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1. Introduction

Let A be an algebra and let φ : A → A be a linear map. Recall that φ is said to
be a Lie homomorphism if φ([X, Y ]) = [φ(X), φ(Y )] for all X, Y ∈ A. Here, [X, Y ]
denotes the commutator XY −Y X of X and Y . More generally, we say that φ preserves
commutativity if for all X, Y ∈ A, [X, Y ] = 0 implies [φ(X), φ(Y )] = 0. The standard
problem is to describe the form of these maps; the usual conclusion is that they are close
to (anti)homomorphisms.

The studies of both types of map have a long history. The one on Lie homomorphisms
has its roots in the theory of Lie algebras [15] and ring theory [13,14], while the more
general problem of determining commutativity preservers begun in linear algebra [22].
Over the years these maps have been considered in various areas. We refer, however,
only to a few recent publications, where one can find further references and historical
accounts [2,4,5,8,21].

In order to describe a Lie homomorphism or a commutativity preserver φ, one is usu-
ally forced to impose some conditions on the range of φ. An exception is the recent result
from [21] which states that an arbitrary linear commutativity preserver on the matrix
algebra A = Mn(F), F an algebraically closed field of characteristic 0, has either a commu-
tative range or it is of a standard form (which can be described via (anti)automorphisms).
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The same result definitely does not hold true in some natural infinite-dimensional gener-
alizations of Mn(F) (like B(H)), and, in fact, it seems out of reach to describe precisely
entirely arbitrary commutativity preservers on these algebras. We will therefore confine
ourselves to a certain class of linear operators, the so-called elementary operators. Recall
that φ : A → A is called an elementary operator on A if there exist Ai, Bi ∈ A such that

φ =
n∑

i=1
AiMBi ,

where AMB : T �→ ATB. It is easy to check (see below) that every linear operator on
Mn(F), F a field, is an elementary operator. Therefore, elementary operators on infinite-
dimensional algebras can be considered as natural generalizations of linear operators on
matrix algebras.

The methods that we will use are somewhat different from those that are usual in
the study of Lie homomorphisms and commutativity preservers. All concepts and tools
that we need will be briefly surveyed in § 2. When dealing with elementary operators
it is natural to restrict the attention to prime algebras. Because otherwise AMB can
be 0 for some non-zero A, B ∈ A, which makes the treatment of general elementary
operators rather muddled. In order to avoid various technicalities (and thereby trying to
make the paper interesting to a wider audience), we will consider only centrally closed
prime algebras. Bijective commutativity preservers (as well as Lie isomorphisms) on such
algebras were described in [6]. As we will see, replacing the bijectivity assumption with
the assumption that a map is an elementary operator yields quite different conclusions.
The Lie homomorphism problem will be treated in § 3. An almost identical argument also
works for Jordan homomorphisms, i.e. linear maps φ : A → A satisfying φ(XY +Y X) =
φ(X)φ(Y )+φ(Y )φ(X) for all X, Y ∈ A. The problem of describing elementary operators
that preserve commutativity, which is treated in § 4, is considerably more difficult and
the result that we obtain is less definitive than in the Lie (or Jordan) homomorphism
case.

2. Preliminaries

2.1. Elementary operators

Elementary operators appear in many branches of mathematics; however, they have
been systematically studied mostly in operator theory. We refer the reader to the recent
treatise [2, Chapter 5].

As already mentioned, every linear operator on Mn(F) is an elementary operator.
Indeed, just note that the set {EijMEkl

: i, j, k, l = 1, . . . , n} (here, Eij denotes a matrix
unit) is a linearly independent subset of the algebra of all linear operators on Mn(F),
and, hence, since its cardinality is n4, it is a basis of this algebra.

Let us introduce some terminology. Given an elementary operator φ =
∑n

i=1 Ai
MBi

,
we will call the elements A1, . . . , An the left coefficients of φ, and, similarly, the Bj will
be called the right coefficients of φ. If φ cannot be represented as φ =

∑k
j=1 CjMDj for
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some k < n, then we say that φ is an elementary operator of length n. The zero operator
has length 0.

