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1. Introduction
This paper is devoted to proving the following theorem.

THEOREM. A hyperbolic group admits a strongly aperiodic subshift of finite type (SFT) if
and only if it has at most one end.

Many groups are known to admit strongly aperiodic SFTs. One-ended hyperbolic
groups (defined in §3.2) include all fundamental groups of closed hyperbolic n-manifolds,
and indeed, the fundamental groups of all closed n-manifolds with negative sectional
curvature. This generalizes surface groups [CGS17], which were the only hyperbolic
groups known to admit such structure until the current work. Thus, we obtain the following
result.

COROLLARY. The fundamental group of a closed n-manifold with negative sectional
curvature admits a strongly aperiodic SFT.
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In [Mo0z97], Mozes showed that uniform lattices in simple Lie groups of ranks at least 2
admit strongly aperiodic SFTs; because rank-1 simple Lie groups are hyperbolic, we obtain
the following corollary that complements Mozes’ result. (The symmetric space obtained
by quotienting a rank-1 simple Lie group by its maximal compact subgroup is negatively
curved. Because the Lie group (as well as any uniform lattice in it) are quasi-isometric
to the symmetric space, they are §-hyperbolic spaces (see, for example, [BH99]) and,
therefore, the uniform lattice is a hyperbolic group.)

COROLLARY. A uniform lattice in a rank-1 simple Lie group admits a strongly aperiodic
SFT.

We introduce the subject in this section and give an informal outline in §2. In §3, we
formally define our terms and set up the proof, which is a combination of the results of
§§3-9 as follows.

Proof of the Theorem. Propositions 8.5, 8.12, and 9.5 show that any one-ended hyperbolic
group G admits a non-empty SFT in which no configuration admits a non-torsion element
in its stabilizer. By Proposition 3.3, G admits an SFT in which no configuration admits a
torsion element in its stabilizer. Proposition 3.4 shows that the product of these subshifts
is a strongly aperiodic SFT on G.

By Proposition 3.3, every zero-ended group (that is, every finite group) admits a strongly
aperiodic SFT, and Cohen [Coh17] shows no group with two or more ends admits such a
subshift. O

Let G be a finitely generated group endowed with the word metric. Because G acts on
itself transitively there are no invariants that distinguish elements of G. We seek such an
invariant: a coloring of G, using finitely many colors, so that the coloring can be checked
locally (an SFT), and so that any two group elements have distinct neighborhoods (strong
aperiodicity). In other words, a strongly aperiodic SFT on a group G is given by a finite set
of local rules for decorating G, so that all global symmetry arising from the group acting
upon itself is destroyed.

In many settings, such as on Z> C R?, SFTs are essentially the same phenomena as
matching rule tiling spaces, which are each determined by a given finite set of marked-up
tiles, such as the Penrose tiles. (Any SFT on Z? can be interpreted as a matching rule tiling
space on R2. The converse does not hold [Rad94].) The two areas arose in different ways
but soon became linked.

Wang [Wan60] interpreted remaining cases of Hilbert’s Entscheidungsproblem in the
foundations of logic as being about how square tiles with marked edges might fit together
in Z2. This led Wang to ask whether one can algorithmically decide the ‘tiling problem’
(also known as the domino problem): Can a given finite set of tiles be used to form a tiling?

Wang pointed out that if the tiling problem in Z?> (or in another similar setting) were
in fact undecidable, then there must exist aperiodic sets of tiles. (If there were not an
aperiodic set of tiles, every set of tiles would either not tile the plane (and so have some
maximum sized disk that can be tiled) or would admit a periodic tiling (and so have
some finite fundamental domain). By enumerating finite configurations, one eventually
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determines which, deciding the problem. Note that the undecidability of the tiling problem
in fact implies weak aperiodicity (defined below), but as it happens, there is no distinction
between weak and strong aperiodicity in the Euclidean plane.) Soon after, Berger proved
that the tiling problem is undecidable in Z? and gave the first examples of an aperiodic sets
of tiles [Ber66].

The ‘existence problem’ for SFTs on a group G asks whether a given set of local rules
determine a non-empty subshift, that is, whether there exists a decoration of G satisfying
the local rules. Berger’s result shows that this problem is undecidable when G = Z?. The
recent survey [ABJ18] defines a natural ‘domino problem’ on SFTs on groups, and shows
it is equivalent to the existence problem.

1.1. Subshifts. Given a finite set A, the set A% consists of functions G to A (see §3.1
for more details). Equipped with the product topology and the G-action given in Definition
3.2, A is known as the full shift on G and its closed G-invariant subsets are known as
subshifts. Subshifts are an essential tool in the study of dynamical systems; for example,
every 0-dimensional expansive system on G is a subshift (see, for example, Proposition
2.8 of [CP93]), every expansive system is a factor of a subshift (e.g. Proposition 2.6 of
[CP93]), and if G is non-amenable, a theorem of Seward [Sew14b, Theorem 1.2] shows
that every topological dynamical system over G is a factor of a subshift.

1.2. SFTs. A pattern is a function p : F— A from some finite F C G. We say that a
pattern p : F— A appears in w : G— A if there is some g € G such that w(gf) = p(f)
for all f € F. An SFT is a subset of A consisting of all v € A% in which no p € F
appears, for some finite collection F of forbidden patterns. For example, if A = {0, 1} and
G = Z, the set of all w € A% such that (w(n), w(n + 1)) is never equal to (1, 1) forms an
SFT. It is well-known (and easy to see) that SFTs are subshifts. We refer to elements of an
SFT as configurations.

Weak aperiodicity was not recognized until after Mozes’ definition of strong aperiod-
icity in [M0z97], in which he gives examples of both kinds. An SFT on an infinite group
G is weakly aperiodic if it is non-empty and the G-orbit of every configuration is infinite,
that is, a subgroup of G is allowed to fix a configuration, provided it has infinite index.

Similarly, a set of tiles is weakly aperiodic if it is possible to form a tiling with congruent
copies of them, but never a tiling with a compact fundamental domain. (We note, however,
that the stabilizer of such tiling may admit an infinite cyclic subgroup, as suggested in the
figure in Remark 2.1.)

Block and Weinberger constructed a weakly aperiodic tile set for any non-amenable
cover of a compact Riemannian manifold [BW92]. In the setting of infinite hyperbolic
groups, weakly aperiodic SFTs were constructed by Gromov [Gro87, §§7.5, 7.6, 8.4] and
Coornaert and Papadopoulos [CP93]; these SFTs exist on any hyperbolic group but are
never strongly aperiodic.

Mozes [Moz97] gave weakly aperiodic sets of tiles on rank-1 symmetric spaces, by
decorating tiles shaped like the fundamental domain of one lattice with information about
how it may interact with the tiling by fundamental domains of another, incompatible lattice,
and applying Mostow rigidity to prove weak aperiodicity.
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1.3. Strong aperiodicity. A set of tiles is strongly aperiodic if it does admit a tiling,
but does not admit any tiling with translational symmetry. Similarly an SFT is strongly
aperiodic if it is non-empty and the G-action upon it is free, meaning that the stabilizer
of any configuration is trivial. (Strongly aperiodic sets of tiles might allow tilings with a
rotational symmetry—this is the case with both the Penrose and Robinson tiles. By analogy,
some authors, such as [Jeal5a], allow strongly aperiodic SFTs to include configurations
with finite stabilizers.)

Wang himself conjectured that aperiodicity (of any kind) was absurd, but the first
strongly aperiodic sets of tiles soon appeared in Z? [Ber66, Rob71] and many others
have been found since, mostly based on Berger’s initial use of hierarchically arranged
structures [FO10, GS98, Moz89], or the theory of quasicrystals stemming from De
Bruijn’s higher-dimensional analogue of Sturmian sequences [DB81a, DB81b]. Kari gave
a third model [Kar96], which was adapted to give the first strongly aperiodic sets of tiles in
hyperbolic n-space, H" [GS05]; Kari extended this further to prove that the tiling problem
is undecidable in H? [Kar07]. Recently Jeandel and Rao gave a new construction on Z>
with a provably minimal set of aperiodic ‘Wang tiles’ [JR21]. We will give a list of groups
known to have strongly aperiodic SFTs momentarily, but first we survey groups known not
to have such subshifts.

1.4. Obstructions to the existence of a strongly aperiodic SFT. To see that Z has no
strongly aperiodic SFT, let @ C .AZ be a non-empty SFT, and consider any & € 2. Because
there are only finitely many possible words of a given length in A, we see that w contains a
subword of the form uvu for some words u# and v which are longer than all of the forbidden
patterns used to define 2. However, then it is easy to check that . . . uvuvuv . . . defines a
periodic configuration in €2. This was extended to all free groups by [Pia08].

The above argument was generalized by Cohen [Coh17], who showed that no group G
with at least two ends admits a strongly aperiodic SFT. In addition, Jeandel [Jeal5a] has
shown that no finitely presented group with undecidable word problem admits a strongly
aperiodic SFT. These are the only known obstructions and we naturally ask the following.

Question. Does there exist a one-ended finitely presented group with decidable word
problem that does not admit a strongly aperiodic SFT?

1.5. Groups known to have a strongly aperiodic SFT. Whether or not a group admits a
strongly aperiodic SFT is a quasi-isometry invariant under mild conditions [Coh17], and a
commensurability invariant [CP15].

(i) As mentioned previously, Berger [Ber66] showed that Z? itself admits a strongly
aperiodic SFT. More generally, Jeandel [JealSb] has shown that polycyclic groups
admit strongly aperiodic SFTs.

(ii) The work of Barbieri and Sablik [BS19] shows that any group of the form
7% x H, where H is finitely generated and has decidable word problem, admits
a strongly aperiodic SFT. This is a very broad collection of groups because it
includes Z? x H for any H with decidable word problem, as well as the group
Sol = 72 x Z.
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(iii) The work of Mozes implies that uniform lattices in simple Lie groups of rank at
least 2 admit strongly aperiodic SFTs [M0z97].

(iv) The work of Jeandel shows that, Z x T admits a strongly aperiodic SFT, where T
denotes Thompson’s group 7. (In fact, Jeandel shows that Z x H admits a strongly
aperiodic SFT whenever H acts on the circle in a way which satisfies certain
dynamical conditions [JealSa].)

(v)  The work of the first two authors [CGS17] shows that the fundamental group of
any closed hyperbolic surface admits a strongly aperiodic SFT.

(vi) Barbieri shows that the direct product of any three infinite finitely gener-
ated groups with decidable word problem admits a strongly aperiodic SFT
[Bar19].

(vii) For every counting number n, the Baumslag—Solitar groups B(1, n) and B(n, n)
each admit a strongly aperiodic SFT [AS20, EM20].

Note that, with the exception of surface groups and the B(1,n) Baumslag—Solitar
groups, all other known examples of strongly aperiodic SFTs are on groups which have
a direct product of infinite groups as a subgroup (though in H” there are constructions
of strongly aperiodic sets of tiles, these do not give rise to SFTs on lattices). There
remain many naturally occurring groups, including mapping class groups, Out(F},), some
Coxeter groups, and non-uniform lattices in higher -rank Lie groups (such as SL(n; Z) in
SL(n; R)), for which it is unknown whether strongly aperiodic SFTs exist. In this paper,
we address the case of hyperbolic groups.

