1 10 9 4 3 5 - 4 8 17 4 8 1 7 10 13 11 5 3 3 34 21 18 11 2 27 4 1 4 4 13 8
110 1 5 8 3 5 7 1 - 2 10 24 4 11 2 12 14 11 3 2 3 1 11 21 11 10 3 12 1 3 4 1 15 1
111 2 1 1 4 7 1 2 1 3 1 4 2 5 1 - 2 2 5 1 1 1 25 9 2 3 1 10 2 - 6 2 4 1
114 1 5 18 23 8 12 15 1 11 24 42 24 36 4 16 14 19 11 2 6 1 45 50 27 12 10 43 3 4 13 7 28 2
115 2 - - 2 1 3 2 - 8 1 3 4 9 - 5 2 4 2 1 2 1 6 7 4 1 2 3 3 - 2 4 3 2
137 - - - 1 - - 2 - - - 3 2 4 4 - 1 3 1 4 1 3 6 7 1 3 - 4 - - 2 1 6 4
138 - 3 4 10 5 2 4 1 4 7 15 1 12 - 8 12 6 7 5 5 4 17 12 4 4 6 13 2 2 7 3 8 -
139 - 1 - 6 3 - 1 5 2 3 10 3 2 5 5 2 4 5 3 2 4 6 1 4 1 2 7 4 1 3 - 1 2
144 2 - 15 8 1 4 5 1 6 7 18 12 11 4 12 13 12 8 2 3 2 30 28 13 15 4 28 3 6 8 1 18 5
145 - 2 - 8 2 2 2 - 1 4 4 3 5 - 2 3 4 2 3 1 - 7 13 8 1 1 2 2 4 - 2 5 7

Table 7 gives the corresponding results for n = 6 with the embeddings numbered as
in section 3 (Table 4), and the decompositions as in section 2 (Table 2). Again note that
each of the perfect decompositions of K∗

6,6 appears in precisely one row, as predicted
by Proposition 2.

4.2. Regular biembeddings. Our computational results show that for each n ∈
{3, 4, 5, 6, 7} there exists precisely one regular face 2-colourable triangular embedding
of Kn,n,n. It will be shown in [4] that this uniqueness result in fact holds for every n.
In each case this embedding consists of a biembedding of two cyclic Latin squares
of order n. Such biembeddings are not new. They may be constructed for each n ≥ 3
directly from cyclic Latin squares or from voltage graphs. The former approach has
the advantage of easily establishing the regularity of these embeddings. Take two

https://doi.org/10.1017/S0017089504001922 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504001922


BIEMBEDDINGS OF LATIN SQUARES 453

Table 6. K5,5,5 and K∗
5,5 correspondence.

Deleted set and K∗
5,5 decomposition

K5,5,5 embedding R C E

1 4 4 4
2 7 6 7
3 13 13 13

Table 7. K6,6,6 and K∗
6,6 correspondence.

Deleted set and K∗
6,6 decomposition

K6,6,6 embedding R C E

1 23 23 23
2 24 24 24
3 57 57 57
4 30 58 30
5 48 48 48
6 4 59 4
7 56 56 56
8 7 31 31
9 27 27 40
10 43 43 43
11 35 35 38
12 1 1 47
13 21 53 26
14 28 28 41
15 52 52 52
16 6 29 8
17 25 19 39
18 18 55 17
19 51 46 20
20 15 15 15
21 13 32 2
22 5 49 9
23 36 54 10
24 44 45 3
25 14 37 37
26 50 12 50
27 11 11 42
28 16 16 16
29 22 34 33

isomorphic squares L1 and L2 whose rows, columns and entries are indexed by the
group �n and whose entries in row i, column j are given respectively by L1(i, j) ≡
i + j (mod n) and L2(i, j) ≡ i + j − 1 (mod n). Proceeding as in the n = 3 case of
Section 3, it is easy to see that we may obtain a rotation scheme for a biembedding
of L1 and L2. Furthermore, this biembedding has n2 automorphisms of the form
φα,β : (ir, jc, ke) → ((i + α)r, (j + β)c, (k + α + β)e), and these all preserve the colour
classes, the orientation, and the rows, columns and entries. In addition, the mapping
χ : (ir, jc, ke) → (ic,−je,−kr) gives an automorphism of order 3 which permutes rows,
columns and entries, but preserves the colour classes and the orientation. The mapping
µ : (ir, jc, ke) → (ic, jr, ke) gives an automorphism of order 2 which preserves the colour
classes but reverses orientation, and the mapping ν : (ir, jc, ke) → (−ic,−jr, (−k − 1)e)
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Figure 1 Voltage graph for regular biembedding.

gives an automorphism of order 2 which reverses the colour classes but preserves the
orientation. It follows that the group of automorphisms generated by these mappings
has order at least 12n2. Since this is the maximum possible order, we deduce that this
group is the full automorphism group of the biembedding and that the biembedding
is regular.