2.2. Centrally closed prime algebras

Let A be a prime unital algebra over a field F. We say that A is centrally closed (over
F) if F coincides with the extended centroid of A. In our arguments we will just apply
some properties of centrally closed prime algebras, so we will not deal with the extended
centroid directly. Therefore, we will not give its exact definition here; let us just say that
the extended centroid of a prime algebra is a certain field containing (an isomorphic copy
of) the centre of the algebra (so, if A is centrally closed over F, then the centre of A is
equal to F1). For details we refer to [3, Chapter 2]. Let us list some important examples
of centrally closed prime algebras: these are unital central simple algebras, the coproducts
of two algebras of certain non-trivial dimensions [18], primitive Banach algebras (this
follows, for example, from [3, Corollary 4.1.2]), and ultraprime normed algebras [19].
The latter class of algebras includes, for example, prime C∗-algebras, standard operator
algebras, and prime group algebras l1(G), where G is a discrete group [23].

We will need the following lemma which is essentially due to Martindale [17]. The
version which we will state, however, follows from [16, Lemma 2.1].

Lemma 2.1. Let A be a centrally closed prime algebra over F. Further, let Ai, Bi ∈ A
and let φ =

∑n
i=1 AiMBi . Suppose that for some k, 1 � k � n, the elements A1, . . . , Ak

are linearly independent over F. If φ = 0, then for every i, 1 � i � k, there exist λij ∈ F,
k + 1 � j � n, such that Bi +

∑n
j=k+1 λijBj = 0 (in particular, each Bi = 0 in the case

k = n).

Corollary 2.2. Let A be a centrally closed prime algebra over F. An elementary oper-
ator φ =

∑n
i=1 AiMBi has length n if and only if the sets {A1, . . . , An} and {B1, . . . , Bn}

are linearly independent.

Proof. Suppose that φ can be represented as φ =
∑k

j=1 CjMDj . Thus,

n∑
i=1

AiMBi −
k∑

j=1
CjMDj = 0.

Assuming that the Ai are linearly independent, it follows from Lemma 2.1 that each Bi,
i = 1, . . . , n, lies in the linear span of {D1, . . . , Dk}. If the Bi are also linearly independent,
then we must have k � n. Therefore, φ has length n in this case. Conversely, assuming,
for example, that A1 is a linear combination of A2, . . . , An, it follows immediately that
the length of φ is less than or equal to n − 1. �

2.3. The (lower) socle

Let A be a semiprime algebra. Recall that the socle of A is the sum of all minimal left
ideals of A. If A does not have minimal left ideals, then we define that the socle of A is 0.
It turns out that the socle coincides with the sum of all minimal right ideals of A, and
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so it is an ideal of A. Every minimal left ideal L of A is of the form L = AE, where E is
a minimal idempotent in A, that is, an idempotent such that EAE is a division algebra.
We will also make use of the concept introduced in the recent paper [9]: the lower socle,
which we denote by S, of a semiprime algebra A is the sum of all minimal left ideals
AE such that the division algebra EAE is finite dimensional (or 0 if there are no such
minimal idempotents). It turns out that S is also an ideal of A. In the case where A is
prime, S either coincides with the socle or it is 0.

We will need two results from [9]. The first one is [9, Theorem 3.3].

Lemma 2.3. Let A be a semiprime algebra. Then A ∈ S if and only if the operator
AMA has finite rank.

We will in fact use only a very special case of this lemma, and moreover its easier ‘only
if’ part. The second result is a slightly sharpened version of [9, Corollary 4.3].

Lemma 2.4. Let A be a centrally closed prime algebra over F. Further, let Ai, Bi ∈ A
and let φ =

∑n
i=1 AiMBi

. Suppose that for some k, 1 � k � n, the elements A1, . . . , Ak

are linearly independent over F. If φ has finite rank, then for every i, 1 � i � k, there
exist λij ∈ F, k + 1 � j � n, such that Bi +

∑n
j=k+1 λijBj ∈ S (in particular, each

Bi ∈ S in the case k = n).