1.6. Hyperbolic groups. Hyperbolic groups, introduced by Gromov [Gro87], are groups
whose Cayley graphs satisfy a geometric ‘slim triangles’ condition which holds in
hyperbolic space. (See §3.2 for definitions and [BH99] as a comprehensive reference.)
These groups are quite well-behaved—for example, they are always finitely presented
and have decidable word problem. The class of hyperbolic groups includes fundamental
groups of closed hyperbolic manifolds, free groups, so-called ‘random groups’ (with high
probability), groups satisfying certain geometric small cancellation conditions, and many
Coxeter groups.

Groups acting discretely on hyperbolic space have been studied for over a century. Dehn
[Deh87] showed that the word problem for surface groups is decidable by producing, for
any such group, a rewriting system that shortens a given word monotonically, ending
with the empty word exactly when the given word represents the identity of the group.
Another classic property of surface groups is that their growth rate is exponential. This
was slowly generalized: In 1968, Milnor [Mil68] showed that under certain negativity
assumptions on the curvature of a closed manifold, the growth rate of its fundamental
group is exponential. Cannon studied geometric and algorithmic properties of discrete
subgroups of hyperbolic isometries [Can84, Can91], laying the groundwork for shortlex
automata soon implicit in the work of Gromov [Gro87] and taking center stage in the
work of Epstein et al [ECH-+92]. Finally Gromov [Gro87] defined hyperbolic groups,
which include fundamental groups of closed negatively curved manifolds, showing that
they have exponential growth and are the only groups in which Dehn’s algorithm can be
applied.
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Our main theorem gives a strongly aperiodic subshift on any one-ended hyperbolic
group, resolving the question of existence of these for all hyperbolic groups.

2. Outline of the proof

In this section, we give an informal overview to facilitate reading the paper. In §3 we define

our terms more precisely.

Suppose that G is a one-ended hyperbolic group. It is not hard to show (Proposition
3.3) that G admits an SFT where no finite-order element fixes a configuration. Our main
goal is, thus, to find an SFT where no infinite-order element fixes a configuration, because
by Proposition 3.4 we could then take a product of these subshifts and obtain a strongly
aperiodic SFT on G. This goal will be fulfilled by the populated shellings defined in §8
or, more precisely, by the set of all local data associated with populated shellings. Roughly
speaking, this attack combines two key ideas from the literature.

(i) Shortlex shellings, defined in §5, are inspired by the SFTs used in [CP93, Gro87] to
‘code’ the boundary of a hyperbolic group. The set of local data of shortlex shellings
forms a non-empty SFT for which the stabilizer of every configuration is virtually
cyclic.

(i) Incommensurability was introduced in [Kar96, Moz97] as a tool to construct
strongly aperiodic SFTs and tilings. We apply incommensurability of growth rates,
which is the key tool used in [CGS17] to ‘kill’ infinite cyclic periods on certain
subshifts on surface groups (by decorating these subshifts with extra data).

2.1. Incommensurability. Fundamentally, as in [CGS17, GS0S5], our construction rests
on the incommensurability of two distinct exponential growth rates (one arising as the
growth of G, the other arbitrarily taken to be two or three). The illustration below
demonstrates a similar phenomenon in the hyperbolic plane (drawn in the ‘horocyclic
model’: vertical distances are accurate and horizontal ones scale exponentially with height;
horizontal lines are horocycles).

Two patterns of ‘rectangles’ are shown, each rectangle having some predecessor above
and some successors below. In the pattern drawn with dark lines, the number of rectangles
doubles from row to row. In the gray pattern, light rectangles (which are all congruent)
have one light and one dark rectangle as successors, and dark rectangles (which are all
congruent) have one light and two dark successors. This system, asymptotically, has growth
rate of ¢% = ((1 + /5) / 2)2 (¢ is the golden ratio). The ratio of the spacing from row to
row in either system is precisely fixed in relation to the other: log 2/ log ¢>. As this is not
rational, the exact pattern of overlaps can never quite repeat from row to row.
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By [CGS17, Main Technical Lemma] one may produce a strongly aperiodic tileset by
decorating the gray tiles with the possible combinatorial data describing how they intersect
the other tiling, such as how many dark lines intersect each edge of a gray tile, and requiring
these decorations to match from tile to tile. More specifically, the sequence (A;) consisting
of the number of horizontal dark lines meeting the ith row of gray tiles could not be a
periodic sequence, precisely because log 2/log(¢?) is irrational. (Note that in this case the
elements of (A;) take only the values 1 or 2.)

We will exploit this idea in our construction. Roughly speaking, we will be using
‘shortlex shellings’ to provide the underlying weakly aperiodic scaffolding (analogous to
the gray tiling), on which we will place a second structure with incommensurate growth
rate, ‘populated shellings’.

2.2. Shortlex shellings. In §5, we construct SFTs, much in the style of Gromov [Gro87]
and Coornaert and Papadopoulos [CP93], which parameterize objects we call shortlex
shellings (Definition 5.4). A shortlex shelling assigns some data to each element of G.
These data impose simultaneously two compatible structures on G: a decomposition into
horospherical layers (that is, layers which are locally modeled on spheres in G) and a
spanning forest locally modeled on the tree of shortlex geodesics. We informally describe
this here.

Given an arbitrary finitely generated group, with an ordered finite generating set, every
group element g is represented by a unique word that is, first, a shortest representative of
g (that is, a geodesic) and, second, earliest in the lexicographic ordering among all such
geodesics (that is, a shortlex geodesic). In hyperbolic groups, the shortlex geodesics form
a regular language, accepted by a shortlex finite-state automaton (FSA).

We define a model shelling, Xo: to each group element g € G we associate the integer
ho(g) = d(g, 1), the state stateg(g) of g in the shortlex FSA, and, for g # 15, Py(g), the
unique element of G that precedes g on its shortlex geodesic from 15. A shortlex shelling
is a function X = (h, state, P) modeled on (h¢, stateg, Pyp) away from the identity (up to
an additive constant for /). This means that on every finite subset F' C G, the restriction
of X to F is identical to the restriction of X to some translate of F' which does not contain
the identity, up to adding some constant integer, depending on F, to A.

A shortlex shelling X = (h, state, P) is encoded by ‘local data’ 8 X = (0h, state, O P),
a function from G to a fixed finite set, where (for g € G and a € S, a finite generating set
for G) 0h(g) : S — {—1, 0, 1} is the derivative of &, defined as

O0h(g)(a) := h(ga) — h(g)

and 0P : G — S is defined by taking O P (g) to be the generator a that takes us from g to
P(g), thatis, P(g) = ga. We refer to level sets of & as horospheres (of X).

We construct local rules that are satisfied exactly by the local data of shortlex shellings,
showing that the set {0X : X is a shortlex shelling} forms a non-empty SFT (Proposition
5.5). This SFT factors onto dG, the Gromov boundary of G, as do the subshifts suggested
by Gromov [Gro87] and those constructed by Coornaert and Papadopoulos [CP93].

Because points of dG have virtually cyclic stabilizers, it follows that these subshifts
are all weakly aperiodic, more specifically, the stabilizer of any configuration in any of
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these subshifts is virtually cyclic and, hence, has infinite index (recall that G is one-ended).
However, for any hyperbolic group, each of these subshifts has a configuration with infinite
cyclic stabilizer and is not strongly aperiodic.

To that end, we construct populated shellings.

2.3. Populated shellings. In §8, we begin by fixing ¢ € {2, 3} such that no power
of g is a power of the growth rate A of our shortlex machine; we say that g and
A are incommensurable. We are going to define ‘populated shellings’, which decorate
shortlex shellings with some extra data to kill any infinite cyclic periods, obtaining strong
aperiodicity. In particular, a populated shelling of G consists of the following data:
(i) ashortlex shelling X = (h, state, P);

(i) a ‘population’ function g : G—{0, . . ., n}, for fixed population bound n € N;
(iii) a ‘population growth’ function A constant on horospheres of X; and
(iv) a ‘parent—child matching’ function m

We further require that this data satisfies the following local rules. We think of elements
of G as being villages, some of which are inhabited by people—¢ (g) tells us the number of
people living in g. Each person has some children who live nearby (at a bounded distance)
in the next horosphere of X, and m describes this relationship, matching each child to its
parent. Each person has exactly one parent, and a person living at some g € G has g2
children.

We suggest this in the following diagram, with each parent living in a village in the
lower horosphere having three children nearby in the next successive horosphere.

For a populated shelling Y, all of this information may be encoded by a function 8Y,
called the ‘local data’ of the populated shelling, from G to a fixed finite set. By Proposition
8.5, the set of local data of populated shellings forms an SFT.

To prove our theorem, we show:

(i) that populated shellings exist for population bound n sufficiently large (Proposition
8.12); and
(i1) that their local data cannot have infinite-order periods (Proposition 9.5).

2.3.1. Infinite-order periods. We use the values of A to show that no populated shelling

admits an infinite-order period. Recall that A was defined on group elements and required
to be constant along on horospheres. As the horospheres naturally form a sequence, the
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values of A inherit a structure of a sequence (A;). We show that this sequence is not

periodic, and that this implies that there are no infinite-order periods (this idea dates back

to [Kar96]). In §9, we show that for certain finite sets S, the cardinality of P~"(S) must
grow as A". On the other hand, using the fact that quasi-geodesics stay close to geodesics
in a hyperbolic group, Lemma 9.2 will show that:

(i) a sufficiently large finite set S, contained in a single horosphere, contains a person
all of whose descendants live in P~"(S); therefore, the population of P~"(S) grows
at least as fast as qZ A (the number of descendants of that person) (by > A we
mean the sum of the values of (A;) along n consecutive horospheres starting with
the horosphere containing S);

(ii)  all descendants of people in S live in P~"(S”) for some finite set S’ D S, which will
imply that the population of P~"(S) grows at most as fast as K qZ A (the number of
descendants of the population of S’, where K > 0 is the total population of S’).

From this, it easily follows that (1/n) }_ A log(g)— log()), which implies that the

sequence (A;) cannot be periodic by our incommensurability hypothesis. Lemma 9.1

implies that (A;) would be periodic if the populated shelling Y had a period of infinite

order, so we conclude (Proposition 9.5) that Y has no infinite-order period.

2.3.2. Existence. In §8.2, we show that populated shellings exist (Proposition 8.12),
using the following strategy.

(i) We construct a sequence (v;, A;) such that each v; € [A, gA] for an arbitrary
fixed A, and each A; € {Llogq A, ﬂogq A1}, satisfy g%iv; = Av;y1. In the figure
in the section on Incommensurability, this A; is analogous to the number of dark
horizontal lines meeting the ith row of the gray tiling, whereas v; is analogous to
the average frequency of dark-outlined tiles meeting each gray tile in the ith row of
the gray tiling.