An alternative description given in [11] uses the voltage graph shown in Figure 1.
The graph has two vertices labelled C and E connected by n arcs directed from C
to E and labelled with elements of the group �n in order, as shown. The resulting
regions are labelled 0 to n − 1, with region i bordered by the arcs labelled i − 1 and i, as
shown. Clockwise rotations are imposed at C and E. The lifted graph has 2n vertices
which may be taken as C0, C1, . . . , Cn−1, E0, E1, . . . , En−1, and n regions r0, r1, . . . , rn−1

whose clockwise boundaries are given by

r0 : C0 E0 C1 E1 . . . Cn−1 En−1

r1 : C0 E1 C1 E2 . . . Cn−1 E0
...

...
rn−1 : C0 En−1 C1 E0 . . . Cn−1 En−2

Inserting a vertex Ri into the interior of each region ri and joining it with new non-
intersecting edges to all the vertices on the boundary of ri gives the partial rotation
scheme (rotations about Ri)

R0 : C0 E0 C1 E1 . . . Cn−1 En−1

R1 : C0 E1 C1 E2 . . . Cn−1 E0
...

...
Rn−1 : C0 En−1 C1 E0 . . . Cn−1 En−2

It is then a routine matter to complete this scheme (rotations about Ci and Ei) and to
verify that it gives the same biembedding as the previous method (by mapping Ri to ir,
etc.).

The paper [4] gives a systematic investigation of voltage graphs similar to that
shown in Figure 1, but with varying distributions of the voltages. An alternative
voltage graph construction for the dual of the regular biembeddings is given in [7].
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4.3. Recursive constructions. In [7] a variety of recursive constructions for
embeddings are presented. These require, as a basic ingredient, face 2-colourable
triangulations of Kn,n,n in which there are parallel classes of triangular faces in one, or
preferably both, of the two colour classes. By a parallel class we mean a set of vertex-
disjoint triangular faces whose vertices collectively cover the complete vertex set of the
graph Kn,n,n. Such a set of triangles forms a 2-factor of the graph and is referred to as
a patchwork by Gross and Tucker [9, p. 155]. Since the regular embeddings described
above and used in [7] involve cyclic Latin squares, these embeddings do indeed have
parallel classes, in both colour classes, whenever n is odd because the Latin squares have
transversals. But cyclic Latin squares of even order do not possess transversals and so
the resulting regular embeddings do not have parallel classes when n is even. However,
by examining the biembeddings listed in Section 3 for n = 6 we can identify suitable
triangulations of K6,6,6, such as #6 which biembeds two representatives of main class
#2. This Latin square has 32 transversals and so triangulation #6 has 32 parallel classes
of triangular faces in each of the two colour classes. By using this triangulation, we
may extend the results of [7] significantly. For example, we may give a non-orientable
version of Constructions 4 and 5 (alluded to in the Concluding Remarks) of that paper
but now with m = 6 or, by making use of a slight generalization of Construction 2,
with m = 6rs where r > 0 and s is odd.

CONSTRUCTION. Suppose that n ≡ 1 or 3 (mod 6) with n ≥ 7. Suppose also that we
have k differently labelled face 2-colourable triangulations of Km,m,m, where m = 6rs,
r > 0 and s is odd, all of which have a common parallel class of black triangular faces.
Then we may construct k(n−1)(n−3)/6 differently labelled face 2-colourable non-orientable
triangulations of Km(n−1)+1.

By saying that two embeddings are “differently labelled” we mean that there is a
face boundary in one embedding that is not a face boundary in the other even though
the underlying graphs are identical. The proof follows the discussion in [7] but needs as
ingredients a face 2-colourable triangulation of Kn (either orientable or nonorientable)
and a face 2-colourable triangulation of K2m+1 (necessarily nonorientable). These
ingredients may be found in [8, 10, 12].

4.4. Automorphisms of K7,7,7 embeddings. Observe that all the face 2-colourable
triangulations of Kn,n,n, where 3 ≤ n ≤ 5, have automorphism group of order at least
n. As regards the 29 face 2-colourable triangulations of K6,6,6, exactly 14 of them
have |Aut(E)| ≥ 6. However, automorphism groups of order at least 7 are rare among
the face 2-colourable triangulations of K7,7,7. Whenever |Aut(E)| ≥ 7, then the Latin
squares involved in the biembedding are either #3 (the square generated by the STS(7))
or #7 (the cyclic square) of [3]. As there are only 32 biembeddings in which only #3
and #7 appear (see Table 5), we list all these embeddings in Table 8, in the same format
as those of K6,6,6 in Table 4.