Proof. For k = n the result follows from [9, Theorem 4.2]. So, let 1 � k < n. We may
assume without loss of generality that {A1, . . . , Ak} is a maximal linearly independent
subset of {A1, . . . , An}. Therefore, for every j, k + 1 � j � n, we have Aj =

∑k
i=1 λijAi

for some λij ∈ F, which implies that φ =
∑k

i=1 Ai
MDi

, where Di = Bi +
∑n

j=k+1 λijBj .
Since the Ai are linearly independent, we can use [9, Theorem 4.2] to conclude that each
Di lies in S. This is the desired conclusion. �

2.4. Prime GPI algebras

An algebra A is said to be a GPI algebra if it satisfies a non-zero generalized polynomial
identity. Very informally, this means that arbitrary elements in A satisfy an identity which
involves some fixed elements in A (for example, if E is a minimal idempotent such that
EAE = FE, then EXEY E = EY EXE for all X, Y ∈ A, which can be viewed as a non-
zero generalized polynomial identity). For details, however, we refer to [3, Chapter 6].

Let A be a centrally closed prime algebra over F. The celebrated theorem by Martindale
[17] (see also [3, Theorem 6.1.6]) then tells us that A is a GPI algebra if and only if
it has a non-zero lower socle. Assume that F is algebraically closed. If E is a minimal
idempotent A, then EAE, as a finite-dimensional division algebra over F, must be one
dimensional, so that EAE = FE. By [3, Theorem 4.3.9] there exists a pair of dual vector
spaces V and W over F such that FW (V) ⊆ A ⊆ LW(V). Let us explain the meaning
of this notation and terminology. We say that V and W are a pair of dual spaces if
there is a bilinear form 〈·, ·〉 : V × W → F which is non-degenerate (i.e. 〈v,W〉 = 0
implies v = 0 and 〈V, w〉 = 0 implies w = 0). A linear map A : V → V is said to have
an adjoint A∗ : W → W if 〈Av, w〉 = 〈v, A∗w〉 for all v ∈ V, w ∈ W. For example,
a rank-one operator v �→ 〈v, w0〉v0 has the adjoint w �→ 〈v0, w〉w0. LW(V) denotes the
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algebra of all linear operators on V that have an adjoint, and FW (V) denotes the algebra
of all linear operators on V that have an adjoint and are of finite rank. Let us point
out that A ∈ LW(V) has finite rank, i.e. it lies in FW (V), if and only if A∗ has finite
rank. One can prove this easily by making use of the following result [3, Theorem 4.3.1]:
if v1, . . . , vn ∈ V are linearly independent, then there exist w1, . . . , wn ∈ W such that
〈vi, wj〉 = δij , i, j = 1, . . . , n. We also mention that FW (V) is equal to the lower socle of
A [3, Theorem 4.3.8].

2.5. Generalized functional identities

Roughly speaking, the theory of generalized functional identities deals with identities
satisfied by arbitrary elements from a ring, which involve arbitrary maps and some fixed
elements from a ring. An introductory account on this topic can be found in the survey [7].
We will need only a rather elementary result of this theory which is due to Chebotar [11,
Theorems 2.6 and 2.7]. We will state only its simplified version, which is sufficient for
our purposes.

Lemma 2.5. Let A be a centrally closed prime algebra, let A1, . . . , An be linearly
independent elements in A, let r � 1 and let fij : Ar−1 → A be arbitrary maps. Suppose
that either

r∑
i=1

n∑
j=1

AjXifij(X1, . . . , Xi−1, Xi+1, . . . , Xr) = 0

for all X1, . . . , Xr ∈ A, or
r∑

i=1

n∑
j=1

fij(X1, . . . , Xi−1, Xi+1, . . . , Xr)XiAj = 0

for all X1, . . . , Xr ∈ A. Then either each fij = 0 or A is a GPI algebra.