(ii) We show that, given such a sequence v;, it is possible to populate horospheres so
that the ith horosphere has population density v;. In particular, the sum of g over
any finite set in a horosphere is equal to v; x ©(S) up to error bounded by 214(9.5)
(un will be defined momentarily).

(iii)) We use the Hall marriage theorem trick to show that when a density sequence is
realized by a population function in this way, one may find a suitable parent—child
matching.

2.4. Technical tools. Let X = (h, state, P) be a shortlex shelling.

2.4.1. Measure. To regularize the growth of sets under P~ we describe a non-negative
function p defined on states of the shortlex machine with the following properties:

(i) the u of astate a x A is equal to the sum of 1 (b) over the states b which may follow
a in the shortlex machine, so that for any w € G we have

Z o state(v) = A(u o state(w));
P(v)=w

(ii) the set of vertices on which w o state is positive is dense.
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In §3.3, similarly to [DFW19], we produce a left eigenvector of the transition matrix of
the shortlex machine, with eigenvalue X, whose support consists of states with ‘maximal
growth’—that is, states whose number of nth successors grows at the same rate as the
group itself. In §6, we confirm that such states are dense in every shortlex shelling.

Remark 2.1. In the following diagram, we see a similar phenomenon for a tiling in the
hyperbolic plane (using the horocyclic model): there are three types of ‘rectangular’ tiles,
representing three states of an FSA, say a, b, and c; these states correspond to the light,
medium, and dark tiles, respectively. The ways these tiles may fit together one above some
others, represent the FSA transitions a — a, ¢, b; b — a, b; ¢ +— ¢, b. The widths of
the rectangles are precisely in the proportions of the left eigenvector of the corresponding
transition matrix. The bold vertical line marks a possible infinite cyclic symmetry, shifting
by one row.

2.4.2. Divergence graphs. 1In §7, we define the ‘divergence graph’, a graph structure on
each horosphere H = h~!(n) whose vertices are points v € H such that y o state(v) is
positive, and two such vertices v, w are connected by an edge exactly when their successor
sets P~"{v}, P7"{w} remain at a bounded distance as n—o00. These divergence graphs
have two advantages.

First, they behave nicely under the successor map P~!: any pair of vertices connected
by an edge will have some pair of successors that are also connected by an edge. In other
words, every edge has one or more successor edges. Moreover, every edge has either a
vertex or an edge as its predecessor, as indicated in the following diagram, with a larger,
paler predecessor divergence graph in the background on one horosphere, and a smaller,
darker successor on the next horosphere.

—~ L3
N

/4

21 @
Z . N
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Second, exactly when a hyperbolic group is one-ended, its divergence graphs are
connected (Lemma 7.4), as we show using the cutpoint conjecture (proved in [Swa96]).
This is necessary in our construction to ensure that there are local rules which force the
growth rate A to be constant on each particular horosphere.

2.4.3. Translation-like actions. To distribute the density of villagers about a horosphere,
we shall use a translation-like action of Z on the divergence graph—that is, we cover the
vertices of the divergence graph with disjoint ‘paths’ or injected images of Z.

A theorem of Seward shows that this may be done on any one- or two-ended connected

graph with bounded degree, and in §4, we generalize this to any locally finite, countably
infinite and connected graph.

3. Set-up
In this section, we establish our conventions and notation, and give foundational material
for our construction. Section 3.1 recalls the definition of an SFT and explains why, in
proving our main theorem, it is enough to give an SFT without infinite-order periods.
Section 3.2 gives the definition of hyperbolic groups and their boundaries, as well as
several lemmas describing their geometry which will be used throughout the following.
Section 3.3 defines the shortlex automaton for a hyperbolic group and proves the important
Proposition 3.17, which says that we may weigh each state of the shortlex FSA so that states
of maximal growth have positive weight and the sum of the weights of the successors of
any state a is equal to the growth rate of the group times the weight of a. Section 3.4 defines
the derivative of a 1-Lipschitz function on a finitely generated group, and describes what
we mean by ‘horofunction’.

We take N := {1, 2, 3, . . .}. We denote the number of elements of a finite set A by #A.
We denote sequences as (a,),eN (We sometimes write (a,)). The notation [a..b] denotes
the interval between a and b in Z, that is,

[a.b] :={neZ|a<n<b}

For infinite intervals, we write Zx,, or Z<yp, or Z. For sums of values of some function f
over some set R, we write fg := Y g f(x). We also write f,, n := Y y_,, f (k).

We work exclusively in the discrete setting. A graph I' is a pair (V(I"), E(I")). The
edges induce a metric on the vertices of a connected graph by setting d(#, v) = 1 whenever
u # v are vertices connected by an edge. A geodesic is a (globally) metric preserving map
y : I — X,wherelis aninterval in Z and (X, d) is a metric space; thatis, forany ¢, t, € 1
we have d(y (1), y (r2)) = |t — 1al.
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This paper is concerned with a fixed finitely generated group G with identity 15 and a
fixed finite generating set S = S~ 1.

As is customary we denote the set of finite words in letters of S by S* (this includes the
empty word), and identify a word w in &* with the corresponding product g € G and say
that w represents g. Because S generates G, this defines a map from S* onto G. We denote
the length of a word w € S* by I(w) and for g € G we set

lg| := min{{(w) | w € §*, w represents g}.
This induces a distance function on G called the word metric by setting

d(g1, g2) = Igflgzl.

It is well known, and easy to see, that d is indeed a metric turning G into a geodesic

space—that is, for any g1, g2 € G there exist a geodesic y : [0.. d(g1, g2)] = G with

y(0) = g1 and y(d(g1, g2)) = g2. We denote balls as B(r, g) :={h € G | d(h, g) <r}.
Multiplication on the left defines an action of the group on itself by isometries:

d(gg1. 882) = 1(gg1) g2l = Igy g2l = d(g1. £2).

We say that A C G is connected if there exists a path connecting any g1, g2 € A, by
which we mean that there exists y : [a..b] — A (for some a, b € Z) so that for any ¢ €
[a..b — 1] we have that d(y (1), y(t + 1)) = 1.

LEMMA 3.1. (Discrete Arzela—Ascoli) Let I be a possibly unbounded interval in 7. Let
(Yn 1 I = G)pen be a sequence of geodesics. If for each t € 1, (v, (t))neN takes finitely
many values, then (y,) subconverges pointwise to some geodesic y .

Proof. Convergence is obvious. For any interval [a..b] C I, there is some ¥, such that
Y lla.b) agrees with y,|[4.5). Consequently, b —a = d(y (a), y (b)). It follows that y is a
geodesic. O

3.1. SFTs. We give several standard definitions as follows.

Definition 3.2. Let G be a group and A some finite set equipped with the discrete topology.
The full shift on G is A® := {w : G— A} with the product topology and the right G action
given by (w - g)(h) := w(gh). We call elements of AC configurations. By Tychonoff’s
Theorem, A% is compact.

A cylinder set in AC is a set of the form I1 2cG U,, with each U, € A and for all but
finitely many g € G, Uy = A. A clopen set is the finite union of cylinder sets.

A subset Q of A is said to be a subshift if it is closed and invariant under the right
G action. A subshift Q2 is called an SFT if there exists clopen Zi, . . ., Z, such that Q =
determine membership in Q: to determine whether w € AC is a configuration in 2, we
must see whether w - g isin Z; forall g € G and i = 1, .. ., n. In other words, we must
check that w takes on a prescribed form near every point in G.

We say that an SFT € is strongly aperiodic if it is non-empty and for any configuration
w €  we have that Stabgw = {15}, where Stabgw is the stabilizer of w.
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In the next proposition, we observe that any group with only finitely many conjugacy
classes of torsion elements admits an SFT with no torsion elements in the stabilizer of
any configuration. It is well-known that hyperbolic groups satisfy this condition (see, for
example, [BH99, Theorem III.I" .3.2]).

That finite groups admit strongly aperiodic SFTs is trivial, but we include this within
the following proposition for efficiency.

PROPOSITION 3.3. Any finitely generated group with finitely many conjugacy classes of
torsion elements admits a non-empty SFT Q such that for all v € Q, Stabgw has no torsion
elements.

It follows that any finite group admits a strongly aperiodic SFT.

Proof. Let gy, ..., g, be representatives of the conjugacy classes of the torsion elements
in G. Let N := max |g;| and B := B(N, 1¢). We define our SFT Q C BY as

Q:={we BY| forany g, g’ € G, if d(g, g’) < N then w(g) # w(g)}.

We show that 2 is non-empty: suppose we have assigned elements of B to some subset
Hof G.Let g € G\ H. This g is within N of at most #B — 1 elements of H, and so can
be assigned some element of B distinct from any of those assigned to elements of H. This
process defines an element w € €2, showing that €2 is not empty.

Let £ be a torsion element of G, with & = cgic_1 for some ¢ and representative torsion
element g;. Then d(c, hc) = d(c, cgic_lc) =d(c, cgi) =d(lg, &) = lgil < N.

Thus, for w € 2, w(c) # w(hc) and so w - h # w. The proposition follows. O

Our main result would give an SFT in which no configuration is stabilized by an element
of infinite order. The next proposition shows that we can combine it with an SFT as
constructed above to obtain a strongly aperiodic SFT as follows.

PROPOSITION 3.4. If group G admits a non-empty SFT Q2 such that for all w € 21,
Stabgw) has no torsion elements, and G admits a non-empty SFT Q2 such that for all
wy € Qo, Stabgwy has no infinite-order elements, then G admits a strongly aperiodic SFT.

Proof. Consider Q = Q] x 7 with the diagonal G action. Suppose w = (w1, w2) € Qs
invariant under g € G. Then both w; and w, are invariant under g € G, showing that g is
neither torsion nor has infinite order, hence g is trivial. O

3.2. Hyperbolic groups. Let G be a group generated by a finite set S, endowed with the
word metric with respect to S.

Definition 3.5. Let§ > 0. As suggested in the following diagram, a geodesic triangle in G
is said to be & -slim if every side is contained in the §-neighborhood of the other two sides.
We say that G is § -hyperbolic if every geodesic triangle in G is §-slim. If for some 6, G is
S-hyperbolic, we call G a hyperbolic group.
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3.2.1. Properties of hyperbolic groups. A hyperbolic group is finitely presented [BH99,
Corollary III.77.3.26] and has, at most, finitely many conjugacy classes of finite-order
elements [BH99, Theorem II1.1°.3.2].

Definition 3.6. We say that G is one-ended if for all compact K C H, G \ K contains
exactly one unbounded connected component.

Assumption. Henceforth, we assume that G is a one-ended hyperbolic group equipped with
a fixed finite generating set S = S,

The following lemma introduces a technique which will be used frequently.
LEMMA 3.7. (Repairing a ladder) Let I, I’ be intervals containing 0 and let y : I —G and

y' . I'—G be geodesics with y (0) = y'(0). If d(y (¢), y'(¢")) < k for somet € I,t' € I,
then d(y (1), y'(1)) < 2k.