Among these biembeddings, only #4 and #6 are vertex-transitive. The 12
embeddings #7-#18 are not transitive on vertices, but they can be obtained by the
voltage graph construction, assigning voltages to a dipole. However, the voltages
assigned are different from those depicted on Figure 1. We discuss these embeddings
in [4].
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Table 8. Biembeddings of #3 and #7.

1. (3, 3, 1603452, 5416023, 2031456), (28; 7, 7, 7, 7),
2. (3, 3, 1560234, 1560234, 3012456), (4; 1, 1, 1, 1),
3. (3, 3, 2651304, 6013452, 3120456), (1; 1, 0, 0, 0),
4. (3, 7, 4253610, 0231456, 0421356), (21; 21, 0, 0, 0),
5. (3, 7, 5142360, 0351426, 2403156), (3; 3, 0, 0, 0),
6. (7, 7, 1234560, I, I), (588; 147, 147, 147, 147), regular
7. (7, 7, 1256340, I, I), (28; 7, 7, 7, 7),
8. (7, 7, 1534620, I, I), (28; 7, 7, 7, 7),
9. (7, 7, 1436520, I, I), (28; 7, 7, 7, 7),
10. (7, 7, 1564230, I, I), (28; 7, 7, 7, 7),
11. (7, 7, 1352640, I, I), (28; 7, 7, 7, 7),
12. (7, 7, 1235640, I, I), (28; 7, 7, 7, 7),
13. (7, 7, 1456230, I, I), (28; 7, 7, 7, 7),
14. (7, 7, 5246310, I, I), (14; 7, 0, 7, 0),
15. (7, 7, 4265310, I, I), (14; 7, 0, 7, 0),
16. (7, 7, 1536240, I, I), (14; 7, 0, 7, 0),
17. (7, 7, 1254630, I, I), (14; 7, 0, 7, 0),
18. (7, 7, 1546320, I, I), (14; 7, 0, 7, 0),
19. (7, 7, 5341260, 0534126, 4230156), (12; 3, 3, 3, 3),
20. (7, 7, 1253460, 0234516, 0134256), (12; 3, 3, 3, 3),
21. (7, 7, 4512360, 0451236, 3401256), (12; 3, 3, 3, 3),
22. (7, 7, 5612340, 0312456, 1203456), (6; 3, 0, 3, 0),
23. (7, 7, 1425360, 0142536, 0314256), (6; 3, 0, 3, 0),
24. (7, 7, 5234610, 0135426, 3042156), (4; 1, 1, 1, 1),
25. (7, 7, 4532610, 0145236, 0341256), (4; 1, 1, 1, 1),
26. (7, 7, 5234610, 0145236, 0341256), (4; 1, 1, 1, 1),
27. (7, 7, 5613420, 0251346, 1402356), (2; 1, 0, 1, 0),
28. (7, 7, 5461230, 0421356, 2130456), (2; 1, 0, 1, 0),
29. (7, 7, 3456120, 0234516, 1234056), (2; 1, 0, 1, 0),
30. (7, 7, 2361540, 0534126, 4230156), (2; 1, 0, 1, 0),
31. (7, 7, 2456130, 0235416, 1243056), (2; 1, 0, 0, 1),
32. (7, 7, 4623510, 0235146, 1240356), (2; 1, 0, 1, 0).

Table 9. Embeddings by order of
automorphism group.

|Aut(E)| number of embeddings

1 22 114
2 1 270
3 166
4 59
6 37

≥7 18

To complete the information, in Table 9 we present the numbers of biembeddings
according to the order of Aut(E).

4.5. Biembeddings of Latin squares. Our computational results show that not
every main class of Latin square features in a biembedding. For n ≤ 6, those that do
not are the Cayley table of the Klein group of order 4, the Latin square of order
5 which does not come from the cyclic group, and four of the 12 main classes of
Latin square of order 6. In fact, the first of these exceptions can easily be established
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by hand calculation. However, for n = 7 all the main classes of Latin square feature
in biembeddings. It is a very interesting question whether the six small exceptions
identified above are the only ones.

More startling are the partitioning results given in Table 5 for the case n = 7,
namely that the 147 main classes of Latin square partition into 16 subsets respectively
containing 1, 1, 1, 2, 3, 3, 3, 6, 6, 8, 8, 9, 18, 19, 26 and 33 classes such that the
biembeddings of Latin squares exist only when both squares belong to the same subset
of the partition. Similar partitioning can be identified for n = 6 and, trivially, for n =
3, 4 and 5. In our opinion this is the most interesting and perhaps unexpected property
to emerge from our computations. It raises the problem of providing a mathematical
explanation for these results. We hope to return to this in a future paper.
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