2.6. Locally linearly dependent operators

Let U and V be vector spaces and let V0 be a subspace of V. We say that linear
operators A1, . . . , An : U → V are locally linearly dependent modulo V0 if for every
u ∈ U there exists a non-trivial linear combination of A1u, . . . , Anu that is contained
in V0. We will need only the fundamental lemma on such operators, which is due to
Amitsur [1, Lemma 1] (incidentally, we remark that one can find various generalizations
in the recent papers [10] and [20]).

Lemma 2.6. If operators A1, . . . , An are locally linearly dependent modulo some
finite-dimensional space V0, then there exists a non-trivial linear combination of
A1, . . . , An of finite rank.

3. Elementary operators that are Lie (Jordan) homomorphisms

Theorem 3.1. Let A be an infinite-dimensional centrally closed prime algebra, and let
φ =

∑n
i=1 AiMBi

be an elementary operator on A of length n. The following conditions
are equivalent:
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(i) φ is a Lie homomorphism;

(ii) φ is a Jordan homomorphism;

(iii) φ is a homomorphism;

(iv) BiAj = δij , i, j = 1, . . . , n.

Proof. It is clear that (iv) implies (iii), and that (iii) implies both (i) and (ii). There-
fore, it suffices to show that each of (i) and (ii) implies (iv). We will only prove that (i)
implies (iv), since the proof that (ii) implies (iv) is almost identical.

So let φ be a Lie homomorphism. We have φ(XY −Y X) = φ(X)φ(Y )−φ(Y )φ(X) for
all X, Y ∈ A, that is,

n∑
i=1

AiXY Bi −
n∑

i=1

AiY XBi =
n∑

i=1

n∑
j=1

AiXBiAjY Bj −
n∑

i=1

n∑
j=1

AjY BjAiXBi.

We can rewrite this as

n∑
i=1

AiX

( n∑
j=1

(δij − BiAj)Y Bj

)
+

n∑
i=1

( n∑
j=1

AjY (BjAi − δij)
)

XBi = 0.

Since φ has length n, A1, . . . , An are linearly independent (Corollary 2.2). There-
fore, it follows from Lemma 2.1 that for every i, 1 � i � n, and every Y ∈ A,∑n

j=1(δij − BiAj)Y Bj is a linear combination of B1, . . . , Bn. That is to say, the ele-
mentary operator

n∑
j=1

(δij−BiAj)MBj
has finite rank for every i = 1, . . . , n. (3.1)

Since B1, . . . , Bn are also linearly independent it follows from (the symmetric version of)
Lemma 2.4 that

δij − BiAj ∈ S, i, j = 1, . . . , n, (3.2)

where S denotes the lower socle of A.
Suppose that 1 − B1A1 �= 0. Again applying Lemma 2.4 we infer from (3.1) that

B1 +
∑n

i=2 λiBi ∈ S for some λi ∈ F. Consequently, B1A1 +
∑n

i=2 λiBiA1 ∈ S. However,
by (3.2), BiA1 ∈ S, i �= 1, and 1 − B1A1 ∈ S, and so it follows that 1 ∈ S. But then
Lemma 2.3 tells us that A = 1M1(A) is finite dimensional, a contradiction. Therefore,
B1A1 = 1. Similarly, BiAi = 1 for every i.

Suppose that B1A2 �= 0. Since B1A1 = 1, for i = 1 the assertion (3.1) now reduces to
the conclusion that

∑n
j=2 B1Aj

MBj has finite rank. But then it follows from Lemma 2.4
that B2 +

∑n
i=3 µiBi ∈ S for some µi ∈ F. Hence B2A2 +

∑n
i=3 µiBiA2 ∈ S. However,

since B2A2 = 1 and BiA2 ∈ S, i � 3, we again arrive at the contradiction that 1 ∈ S.
Thus B1A2 = 0. Similarly, BiAj = 0 whenever i �= j. �

https://doi.org/10.1017/S0013091504000094 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000094


Elementary operators as preservers 43

Corollary 3.2. Let A be a non-commutative centrally closed prime algebra over an
algebraically closed field F. Then A is finite dimensional if and only if there exists an
elementary operator on A that is a Lie (or Jordan) homomorphism but not a homomor-
phism.