Proof. Because y (0) = y'(0) we have

' =dy'(0), ') =d('0), y (1)) +dy (1), y ") <t +k,

and, by symmetry, r < t’ + k, so that

dy' ", y'@) =t —t'| <k.
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It follows that
diy (@), y' (1)) <dy @), y'(t") +d@' (), y' ")) < 2k. O

The next lemma gives some bounds on how long two geodesics from the same point
will fellow travel.

LEMMA 3.8. Let I and be an interval containing 0, and lety : I — G and y' : I—G be
geodesics with y(0) = y'(0). Suppose t, T € I are such thatt < T — d(y(T), y'(T)) —
28, then d(y (1), y'(t)) < 26.

Proof. By slim triangles, y (¢) is within § of either y’ or the geodesic ¥ connecting y (T)
to y/(T). In the latter case, we have some ¢’ such that d(y (¢), y (t)) < § and, thus,

d(y(®), y(T)) <d(y (@), 7)) + A7 ("), y(T)) <8 +d(y(T), y'(T)),

contradicting d(y (¢), y(T)) = |T —t| > d(y(T), y'(T)) + 26.
Hence, y (1) is within § of y’, so that there is some ¢’ such that d(y (r), ' (")) < 8, and
we may apply Lemma 3.7 to see that d(y (¢), y'(¢)) < 24. O]

3.2.2. Slim quads. Consider a geodesic quad, that is, a union of geodesic segments of
the form AB, BC, CD, DA. Because any diagonal of the quad is in the 8-neighborhood
of each pair of sides it cuts off, it is clear that each side of the quad is within a
2§-neighborhood of the union of the other three. We now show how this implies bounds
on the distance between corresponding points on two geodesic segments of equal length.

LEMMA 3.9. Lety, v’ :[0..T]—G be geodesics and let
ko =d(y(0), ¥'(0), kr =d(y(T), y'(T)), k = maxiko, kr}.
For(0 <t <T, we have
d(y (1), y'(1)) < 3k +48.
Ifko+26 <t <T —kr — 28, then d(y (1), y'(t)) < min{ko, kr} + 45.

Proof. Let y : [—>Gbea geodesic connecting ¥ (0) to y’(0) and 7 : I'>Ga geodesic
connecting y (T) to y'(T). Each side of the geodesic quad spanned by y, 7', y/, 7 is within
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the 28 neighborhood of the other three. In particular, y (#) must be within 25 of a point of
7,y ory.

Suppose first that there is some ¢’ € I such that d(y (1), y(t')) < 28. By the triangle
inequality, ¢t = d(y (0), y (¢)) < d(y(0), (")) + d(7 (), y(t)) < ko + 26. It follows that
d(y (), y'(1)) < d(y (@), y(0)) + d(y(0), y'(0)) + d(¥'(0), y'(1))

= ko + 28 + ko + ko + 28 < 3ko + 46.
The case where y (¢) is close to some () is similar, so we omit the proof.
Now suppose there is some ¢’ € I such that d(y (¢), y’(¢)) < 28 (note that we are always
in this case if kg + 26 <t < T — k7 — 25.) We have
T =d(y'(0), y'(T))
<d('(0), y' (")) +d' (), y () + d(y (1), y(T)) +d(y (T), y'(T))
<t'+28+T —t+kp,

sothatt’ >t — kr — 28. An entirely symmetric computation shows thatz > ¢ — kp — 28
and, hence,

|t —1'| <kr +2,
so that
dy (0, ') <dy @), ') +dy' (), y'(1)) <28 + |t —1'| < kr +48.
Reversing y and y’, we also get the bound d(y(r), y'(r)) < ko + 48. Hence, d(y (¢),
y/(t)) < min{kg, k7} + 48 as desired. O

3.2.3. Asymptotic geodesics stay close. 'We now show that the previous lemmas provide
some constraints on the behavior of two geodesic rays which do not diverge from each
other.

Definition 3.10. Two geodesic rays y,y’:Zs>o—G are said to be asymprotic if
d(y (1), y’' (1)) is bounded—manifestly, this is an equivalence relation. We write [] for the
equivalence class of y.
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LEMMA 3.11. Let y,y’ : Z>0—G be asymptotic geodesic rays. For sufficiently large p,
there exists q such that d(y (p), y'(q)) < 28. Moreover, for all t € Zx,

d(y (1), y'(1)) < 3d(y(0), y'(0)) +43.

Finally, if y (0) = y'(0), then d(y (t), y'(t)) < 28 for all t € Z~.

Proof. Choose k > sup,cz_, d(y (1), y'(1)).

For p > k + 26, choose T > p 4+ k + 2 and consider a quad with sides y|jo. 7] and
¥'li0..7] together with geodesic segments 7 and p connecting their endpoints. Because
this quad is 25-slim, we have that y (p) must be within 25 of one of the other three sides,
and by the triangle inequality it cannot be close to 7 or p. It follows that for some ¢,

d(y(p), v(q)) = 25.
Given t, choose T > t + k +28.If t < d(y(0), y'(0)) + 28, then we see directly that

d(y (), y' (1)) <d(y @), y(0)) +d(¥(0), ¥'(0)) + d(¥'(0), y' (1))
< d(y(0), ¥'(0)) + 28 + d(y(0), ' (0)) + d(¥ (0), y'(0)) + 25
=3d(y(0), y'(0)) + 4

as desired. Otherwise, the last part of Lemma 3.9 yields the desired result.
The last part follows from Lemma 3.7 and the slim triangles condition or [BH99,
Lemma II1.H.3.3]. O]

3.2.4. The boundary of a hyperbolic group. We now define a compact space, equipped
with a G action, known as the boundary of G (see [BH99, §111.H.3] for details). Recall that
[y]is the equivalence class of all rays asymptotic to y.

Definition 3.12. Let dG be the set of all equivalence classes [y] as y ranges over geodesic
rays in G. Here, G acts on dG via left multiplication, so that g - [y] is given by the class of
t— gy(@).

To define a topology on dG, fix some basepoint p € G. Given 7, a sequence of points
of 3G and n € G, we say that n, converges to n if 1, can be represented by a sequence
of geodesics y;, with each y,(0) = p and every subsequence of y, subconverges pointwise
to a geodesic ray representing 7. We topologize dG so that a set K is closed if and only if
K contains the limit of every convergent sequence of points of K.

The topology of dG is independent of choice of basepoint [BH99, Proposition
II.H.3.7]. We sometimes write [y] for the element of dG represented by a geodesic

ray y.

LEMMA 3.13. Let (yn), (v,) be sequences of geodesic rays such that [y,] = ly’,1 for
all n and y, converges pointwise to some geodesic ray y. If #{y,(0)} < oo, then v,
subconverges pointwise to some vy’ asymptotic to y.

Proof. By passing to a subsequence, we may assume without loss of generality that
v2(0) and y’,(0) are constant sequences. Let k = d(y,(0), y’,(0)). By Lemma 3.1, y,
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subconverges pointwise to some geodesic ray y’. By Lemma 3.11,
d(ya(®), ¥ (1)) < 3k + 48
for all n and ¢. It follows that d(y (¢), ¥’ (¢)) < 3k + 48 for all ¢ and, hence, [y] = [y’]. O

Three geodesics y1, y2, and y3 define an ideal triangle if and only if y;(oc0) =
Y(i+1)(—00), the indices taken modulo 3.

LEMMA 3.14. Any ideal triangle is 36-slim.

Proof. We first note that any (finite) hexagon is 3§-slim. Let p be a point on the hexagon,
and divide the hexagon into two triangles and a quad as shown in the following. The result
follows because quads are 25-slim and triangles are §-slim.

)

p A A

Let p be a point on an ideal triangle. Because the geodesics of the ideal triangle are
pairwise asymptotic we may truncate the ideal triangle, forming a hexagon so that the new
edges are more than 3§ from p. This hexagon is 3§-slim, but p cannot be close to any point
on the new edges. Hence, p is within 3§ of some point on one of the other two geodesics
in the ideal triangle. O

3.3. Growth in a shortlex FSA. A remarkable fact about hyperbolic groups is that the
language of shortlex geodesics is regular—we recall the relevant definitions here. For a
detailed discussion, see, for example, [CF10, DFW19, ECH+92].

An FSA on alphabet S (where here S is an arbitrary finite set) is a directed graph whose
edges are labeled by elements of S (for a formal definition, see, for example, [ECH+92]).
The vertices of the FSA are called states. Sometimes we consider FSAs that have a special
state called start; in that case, we only consider finite directed paths starting at that state,
and we assume that the FSA had been pruned, that is, states that cannot be reached from
the start state have been removed. Sometimes we consider FSAs without a start state, in
which case we consider all finite directed paths in the FSA. The collection of all words
obtained by reading the edge labels of finite directed paths in an FSA (with or without a
start state) forms a subset of S* (the collection of all finite words in S, including the empty
word); a subset of this form is called a regular language.

3.3.1. Notation. Let I be an FSA with states V(I"). For a set of states A C V(I"),
we let I'(A) denote the subgraph spanned by A (itself an FSA). We let [I'] denote the
adjacency matrix (that is, if we number the states {ay, . . ., a,}, [I'];; denotes the number
of transitions from a; to a;). If a word w € S* labels a valid path from a state a to a state

b, we write a>b. If a,b € V(I') are such that a>3band b3 a (for some w, w’ € §%), we
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say that a & b. It is clear that = is an equivalence relation (note that a ~ a always holds,
as the path may have length zero). The equivalence classes are called components. The
Perron—Frobenius (PF) theorem asserts the following.

LEMMA 3.15. If AcC V(') is a component and #A > 2, then the largest modulus
eigenvalue A4 of [I"(A)] is positive and has a positive left eigenvector.

3.3.2. The shortlex automaton. Recall our convention that S is a symmetric generating
set for the one-ended hyperbolic group G. We say that sy - - - sy € S* is a geodesic if £ is the

minimal length of any word representing the same element of G as s; - - - s¢. The collection
of all geodesic words forms a regular language [ECH+92, Theorem 3.4.5]. Order the
elements of S—this induces a lexicographic order on S*. A word s; - - - sy is a shortlex

geodesic if it is a geodesic and no geodesic representing the same group element precedes
it in the lexicographic order. The set of all shortlex geodesics forms a regular language
[ECH-+92, Proposition 2.5.2], called the language of shortlex geodesics in G (and with
generators S.)

Definition 3.16. Let A := lim;_, o #B(i, 16)'/? be the growth rate of G with respect to S
(see, for example, [DFW19]). Let M denote a pruned FSA for the language of shortlex
geodesics in G, and let .4 denote the vertex set of M.

We are going to show that A is an eigenvalue of the transition matrix [M] with a left
eigenvector supported on a certain set of states (later we show that these states are dense
in G). Write A p for the PF eigenvalue of a component B C .A. By [DFW19, Theorem 3.3,
Corollary 3.7], A is equal to the maximum of the A 5. We say that a component B is big if
A= Ag.

Partition 4 into sets Amax U Abig U Amin Where:

(i)  Apig is the union of the big components;
(i1)  Amin consists of all states that cannot lead to a big component;
(iii)  Amax consists of everything else—that is, states which are not in a big component
but may lead to a big component.

PROPOSITION 3.17. There is a left eigenvector p of [M] with eigenvalue ) such that
wi > 0 for a; € Apax U Apig and p; = 0 for a; € Apipn.

Proof. We first construct a positive eigenvector pipig of [M(Apig)] with eigenvalue A,
then a positive eigenvector jg of [M(Amax U Apig)] with eigenvalue A, then the desired
eigenvector (.

(1) From [Cal13, Lemma 3.4.2], there is no path from one big component to another
(this is a moral equivalent of the fact, proved by Coornaert [C0093], that the growth of G is
precisely exponential, that is, #B(n, g) = ©(A")). It follows that we may write [M (Apig)]
as a block diagonal matrix

Ay
[M(Avig)] = e ,
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where each A; is [M(B)] for some big component B. Letting u; be the PF eigenvector
for A;, we have that ppi :=[11 - - 1] is a positive eigenvector for [M (Apig)] with
eigenvalue A.

(2) We may write

[M(Amax U Abig)] = [[M(Amax)] 0 :I

B [M(Abig)]

for some matrix B. Observe that (Al — [M (Apax)]) is invertible (where by I we mean the
identity matrix), with inverse given by

O = IM(Ama)D) ™" = A0+ 27 M (Ama) ]+ 22 IMAma) > + - -+,

where the series (which is non-negative) converges because A is greater than any eigenvalue
of [M(Amax)]. We let ug be the row vector with first components those of fipig B(AI —
(M (Amax)])’l, followed by the components of ipig, Or as a partitioned vector,

140 = [ibig BAL — IM(Ama)D ™" 1ebigl-

We see that g is an eigenvector for [M (Amax U .Abig)] by the following calculations.
Write v for tpig BOL — [M(Amax)]) ™!, s0

MbigB = VAL = [M(Amax)]).
Hence,
VIM(Amax)] + HUbigB = Av,

which implies that [V upig] is a non-negative left eigenvector of [M (Amax U Apig)] as
desired, so we wish to show that it is positive.

Because each state of Ay.x may lead to a state of Apiy, we see that for all a; € Apax,
there is some a; € Apjz and k > 0 such that [B[M (Ama) 1€ ji > 0. By the geometric
series formula for (Al — [M(Amax)]) ™" and the fact that every [ebig]j is positive, we thus
see that every [fpig B(Al — [M (Amax)])~11; is positive and, hence, jg is positive.

(3) Finally, we may write

[M] = |:[M(~Amax U Abig)] 0 ]

* [M(Amin)]

and take ;o ;= [po 0] as our desired eigenvector. O

3.4. Horofunctions and their derivatives.

Definition 3.18. Let h : G—Z be a 1-Lipschitz function. The derivative
oh : G—>[—1.11°
of h is the function

Oh: g (s h(gs) —h(g)).

The following lemma says that two functions with the same derivative differ by a
constant, as one might expect.
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LEMMA 3.19. Let hy, hy : G — 7Z be 1-Lipschitz functions. If 8h1 = dhy then hy — hy is
constant.

Proof. [Cohl7, Lemma 3.4] implies that, for a Lipschitz function h, h(g) — h(g') may
be recovered from dk|,, where p is a path connecting g to g’. It follows that h; — h> is
constant. O

There are multiple (essentially but not entirely equivalent) definitions of ‘horofunction’
in the literature. We will use the following definition.

Definition 3.20. An onto 1-Lipschitz function 4 : G—Z is said to be a horofunction if the
derivative 04 is in the orbit closure of the derivative of the function

g — d(g. lg).

Level sets of horofunctions will be referred to as horospheres.

For example, the horofunctions Z — 7Z, with the integers generated by =1, are given by
n+ n+ Candn — —n + C as C ranges over Z.

Note that functions in the actual orbit of g +— d(g, 1) are not onto Z, but only some
Z>n, and so only limit points of an unbounded orbit of such functions can possibly be
horofunctions. The next lemma makes this precise.

LEMMA 3.21. A function h : G — Z is a horofunction if and only if there go € G and a
sequence (gn)n- | of distinct elements of G such that h is the pointwise limit of the sequence
(fn)yo where

fu(g) :=d(g, gn) — d(gn, 80)-

Proof. Let h be a horofunction. We produce the points g,. By definition, there exists a
sequence of sets S, C G, n € N satisfying:

i S, C Sy4forallneN;

(i) U S» =G
(iii) for each n € N, there exists g, € G for which 8 d(-, g,)|s, = 0hls,.
Note that these conditions imply that for any m > n we have that d d(-, g.»)|s, = 0hls,. By
restricting to subsets of S,, we may assume that the graph spanned by S,, is connected for
each n.

Because 4 is onto Z, there exists go € G for which 4(gg) = 0 is satisfied. Moreover, for
each r > 0, there is some N such that for all n > N, the ball of radius r centered at g is
contained within S,,.

Because each f;, defined in the statement of the lemma differs from d(g, g,) only by a
constant, d f,, = d d(g, g,). By the conditions above we see that f;, satisfies:

(i)  Ofuls, = 0Ohls,;
() fu(go) = h(go).
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As S, is connected, by Lemma 3.19, condition (1) above implies that f,|s, = hls,. We see
that

lim f, = h.
n—oo

It remains to show that the elements may be taken as distinct. Suppose not. Then after
subsequencing if necessary we may assume that (g,)7°, is a constant sequence. In that
case h(g) = d(g, gn) + C for some constant C € Z, contradicting the assumption that % is
onto.

The converse follows from the definitions. O]

LEMMA 3.22. Let h be a horofunction and g1, g2 € G. Suppose that h(g1) = h(g2). If, for
some x € N, we have that d(g1, g2) > 2x + 28, then for any geodesic y : [0.. d(g1, g2)] —
G connecting g1 and g» we have

h(y (x)) < h(g1) — (x —26).

Proof. By reorienting y if necessary we may assume that y(0) = g;. By Lemma 3.21,
there exists go € G and C € N so that for all ¢ € [0.. d(g1, g2)] we have that hA(y (1)) =
d(go, y(t)) — C.Fori =1, 2, let y; be a geodesic from g; to go (so that y;(0) = g;). By the
slim triangle inequality, y (x) is within § of some point of y; or y», say p. We claim that p ¢
y»; assume that it is. Then d(g, p) < x + §. Again by the triangle inequality, d(go, p) >
d(go, g1) — (x + &) = d(go, g2) — (x + §), and so, as p is on a geodesic connecting go and
g2, we have that d(p, g2) < x + §. This shows that d(g1, g2) < 2x + 2§, contradicting our
assumption.

> d(g0,92) — (v +6)

Therefore, p € y;. By Lemma 3.7, we have that d(y (x), y1(x)) <2d(y(x), p) <26
and so

d(go, ¥ (x)) = d(go, y1(x)) +d(y1(x), ¥ (x)) < d(go, g1) — x + 2.
Thus,
h(y(x)) =d(go, y(x)) — C <d(go, g1) —x+28 —C =h(g)) — (x—28). U
4. Translation-like 7 actions

This section is independent of the rest of the paper (the result will be used in the proof of
Lemma 8.7).
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Throughout this section, let I" be a locally finite, countable graph. Let dr- be the induced
metric on the vertex set V (I") (with the distance between vertices in distinct components
being infinite). We now define the following.

Definition 4.1. (Translation-like Z action) Let I" be a graph and L a positive integer. A
translation-like 7. action with defect L on I' is a bijection f : V(I') — V(I') satisfying,
forany x € V(I'):

@ drx, f(x) = L;

(i) f'(x) =xonlyfori =0.

The orbit of x is { ' (x)}iez.

In the definition above f is thought of as the generator of Z. In [Sewl4a, Corollary
3.4] Seward showed that a connected graph of bounded degree admits a transitive
translation-like Z action if and only if the graph has one or two ends. In Theorem 4.2, we
generalize Seward’s work, removing the restriction on the number of ends and the degrees
on the vertices, and obtaining a universal bound on the defect. However, the action we get
is not transitive; this is necessarily the case because a graph with three or more ends does
not admit a translation-like Z action.

The purpose of this section is to prove the following.

THEOREM 4.2. A locally finite, countable graph admits a translation-like 7. action if and
only if all of its components are infinite; in that case, there is such an action with defect at
most 3.

Proof of Theorem 4.2. Let I' be as in the statement of the theorem. Because a
translation-like 7 action restricts to a translation-like Z action on each component, we
may assume that ' is connected. Clearly, every component of a graph admitting a
translation-like Z action is infinite, and so we may further assume that I is infinite.
Let (X;); be a sequence of finite subsets of V (I") satisfying:

1 Xi C Xitr1s

i) v =UZ Xi;
(iii) the graph I'(X;) spanned by X; is connected.

We prove the following two simple lemmas.

LEMMA 4.3. A sequence as above exists.

Proof. Because I' is countably infinite and connected we may fix vy, va, . . ., an enumer-
ation of V(I'), so that for every i > 1 there is j < i so that v; and v; co-bound an edge.
Set X; to be

Xi:={vy,...,vi}.
By construction and induction (X;); satisfies conditions (i)—(iii) above. O

For the next lemma, we need the following.
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Definition 4.4. Given a graph H, let H> be the cube of H, defined by:
(i) VH’) =V(H);
(i) u,v € V(H?) co-bound an edge if and only if dg (4, v) < 3.

LEMMA 4.5. If Hy is a subgraph of H» then H13 is a subgraph of H23.
Proof. Clearly V(H13) C V(H23). For any u, v € V(Hl?’) we have
dp, (u, v) < dg, (u, v).
If follows that any edge of H13 is an edge of H23. The lemma follows. U

In [Kar68], Karaganis proved that the cube of any finite connected graph with at least
three vertices admits a Hamiltonian circuit. (In other words, the only finite connected
graphs whose cube is not Hamiltonian is a single edge and, depending on one’s definition,
a single vertex.) For each i > 3, I'(X;) is such a graph; we apply Karaganis’ theorem and
fix H;, a Hamiltonian circuit of I'(X;)3.

We next construct a sequence denoted (E;); satisfying the following five properties for
eachi > 3:

(1) E;isasetof edges of rs;

(2) E; is finite;

(3) Ei CEit1;

(4) atevery vertex v; € X;, we have that E; has exactly two edges adjacent to v;;
(5) the edges of E; are contained in infinitely many of the Hj.

Consider first vi. Because v; is covered by every Hy and 1"(X,-)3 is locally finite,
infinitely many of the Hj traverse the same pair of edges, say e; and e}, at v;. We
subsequence (Hy)y so that each Hj in the subsequence traverses both e; and e/1 (we do
not rename the sequence). We set

E1 = {61, e’l}

For each i > 1, having constructed E;, we consider v;y1. Local finiteness implies that
infinitely many of the (subsequenced) Hj traverse the same edges at v; 1, say e;1| and
el/. 41 We further subsequence (Hy ), and so that each Hy in the subsequence traverses both
ej11 and elfH. We set

Eir1:=E Uleiy1. e/}

This completes the construction of the sequence (E;) satisfying the conditions above.
We set H to be the subgraph of '3 whose vertices are V (I'), and whose edges are U; Ei.