Proof. Let A be finite dimensional. Since F is algebraically closed, we have, by the
classical Wedderburn theorem, A ∼= Mn(F) for some positive integer n. Moreover, n � 2
since A is non-commutative. Let At denote the transpose of A ∈ A. The map A �→ −At

(respectively, A �→ At) is a Lie (respectively, Jordan) homomorphism of A that is not a
homomorphism. Since every linear map on A is an elementary operator, this proves the
‘only if’ part. The ‘if’ part follows from Theorem 3.1. �

4. Commutativity-preserving elementary operators

Throughout this section, A will be a centrally closed prime algebra over an algebraically
closed field F.

Let φ be an elementary operator on A. We will say that φ is a standard commutativity-
preserving elementary operator if there exist Ai, Bi ∈ A such that φ =

∑k
i=1 AiMBi and

BiAj ∈ F1 for all i, j = 1, . . . , k. A straightforward computation shows that such an
operator indeed preserves commutativity. We remark that if φ is of length n � k and
φ =

∑n
j=1 CjMDj

for some Cj , Dj ∈ A, then these coefficients satisfy the same condition
DiCj ∈ F1. Namely, since

n∑
j=1

CjMDj −
k∑

i=1
AiMBi = 0,

it follows from Lemma 2.1 and Corollary 2.2 that each Dj belongs to the linear span of the
Bi, and similarly, each Cj belongs to the linear span of the Ai. Accordingly, DiCj ∈ F1
for all i, j = 1, . . . , n follows from BiAj ∈ F1 for all i, j = 1, . . . , k.

There exist non-standard commutativity-preserving elementary operators.

Example 4.1. Suppose that the lower socle S of A is non-zero. Let V be an arbitrary
non-zero finite-dimensional subspace of S. By Litoff’s theorem [3, Theorem 4.3.1] there
exists an idempotent P ∈ S such that V ⊆ PAP ∼= Mn(F) for some n � 1. Therefore,
every linear operator from PAP into itself is an elementary operator, and so there exist
Ai, Bi ∈ PAP such that φ =

∑n
i=1 Ai

MBi
maps PAP onto V. However, since φ clearly

vanishes on (1−P )AP ⊕PA(1−P )⊕ (1−P )A(1−P ) (namely, the Ai and the Bi lie in
PAP ), it follows that φ maps A onto V. Thus, we found an elementary operator φ on A
whose range is V. If we choose V so that it is a commutative set, then φ has a commutative
range and so it trivially preserves commutativity. However, φ is not necessarily standard.
The simplest concrete example is φ =E ME , where E is a minimal idempotent. Its
range is FE (namely, we have assumed that F is algebraically closed), so it preserves
commutativity. Since its length is 1, it follows from the above observation that it is not
standard unless E = 1, i.e. A = F1.
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This example motivates the following definition. We will say that an elementary opera-
tor is degenerate if its range lies in the lower socle of A. One can obtain further examples
of commutativity-preserving elementary operators by combining standard and degenerate
ones.