CLAIM 4.6. We claim H is a union of disjointly embedded bi-infinite paths in T'® that cover
V(D).

Proof. By construction, the edges of H are among the edges of I'> and every vertex
V(F3) = V(I') is connected to exactly two edges of H. Therefore every component of
H is a cycle or a bi-infinite path, and all we need to argue is that H has no cycles. Assume,
for a contradiction, that '/ is such a cycle. Because I'” has only finitely many vertices,
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for sufficiently large k, X contains every vertex of I'" and at least one more vertex. By
condition (5) above we may assume that every edge of I'” is an edge of some Hj. Because
both Hy and T’ are cycles, we see that H;y = I'’, an obvious contradiction. O

We endow the paths H with an arbitrary orientation. Given a vertex v € V(I'?), let
f(v) be the vertex that follows v in the appropriate path of H. By Claim 4.6 this defines a
fixed-point free action of Z on V(I3 = v(D). Clearly, we have

dr(v, f(v)) <3dp(v, f(v)) =3

Thus, f defines a translation-like Z action on I', proving Theorem 4.2. O O

5. Shortlex shellings

Our goal in this section is to define shortlex shellings (Definition 5.4) and show that
they are parameterized by an SFT (Proposition 5.5), much in the style of Coornaert
and Papadopoulos [CP93, §3,4] or Gromov [Gro87, §§7.5, 7.6, 8.4]. A shortlex shelling
assigns some data to each element of G. These data impose two simultaneous, compatible
structures on G: a decomposition into horospherical layers (that is, layers which are locally
modeled on spheres in G) and a spanning forest locally modeled on the tree of shortlex
geodesics.

5.1. Notation. Ifa,b e Aand w € S*, we write a2 b if the shortlex machine, starting
in state a, ends up in state b after reading w. Given P : G—G and S C G, let

P"S:={geG:P'ges)

(as expected) and denote
o
ps:=JPs,
n=0

which we will call the future cone of S with respect to P.

Given a function o : G— A for any set A and g € G, let o - g denote the function G— A
given by (o - g)(h) = o(gh). Given S C G, the l-interior of S consists of all g € G such
that B(1, g) C S.

Definition 5.1. A preshelling is a triple X = (h, state, P), where h: G—Z is a
1-Lipschitz function, state is a function G—.A and P : G—G satisfying, for all
g€ G, d(g, P(g))< 1. Given such an X, define 0X to be the triple (dh, state, 0P) €
[—1..11° x A x B(1, 1), where dP(g) := g 'P(g) € B(, 1g).

LEMMA 5.2. The set, in [—1..1]8 x A x B(1, 1), of 0X such that X is a preshelling is
an SFT, which we denote Q.

Proof. Similar results appear in [CP93] for derivatives of horofunctions, and more
generally as [Cohl7, Theorem 3.2] for k-Lipschitz functions on finitely presented
groups.
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Forany o € ([~1..115)%, we may ‘integrate’ o along any path y by summing o (y (n)) :
S — [—1..1]applied to y (n) "Ly (n + 1).

If o integrates to O around any translate of any relator in G, then o is the derivative of a
1-Lipschitz function which can be found by integrating from the identity.

The group G (being §-hyperbolic) has a presentation with generators S and relators of
length less than or equal to 8§ 4- 1 (see the proof of Theorem III.I".2.6 in [BH99]), which
each fit within B(46 + 1, 15).

There are only finitely many distinct X - g|p4s+1,15), Which we take as our allowed
cylinder sets defining a subshift €2 of finite type. By definition, each dX is within Q.
Moreover, if ¢ € Qq, then the first coordinate of ¢ integrates to 0 around any relator
and, hence, is the derivative of a 1-Lipschitz function G — Z. There are no particular
restrictions on the last two coordinates in a preshelling and so 2 is the set of all X such
that X is a preshelling. O

Definition 5.3. Let Xo = (hy, statey, Py), where hg : G—Z, statey : G—>A and Py :

G— G are given as follows.

(i) Forg e G, holg) =d(g. lc).

(i1) If w € 8* is the shortlex minimal word representing g € G and ag is the initial
state of the shortlex machine, then stateyp(g) is the unique element of .4 such that
ao—w> statep(g) in the notation given at the start of this section.

(iii) Finally, Py(1g) = 1g and for g # 1g, Pp(g) is the vertex precedlng g in the shortlex

geodesic from 1 to g. Thatis, Py(g) = h if and only if (state h) —> (state g).

A shortlex shelling is a preshelling which is locally modeled by X in the following
sense.

Definition 5.4. A preshelling X = (h, state, P) is said to be a shortlex shelling if, for
every g € G and R > 0, there exists go € G such that we have the equality of restrictions

(0OX - 2)|B(Rr,15) = (0X0 - g0)|B(R,16)>

and, furthermore, B(R, go) does not contain the identity 1.

For a preshelling X, if (30X - g)|r = (0Xo - go)|F for some F C G, we say that 0X is
modeled by 0Xo on gF. In other words, X being a shortlex shelling means that dX is
modeled by dX( on every finite subset of G. If X = (h, state, P) is a shortlex shelling,
then / is a horofunction (by definition of a horofunction).

We will show that the set of X such that X is a shortlex shelling is formed by
intersecting the preshelling SFT with further cylinder sets of radius 24; hence it is clear
that it is an SFT. We will also show that dX is non-empty, and includes exactly the shortlex
shellings.

PROPOSITION 5.5. The collection of 0X such that X is a shortlex shelling forms a
non-empty SFT. In particular, a preshelling X will be a shortlex shelling so long as, for
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every g € G, there exists go € G \ B(28, 1) such that
(0X - 2)B@2s,16) = (0Xo - g0)|B(25,15)-

Proof. Let X = (h, state, P) be a preshelling satisfying the given condition (that dX is
modeled by 0Xo on 2§ balls not containing 15). We wish to show that X is actually a
shortlex shelling, that is, that on any B(R, g), 0X is modeled by 8X(y. We proceed by
two steps. First, we show that X is modeled by 8X( on the 1-interior of sets of the form
P™*B(26, g). Second, we show that every ball B(R, g) is contained in the 1-interior of
some cone. Finally we show the existence of a shortlex shelling X.

State determines future. Given g € G, because 0X|p(2s,) is modeled on a ball away
from 1, it is clear that

{(g7 "¢, state(g) : P(g") =g} = {(s,b) € S x A : state(g)—>b)}.

Now, suppose that state(g) = stateg(go) for some g, go € G. We observe by induction
that g’ € P~*{g} if and only if, for the shortlex geodesic representative w € S* of g~ '¢’,
state(g)—w> state(g’). It follows that

g P Mg} = gy Py (g0l

Furthermore, for g’ € P~*(g), we have state(g’) = statep(gog~'g’) and OP(g’) =
dPy(gog~'g’), because the state(g) and g~'g’ uniquely determine w as above.
Equivalently, we have shown that

((state, OP) - 8)lg-1p—xq) = ((statep, 0P) - go)|g0_1P0_*{g0}.
Finally, for g’ € P~*g, with w as above, we have
h(g') — h(g) = t(w) = ho(gog~"g") — ho(go).
or, equivalently,

(- 8)lg=1prig) = (h0 - 80)| g1 pos gy + (&) — h(80).

(g0
On the I-interior of cones, X is modeled by dX. Let g, go € G and suppose that
(0X - 8)|B2s,16) = (0X0 - £0)|B(25,16)-
By the above considerations, we have that
g 'PT*B(28.8) = g, ' Py "B(23, g0),
and, furthermore,
((state, OP) - g)|,-1 p—+p(2s,q) = ((stateo, dPp) - g0)|g5]P0_*B(28,go)

and

hlg=1 p=5(25,9) = h0l g1 p=+ p2s.4) + (&) = h0(80)-

https://doi.org/10.1017/etds.2021.70 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2021.70

Strongly aperiodic subshifts of finite type on hyperbolic groups 2767

Consequently, X is modeled by dX¢ on the 1-interior of P~*B(24, g).
Every ball lies in the I-interior of some cone. Forevery R > 0,g € G,n > R+6§+1,
and g’ € P;"(g), we claim that

Py*B(8,8) D B(R, g).

To see this, for any x € B(R, g’), consider the geodesics along {Pé (g")} and {P(; x)}
from g’ and x to lg. Because g is in {Pj(g")}, and d(g,g") =n > R+ +1 and
d(x, g’) < 8, by the triangle inequality, every point on any geodesic between x and g’ must
be of distance greater than § from g. By the §-slim triangle condition, some point on the
geodesic from x to 1 is within § of g, and so x is in P, *B(8, g).

It follows that forall g € Gandn > R+ 6§ + 1,

B(R,g) C P"*B(5, P"g). (%)

X is a shortlex shelling. If n > R + 8 + 2, we see from the above that 0X|p(r,) is
modeled by 8X. It follows that X is a shortlex shelling.

There exists a shortlex shelling. Let {g,} be a sequence in G with d(g,, lg) = n.
By compactness {(8X¢ - g4)|B(n,15)} has a subsequence that converges to a shortlex
shelling. U

COROLLARY 5.6. Forany g, g € G the geodesics y : n +— P"(g) and y’ : n+> P"(g’)
are asymptotic.

Proof. By (%), for all n > d(g, g') + § + 2, the ball B(d(g, g’) + 1, g) is contained in
the cone P~*B(8, P"(g)). Consequently ' must pass through B(5, P"(g)), and so for
sufficiently large n, P"(g) is within § of 3’ and the geodesics are asymptotic. O

We now give a name to the SFT formed by local data of shortlex shellings.
Definition 5.7. Let Qg denote the set of all 3(X) such that X is a shortlex shelling.

We note that this SFT always has configurations with infinite-order periods—for
example take a horofunction with axis defined by a cycle in the shortlex FSA. The rest
of the paper revolves around ‘populated shellings’, which are shortlex shellings decorated
with some extra data that kills these periods.

6. The measure L

In this section, we prove Proposition 6.5, which shows that there is a ‘mass’ function
u : A—[0, co) such that for any shortlex shelling X, p o state is positive on a dense (in
the sense of Definition 6.4) set of points, and the sum of u o state over the successors
of g € G is equal to Au(state(g)). This regularizes the growth of P~!—in particular, for
a finite S C G, we see that although P~'(S) may not have cardinality equal to A#S, we
still have that 4 assigns exactly A times as much mass to P~ (S) as it does to S. This, in
turn, will be crucial in showing that the populated shellings defined in §8 exist and have
no infinite-order periods.
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Recall that Proposition 3.17 gives a left eigenvector of [M] with eigenvalue A (where A
is the growth rate of G with the generators S), supported on states of maximal growth, that
is, the states denoted by Apig U Amax in Proposition 3.17.

Definition 6.1. Let u : A—[0, 0o) be the function given w(a;) = i, where u is the left
eigenvector defined in Proposition 3.17, normalized so that the smallest non-zero value of
w is 1. Given a fixed shortlex shelling X = (h, state, P) and g € G, u(g) is understood to
be w(state(g)).

Remark 6.2. Consequently, from the definitions of shortlex shelling and j:

> wb) =1 u@.

P(b)=a

This is the key property of ; which will be exploited in the proof of Proposition 8.11, the
existence of ‘populated shellings’.

Definition 6.3. For any shortlex shelling X, let G consist of all g € G with u(g) > 0.
For any horosphere H, let H™ := HN G™.

Definition 6.4. (k-dense) Let (G, d) be a metric space and G’ C G. We say that G’ is
k-dense in G if for all g € G there exists g’ € G’ such that d(g, g’) < k.

PROPOSITION 6.5. For any shortlex shelling X, the set GT is 28-dense.

Proof. In the proof of this proposition (which does not involve the SFT structure of €2), to
be consistent with the left action of G on dG, we define a left action of G on Qg given by

(g-0)(g)=( g HEg)=wE'e).

We proceed as follows. First, we describe a factor map 7 : Q25— 9G. We use this map,
together with the fact the dG is minimal as a G system, to show that every shortlex shelling
includes states from Apax U Apig. We then use a compactness argument to show that
there exists a k such that Apax U Apjg states are k-dense in every shelling. Finally, we
use the fact that the future of any 28-ball contains a k-ball to conclude that such states are
25-dense.

Coding the boundary. Given a shortlex shelling X = (h, state, P), consider X € Qg.
The function yx : n — P" (1) satisfies & o yx(n) = h(1g) — n and defines a geodesic
ray. This defines amap 7w : Qg — 9G

m:0X — [yx].

We claim that 7 is a factor map, that is, 7 is continuous, equivariant, and surjective.

Continuity follows directly from the definitions. To see that 7 is equivariant, fix g € G
and let g - X := (', state/, P’), so that dP'(g’) = dP(g~'g’). We have that Yex(n) =
gP" (g~ ") because a simple induction shows that

P"(lg) = gP"(g™ "),
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as P(1g) = gP%(g~") and the inductive hypothesis P (1) = gP"(g~") implies

P (1g) = P™(1)dP'(P"(15)) = gP" (g~ )P (P"(15))
=gP"(g HaP(P"(g™") = gP " (g™h.
By Corollary 5.6, we know that y : n — P"(g~!) is asymptotic to yx and, thus,
(g - X)=[yexl=I[g v]l=g n(X),

showing that 7 is G-equivariant. Finally, by [Gro87], the action of G on its boundary is
minimal, so the image of 7 must be all of G, because it is a closed, non-empty subset of
dG preserved by G.

Every shortlex shelling includes a state of maximal growth. Let Q' consist of all 3X’
such that X’ = (W', state/, P’) is a shortlex shelling with state/(G) € Amin. We wish to
show that QY is empty, so suppose otherwise. By minimality of G and the fact that 7 is
a factor map, we see that every point of G may be represented by an element 7 (2%).

Because statey realizes values in Apjg at infinitely many points, by compactness,
there exists a shortlex shelling X = (A, state, P) such that state(1g) € Amax U Apig. Let
X' = (I, state/, P’) be a shortlex shelling such that X’ € Q and 7(3X) = 7 (8X"). For
g € P7"(1¢), we may form asymptotic geodesics y, y’ based at g via y(n) = P"(g)
and y’(n) = P™(g) and apply Lemma 3.11 to see that P™(g) is within 28 of 1. Hence,
#P'"B(25, 1) = #P"{15}. Because state(1g) € Amax U Apig, we know

log#P~"{1G})/n— log(h),
but because state’(B(28, 1)) C Amin, we have
lim sup log(#P' " B(28, 15))/n < log(}),

giving us a contradiction. We conclude that Qs must be empty.

Maximal growth states are k-dense for some k. Finally, suppose there is no k such that
states of Amax U Apig occur k-densely in every 0X € Q. Then there exist shortlex shellings
Xy = (hy, stateg, P;) and gx € G such that stateg(B(k, gk)) C Amin. Then g,?l -0Xy
subconverges to some X € Qg, but we must have 0X € Q/S, which we have seen is
impossible.

Maximal growth states are 28 -dense. Suppose that state(B(26, g)) € Amin. We have
seen in the proof of Proposition 5.5 that there exists some g’ € P~*(g) such that
B(k, g') € P~*B(28, g). Because A, states, by definition, can only lead to Ap;, states,
we have state(B(k, g')) € Amin. Because G™ is k-dense, we know that this cannot be the
case, so we conclude that G7 is in fact 28-dense. O

6.1. Finding dense states. We remark that, for any non-empty subshift @ ¢ AS on any
finitely generated group, there exists B C A and k € N such that @ N BY is non-empty and
forall b € B and w € 2 N BY, we have that w~!(b) is k-dense. To see this, simply take
a minimal B such that @ N BY is non-empty—if, for all k, there were an w; € Q N BS
such that the symbol b € B did not occur in wg|p,g;), then wy - gx would subconverge
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to a configuration in (B \ »)° N Q. Furthermore, if € is an SFT, so is 2N BY. This
construction may be used instead to enforce density.

7. The divergence graph on horospheres

For horospheres H of a shortlex shelling X = (4, state, P), we now construct a graph
with vertices HT (as in Definition 6.3) which behaves nicely with respect to P in the sense
that predecessors of neighboring vertices either coincide or are neighbors; and each pair
of adjacent vertices admits a pair of adjacent successors. In other words, each edge has a
predecessor (in the previous horosphere) that is an edge or a vertex, and each edge has at
least one successor edge (in the next horosphere). We call this graph the divergence graph
on H and show that its vertex set is dense in H (Lemma 7.1), that its edges have bounded
length in the word metric (Lemma 7.3), and that it is connected (Lemma 7.4). When we
define populated shellings in the next section, we require that a child of a person living at
v € H' must live in a village u € G whose predecessor P(u) € H™ lies close to v in the
divergence graph on H. All of the facts noted here will be needed.

LEMMA 7.1. For any horosphere H in a shortlex shelling X, H™ is 45-dense in H.

Proof. Let v be a element of H and let B be the 2§ ball in G around v. The future of B
contains arbitrarily large balls and, in particular, must contain elements of Gt. Thus, B
contains an element of GT, say v'. Now v’ must have either a predecessor or successor v”
in HT. We have that

d(',v") = |h(v) —h(")| <28
and, thus, d(v”, v) < 46. O

Definition 7.2. The divergence graph on H has vertices H™ and has an edge between g1
and g if and only if there exists C such that for alln € N, d(P"{g1}, P7"*{g2}) < C.

In Lemma 7.4 below, we show the divergence graph is connected. The following lemma
shows that if the futures of two points in a horosphere remain a bounded distance apart,
then the points and their futures are within 26 of one another and that valence in a
divergence graph is bounded.

LEMMA 7.3. Let g1, g2 be in some HT. If there exists C > 0 such that for all n > 0,
d(P"{g1}, P"{g2}) < C then for alln >0, d(P7"*{g1}, P7"{g2}) < 26. In particular,
if g1 and g are connected by an edge in a divergence graph then d(g1, g2) < 26, and so
the valence of a vertex in a divergence graph is bounded by the size of B(28, 15).

Proof. Suppose for g and g in H™, there is some C with d(P™"{g}, P™"*{g2}) < C
for all n. Take some n > C + 2. Let B be a ball containing g1, g2, P~ "g1, and P7"g>.
Because every ball lies in the I-interior of some cone there exists some gop € G and a
constant C’ € Z such that for all g’ € B, we have that h(g’) = d(g’, go) — C'. Let y;,i =
1,2, be a geodesic from gg to g;. Let ¢+ = d(go, g1) = d(go, g2). Then, by Lemma 3.8,
d(g1, g2) = d(y1(1), y2(1)) =< 26. O
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LEMMA 7.4. For any horosphere H, the divergence graph on H™ is connected.

Proof. Without loss of generality, set H = h~'(0), and let & denote the point of 3G

represented by the geodesic ray n — P"(1g). A deep result of Swarup (building on work

of Bowditch) asserts that G \ & is connected because G is one-ended [Swa96]. We use
this to show that the divergence graph on H™ is connected.

(i) By an X-geodesic, we mean a functiony : Z — G satisfying y (n) = P(y (n + 1)).
It follows that y is a geodesic and satisfies h(y (n + 1)) = h(y (n)) + 1. Therefore,
hoy :Z — Z is an order preserving bijection, and we reparameterize y so
that h(y(n)) = n. By an X-ray we mean a function y : Z>o — G satisfying
y(n) = P(y(n+ 1)) and h(y(0)) = 0.

(i1)) It follows that there is a bijection between X-geodesics and X-rays: given an
X-geodesic we obtain an X-ray by restricting its domain, and any X-ray y can
be extended uniquely to an X-geodesic y’ by setting y'(n) = y(n) for n >0
and y'(n) = P7"(y(0)) for n < 0. By Corollary 5.6, the ends of y’ are &
and [y].

(iii) If Sis a subset of H™T, let I1(S) denote the subset of dG consisting of all [y ] where
y is an X-ray with y(0) € S. We write I[1(g) for I1({g}).

Our strategy is as follows: starting with a component S of the divergence graph on H™,
we show that T1(S) and IT(H™ \ S) decompose 3G \ {£} as the disjoint union of closed
sets, with IT1(S) non-empty. Therefore, TI(H' \ S) = @, which will imply that S is the
entire divergence graph.

To that end, we claim the following conditions are satisfied.

(1) For any g € HY, TI(g) # . We define an X-ray from g recursively as follows:
starting with y(0) = g, having defined y(n) € H,", choose y(n+1) € P l(y(m) N
H(Jr:+l)’ which is not empty because y (n) € H,". Then [y] € T1(g), establishing the claim.

(2) TI(HT) = 3G \ £. Let y be an X-ray defining [y] € TI(HT). Then y can be
extended to an X-geodesic connecting £ to [y]. Because no geodesic connects £ to itself,
we have that [y] # £. This shows that £ ¢ TI(H ™).

Let n € dG \ £. We must show that n is represented by an X-geodesic. Let y be a
bi-infinite geodesic connecting £ and 1, which exists by [BH99, Lemma II1.H.3.2]. Now,
for n € Z we define a geodesic y, as follows: pick g, € B(28, y(n)) N G+ (which is
not empty by Proposition 6.5). Set y,(z) := P"7!(y(n)). Similar to condition (1), set
Yu(t +1) to be in Gt N P~ (y,(t)) for t > n. By Lemma 3.11, we have that y,(t) €
B(106, y (t)) for any t < n. Therefore, for any t € Z, (y,(¢))nen takes finitely many
values. By Lemma 3.1 we have that y, converges to a geodesic y’, and it is clear
that (after reparametrizing) ¥’ is an X-geodesic connecting & at —oo to n at co. Thus
nell(HY).