Example 4.2. Suppose that A contains elements A1, A2, B1, B2 such that BiAj = δij ,
i, j = 1, 2. In [12] algebras containing such elements were called properly infinite. A simple
example is B(H), the algebra of all bounded linear operators on an infinite-dimensional
Hilbert space H; there are, however, other important examples. Let ψi, i = 1, 2, be
non-zero commutativity-preserving elementary operators on A. Set φi = Ai

MBi
ψi, i =

1, 2, and note that φi is also a non-zero commutativity-preserving elementary operator.
Moreover, if ψi is standard, then φi is standard, and if ψi is degenerate, then φi is
degenerate. Since φi(A)φj(A) = 0, i �= j, it follows that φ = φ1 + φ2 also preserves
commutativity. One can choose the ψi so that φ is neither standard nor degenerate and
its range is not commutative. For example, note that this is true if we take ψ1 = 1M1

(i.e. ψ1 is the identity) and ψ2 = EME , where E is a minimal idempotent.

Our main result is the following theorem.

Theorem 4.3. Let A be a centrally closed prime algebra over an algebraically closed
field F. If φ is a commutativity-preserving elementary operator on A, then

φ = φs + φd,

where φs is a standard commutativity-preserving elementary operator and φd is a degen-
erate elementary operator.

It should be mentioned that the decomposition into a standard and a degenerate part
is not unique as there exist elementary commutativity-preserving operators that are both
standard and degenerate. As will be clear from the proof, we can choose φs and φd so
that the length of φ is equal to the sum of the lengths of φs and φd. However, we do not
know whether or not they can be chosen so that φd also preserves commutativity. So the
problem of characterizing commutativity-preserving elementary operators on A remains
open.

In the proof of Theorem 4.3 we will need the following elementary lemma.

Lemma 4.4. Let F be a linear subspace of A. If φ is an elementary operator on A
of length n, then there exist elementary operators φ1, . . . , φ4 of lengths n1, . . . , n4 � 0,
respectively, such that φ = φ1 + · · · + φ4, n = n1 + · · · + n4, and all coefficients (left and
right) of φ1 lie in F , all left coefficients of φ2 lie in F , all right coefficients of φ3 lie in F ,
the linear span of the left coefficients of φ3 + φ4 has trivial intersection with F , and the
linear span of the right coefficients of φ2 + φ4 has trivial intersection with F .

Proof. Let φ =
∑n

i=1 AiMBi . We begin with a general observation which will be
needed below. Fix i, 1 � i � n. If αj , j �= i, are arbitrary scalars and A′

i = Ai+
∑

j �=iαjAj ,
A′

j = Aj , j �= i, B′
i = Bi, and B′

j = Bj − αjBi, j �= i, then φ =
∑n

i=1 A′
i
MB′

i
. Of course,

an analogous change of the coefficients can be carried out with the roles of the left and
right coefficients interchanged.
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There is nothing to prove when n = 1. So, assume that n > 1 and that the lemma is
true for n−1. If both the linear span of the Aj and the linear span of the Bj have trivial
intersection with F , then n = n4 and we are done. If not, then there is a non-trivial linear
combination of the left coefficients belonging to F , or a non-trivial linear combination of
the right coefficients belonging to F . We will only treat the second possibility here, since
the proof in the other case is similar. After renumerating the coefficients, if necessary,
we may assume that B1 +

∑
j �=1 αjBj ∈ F . Applying the procedure described in the first

paragraph we may even assume that already B1 lies in F . Now we apply the induction
hypothesis to write

φ = A1MB1 +
n∑

j=2
AjMBj

= A1MB1 +
p∑

j=1
Cj

MDj
+

q∑
j=1

Ej
MFj

+
r∑

j=1
Mj

MNj
+

s∑
j=1

Pj
MQj

,

where all the Cj , Dj , Ej and Nj lie in F , the linear span of the Mj and the Pj has
trivial intersection with F , and the linear span of the Fj and Qj has the same property.
Of course, some of the last four terms may be the zero operator. If A1 ∈ F , then

(
A1MB1 +

p∑
j=1

CjMDj

)
+

q∑
j=1

EjMFj +
r∑

j=1
MjMNj +

s∑
j=1

PjMQj

is a decomposition of φ into a sum of four elementary operators with the desired property.
If A1 �∈ F , and, moreover, the linear span of {A1} ∪ {Mj : j = 1, . . . , r} ∪ {Pj : j =
1, . . . , s} has trivial intersection with F , then

p∑
j=1

Cj
MDj

+
q∑

j=1
Ej

MFj
+

(
A1MB1 +

r∑
j=1

Mj
MNj

)
+

s∑
j=1

Pj
MQj

is the desired decomposition of φ. It remains to consider the case that A1 �∈ F and that
there exist scalars λ1, . . . , λr, µ1, . . . , µs such that A1 +λ1M1 + · · ·+λrMr +µ1P1 + · · ·+
µsPs lies in F . Note that N1 −λ1B1, . . . , Nr −λrB1 all belong to F . Moreover, it is easy
to verify that

span{F1, . . . , Fq, Q1 − µ1B1, . . . , Qs − µsB1} ∩ F = {0}.

Hence, applying the change of coefficients described in the first paragraph we get

φ = A′
1
MB1 +

p∑
j=1

CjMDj +
q∑

j=1
EjMFj +

r∑
j=1

MjMN ′
j
+

s∑
j=1

PjMQ′
j

with all the properties described above and with the additional property that A′
1 belongs

to F . But as we know in this case we already have the decomposition of φ into a sum of
four elementary operators with the desired properties. �
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Proof of Theorem 4.3. Let φ =
∑n

i=1 Ai
MBi

. Since φ has length n, by Corollary 2.2
the sets {A1, . . . , An} and {B1, . . . , Bn} are linearly independent.

We start by applying the idea from [6]: since X and X2 always commute, we have
[φ(X), φ(X2)] = 0 for all X ∈ A. Note that this can be written as

n∑
i=1

AiX

( n∑
j=1

[BiAj , X]XBj

)
= 0 for all X ∈ A. (4.1)

A complete linearization of (4.1) yields

n∑
i=1

AiX1

( n∑
j=1

[BiAj , X2]X3Bj +
n∑

j=1

[BiAj , X3]X2Bj

)

+
n∑

i=1

AiX2

( n∑
j=1

[BiAj , X1]X3Bj +
n∑

j=1

[BiAj , X3]X1Bj

)

+
n∑

i=1

AiX3

( n∑
j=1

[BiAj , X1]X2Bj +
n∑

j=1

[BiAj , X2]X1Bj

)
= 0

for all X1, X2, X3 ∈ A. (4.2)

Assume first that A is a non-GPI algebra. We could consider the above identity as a
generalized polynomial identity, but in view of our present goals it is somewhat more
convenient to consider it as a generalized functional identity. Since the Ai are linearly
independent, it follows from Lemma 2.5 that for every fixed i = 1, . . . , n we have

n∑
j=1

[BiAj , X1]X2Bj +
n∑

j=1

[BiAj , X2]X1Bj = 0 for all X1, X2 ∈ A. (4.3)

But then, since the Bj are linearly independent, it follows, again by Lemma 2.5, that
[BiAj , X1] = 0 for all X1 ∈ A and j = 1, . . . , n, that is, BiAj lies in the centre of A.
Since A is centrally closed, this means that BiAj ∈ F1 for all i, j = 1, . . . , n. That is to
say, φ must be standard in the non-GPI case.

We may therefore assume that A is a GPI algebra. Therefore, there exists a pair of
dual vector spaces V and W over F such that FW (V) ⊆ A ⊆ LW(V) (see § 2.4).

Using Lemma 4.4 (with F = FW (V)) we may assume that φ = φ1 + · · · + φ4, all
coefficients (left and right) of φ1 are of finite rank, all left coefficients of φ2 are of finite
rank, all right coefficients of φ3 are of finite rank, the linear span of the left coefficients of
φ3 + φ4 has trivial intersection with FW (V), and the linear span of the right coefficients
of φ2 + φ4 has trivial intersection with FW (V). We will consider only the case that each
of the elementary operators φ1, φ2, φ3 and φ4 is non-zero since the case that some of
them are zero can be treated using the same arguments (in fact, in this case the proof is
even easier, for example, there is nothing to prove if φ4 = 0). So, we have integers p, q,
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r such that 1 � p < q < r < n and

φ1 =
p∑

j=1
Aj

MBj
, φ2 =

q∑
j=p+1

Aj
MBj

,

φ3 =
r∑

j=q+1
Aj

MBj
, φ4 =

n∑
j=r+1

AjMBj .

We have to prove that for every pair of integers s, t, r + 1 � s, t � n, there exists a
scalar λs,t such that BsAt = λs,tI. Equivalently, we have to prove that for every pair of
integers s, t, r + 1 � s, t � n, and for every vector v ∈ V the vectors BsAtv and v are
linearly dependent. Assume that this is not the case and let s, t, where r + 1 � s, t � n,
be integers and let v1 ∈ V be a vector such that BsAtv1 and v1 are linearly independent.
As mentioned in § 2.4, we can find w1 ∈ W such that

〈BsAtv1, w1〉 = 1 and 〈v1, w1〉 = 0. (4.4)

Furthermore, since the linear span of Aq+1, . . . , An intersects FW (V) trivially, applying
Lemma 2.6 we can find v2 ∈ V such that every non-trivial linear combination of

Aq+1v2, . . . , Anv2 (4.5)

lies outside
Im A1 + · · · + Im Aq.

Similarly, using the fact that B ∈ A has finite rank if and only if B∗ has finite rank, we
infer from Lemma 2.6 that there is w2 ∈ W such that 〈v2, w2〉 = 0 and every non-trivial
linear combination of

B∗
p+1w2, . . . , B

∗
q w2, B

∗
r+1w2, . . . , B

∗
nw2 (4.6)

lies outside

Im B∗
1 + · · · + Im B∗

p + Im B∗
q+1 + · · · + Im B∗

r + span{B∗
1w1, . . . , B

∗
nw1}.

Similarly, as above (see § 2.4) we can find v3 ∈ V such that

〈v3, B
∗
t w2〉 = 1, (4.7)

〈v3, B
∗
j w2〉 = 0 (4.8)

whenever j �= t, and

〈v3, B
∗
j w1〉 = 0 (4.9)

for every j, 1 � j � n.
Now, since 〈v1, w1〉 = 0 and 〈v2, w2〉 = 0, we see that the maps S : v �→ 〈v, w1〉v2 and

T : v �→ 〈v, w2〉v1 satisfy ST = 0 = TS. In particular, S, T ∈ FW (V) ⊆ A commute and
so we have φ(S)φ(T ) = φ(T )φ(S). Since φ(S)v3 = 0 by (4.9) it follows that φ(S)φ(T )v3 =
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0. By (4.7) and (4.8) we have φ(T )v3 = Atv1 and so φ(S)Atv1 = 0. However, note that this
together with (4.4) contradicts (4.5). This proves that φ4 is a standard commutativity-
preserving elementary operator. Now set φs = φ4 and φd = φ1 + φ2 + φ3, and note that
φs and φd have the desired properties. �

Theorem 4.3 and Example 4.1 together yield the following corollary.

Corollary 4.5. Let A be a non-commutative centrally closed prime algebra over an
algebraically closed field F. Then there exists a non-standard commutativity-preserving
elementary operator on A if and only if A has a non-zero lower socle.

Thus, if the lower socle of A is zero (i.e. if A is not a GPI algebra), then every
commutativity-preserving elementary operator φ on A is standard (i.e. φ = φs). In
another extreme when A = Mn(F), Theorem 4.3 does not provide any useful infor-
mation since every linear operator on A is automatically degenerate. However, in this
case the result from [21] mentioned above gives the definitive conclusion (at least when
the characteristic of F is 0). So the most interesting case is the one where A is an infinite-
dimensional algebra with non-zero lower socle (i.e. A is a GPI but not a PI algebra).
Here, Theorem 4.3 gives some basic, but not yet complete, information.
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