(3) TI(S) NTI(H™T \ §) = @. By our definitions, any points p, g € H' with I1(p) N
[1(g) # @ share an edge in the divergence graph, and S is a component.

(4) For any A C H we have that TI(A) is closed in dG \ {£}. Let n, n, € G \ {£}
satisfy:

@ =

()  na € II(A).
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We will prove condition (4) by showing that € IT(A). Convergence on dG is defined
using the Gromov product, see Definitions [BH99, 1I1.H.1.20, 3.15]. By Remark [BH99,
III.H.3.17(6)] we have that n,, — 7 is equivalent to

lim (Mn» 77)17 =0
n— 00

(where here p € G is an arbitrary basepoint) and, in particular, for any geodesic §,
connecting 1, to n, we have that

lim d(p, 8,) = oo.
n— 0o

We choose X-rays y, y;, so that:
(1) [Yn] = np and y,(0) € A (y, exists by assumption);
(i) [y] = n (y exists by condition (2) above).

We will use p := y(0) as our basepoint. For sufficiently large n, we have that
d(y(0), 8,) > 34.

We now extend y and y, to X-geodesics y, P, and consider the ideal triangle

‘};a 8715 J;I’l‘

Because by Lemma 3.14 ideal geodesic triangles are 3§-slim, y (0) = 7 (0) is within 38 of
7 U 8, and we conclude that for some ¢ € Z

d(7(0), pa(n)) < 36.

Because 7, 7, are X-geodesics, we can conclude ¢ < 38. Furthermore d(y, (¢), 7,,(0)) = ¢
and so we have that d(y (0), y,(0)) = d(7(0), 7,(0)) < 68. Because this holds for every
sufficiently large n, we conclude that {y;,(0)} is finite.

Therefore, y,, subconverges to some X-ray y with y(0) € {y,(0)} C A. By Lemma 3.13,
[y] = [7] € TI(A). In particular, T1(S) and TT(H™ \ S) are closed in 0G \ {£}.

As noted above, [Swa96] shows that dG \ & is connected. Consequently, by conditions
(2), (3), and (4), one of TI(H ™ \ S) or I1(S) is empty. By condition (1) we have that TI(S)
is not empty and, hence, [T(H™ \ S) = ¥. Applying condition (1) again, we conclude that
H™\ §is empty, completing the proof. O

8. Populated shellings

In the remainder of the construction, we consider the divergence graphs (§7) on H™
(Definition 6.3) for each horosphere H in each shortlex shelling X on G. Note that for each
H, G \ H has more than one infinite component; because G is one-ended, H, and therefore
H™, must be infinite. By Lemma 7.4 the divergence graph is connected (because G is
one-ended), and by Lemma 7.3 it is locally finite. Hence, by Theorem 4.2, the divergence
graph admits a translation-like Z action (Definition 4.1), say given by ¥ : H* — H™T,
with defect 3. This translation-like Z action ¥ will be central to our proof in §8.2 of the
existence of ‘populated shellings’, defined below.
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For the following, for any H™, forany R C H™, we set AR to be the 3-neighborhood of
R in the divergence graph on HT. Because, by Lemma 7.3, adjacent points in a divergence
graph are at most 28 apart, we observe the following.

LEMMA 8.1. Forany R C H™, N'R is contained within a 65-neighborhood of R.

8.1. Populated shellings. Fix q € {2, 3} such that log(g) ¢ Q log().

Definition 8.2. A populated shelling of G (with population bound N € N and growth by
powers of g) is a shortlex shelling equipped with the following extra data:
(i) a ‘population’ function g : G—[0..N];
(i)  a ‘population growth’ function A : G—{[log,(%)], [log, (A)1};
(iii)) and a ‘parent—child matching’ function

m:{(v,j,k) | veG,1<j<p),l<k<qg’®¥)
—->{w, D) | ueG,1<l<p}

such that:

(a) denoting the coordinates of m = (mg, my,), for any triple (v, j, k) in the domain,
mg (v, j, k) € PTIN{v};

(b) @ =0<¢ u@) =0(soif (v, j, k) is in the domain of m, then v € GT);

(c) A is constant on horospheres; and

(d) m is a bijection.

For a horosphere H, we refer to {(v, j) : v € H, j € [1..eo(v)]} as the set of ‘people’ in
H. We say that person (v, j) ‘lives’ at a ‘village’ v. Each person (v, j) has ¢ ‘children’
(which makes sense as g) € N). For each k € [1..g2®], if m(v, j, k) = (u, I), then we
say that (u, /) is the kth ‘child’ of (v, j) and, conversely, (v, j) is the ‘parent’ of (u, /).
Note that each person has exactly one parent.

Recall for the following that S is a fixed symmetric generating set for G (so S = S~!
and SU {1} = B(l, 15)). Recall too that A is the set of states of the shortlex automaton
M for G.

Definition 8.3. The local data associated with the populated shelling X = (h, state, P, g,
A, m) is the function

0X:G — [—1..1]5 x Ax S x[0.N] x {llog, (M) ], Mog, (M)} x M
given by
0X : v +— (Oh, state, dP, p, A, dm)(v),

where M 1is the finite set of functions with a (possibly empty) domain within
[1.0 ()] x [1.¢°"] and range B(68+1,15) x [1.N]. We define dm(v)(j, k) =
w'mg (v, j, k), mp(v, j, k).

Remark 8.4. Because by Lemma 8.1, any point of AV/(v) lies within 6§ of v, and because
m(v, j, k) € P_lj\/'(v), then d(v, m(v, j, k)) <65+ 1, and so the first coordinate of
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dm(v) lies within B(68 + 1, 1). Moreover, 0m is the empty function for v ¢ G*. The
first coordinate of dm (v) gives the relative position of the village in which the kth child of
the jth villager of v lives, and the second coordinate gives which villager that child is.

PROPOSITION 8.5. The set of all 8X such that X is a populated shelling forms an
SFT, Qp.

We show that this SFT Qp is non-empty (for sufficiently large N) in Proposition 8.12
and that the stabilizer of any X € €2 p contains no infinite-order element (for appropriately
chosen g) in Proposition 9.5.

Proof. Recall Proposition 5.5 that Qg the set of 8X, such that X is a shortlex shelling, is
an SFT with cylinder sets of size 45 + 1. We show that the set of dX, such that X is a
populated shelling, is an SFT by taking cylinder sets of radius 65 + 1 > 4§ + 1, and show
that these local rules are sufficient to enforce the conditions defining the functions g, m,
and A on a populated shelling.

Recall that by Lemma 7.1 the vertices of a divergence graph are 45-dense in its
horosphere and by Lemma 7.3 the distance between endpoints of a divergence edge is
at most 25. Because the group is one-ended, by Lemma 7.4, the divergence graph on each
horosphere is connected. Consequently, to ensure that A is constant on horospheres it
suffices to consider cylinder sets of size at least 46. The conditions on g and m are defined
within (66 4 1)-balls and so are ensured by cylinder sets of this size. O

8.2. The existence of populated shellings. For each i € Z, let H = H; be the level set
h! {i}. For convenience, when clear from context we will drop the subscript i. Recall, as
discussed at the beginning of §8, that by Theorem 4.2 each divergence graph admits a
translation-like Z action, ¥ : HT — H™, with defect 3.

For the remainder of this section, we fix some shortlex shelling (4, state, P), and on
each H™ a translation-like Z action ¥. Forany R C H' := H N G, let 3R denote N'R \
R, recalling that A'R is the 3-neighborhood of R in Ht with distance measured in the
divergence graph.

Recall our conventions for summation: we write fg := Y . f(x) for sums of values
of some function f over some set R. We also write f;,;, ,: = Zzzm f k).

Definition 8.6. Given v, C>0, we say that o : H — {0, 1, . ..} realizes density v up to
error C if the following conditions hold:

i @ =0% ul =0;
(i) for any finite region R C H, |por — v Ur| < ClyR.

Recall from §6 that, by construction, the measure p(v) > 1 for all v € H'. We prove
the following.

LEMMA 8.7. For any v > 1 there exists a function
o H— {0} U[lv]..[vmax u(a)]]
acA

that realizes v with error 2.
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Proof. Let A C H™ be a set of orbit representatives for the translation-like Z action v,
and for each o € A define py : Z — H™ as p,(n) = ¥" (). Of course, the images of
these p,, are disjoint and cover H .

Choosing arbitrary basepoint * € R, we define g on H as follows: On H \ H™, we
define g to be identically 0. Each v € H™ may be written uniquely as some py (). As
in the following illustration, we define g on H, abbreviating o (py (1)), L(pe (1)) as oy
and w,,.

0y = Lx vy o) = et vng 4]

o, = i +viy | = x+vu,

9, = Lxtvu) — [+

Lk +v po.n] — ¥+ v mo.a—nl> n >0,

L* +v uol — [*], n =0,
P ) =p(pe®m) =p, =
L] — [*—vpu_1], n=-—1,

L —v pu@+).—1] = x—=v uu.—1), n<-—1

Note that for any v € G, g (v) has the form
(lv p() +x] —[x]) € {0} ULv]..[v max ()l

for some x € R. Recalling that v > 1, and that if u(v) # 0, then u(v) > 1, we see that
g (v) = 0if and only if w(v) = 0.
By telescoping, along any finite interval of an orbit under v,

|@mn —V I»Lmn| < 2.

We observe that R N H is the disjoint union of maximal sets of the form py(a..b).
Because i is 3-Lipshitz, between p,(a) and py(a — 1) the distance in the divergence
graph is at most 3 and so py(a — 1) € 9R. (Recall that R := N R\ R.)
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Consequently, as indicated in the diagram above, there are at most #9R N H* such
maximal py(a..b) covering R, each contributing less than 2 to the error of g. Because
w(v) > 1 forany v € HT, we have that #0R N H+ < (3 R). Therefore,

lor — v ur| < 2uar
and g realizes v up to error 2. O

Definition 8.8. Given a sequence (v;)eRZ, a function f : G — N realizes (v;) up to error
Cif for any i € Z, the restriction of g to H; realizes v; up to error C.

We, thus, interpret Lemma 8.7 as the following.

COROLLARY 8.9. Forany A > 1, any sequence (v;) € [A, g A% is realized up to error 2
by some function g : G — {0} U[|LA]..[¢A ma}j{ w(a)l
ac

Definition 8.10. For any fixed A > 1, we say that a sequence (v;, A;);ez is balanced if for
all i € Z, it satisfies:

1 vi € ([A, qA);
(i) A; € {Llogq A, |'logq A1}; and
(i)  vig1 = (g2 /A)v; where

[log, AT forv; € |:A, WA),
A=

2
[log, 2] forv; € [WA, qA>.

For any vg € [A, g A), note there is a unique balanced sequence (v;, A;);cz.-

In any balanced sequence, we drop the subscript if the context is clear.

The following proposition ensures that local errors in the distribution of populations
may be redistributed from horosphere to horosphere within bounded domains, constructing
the ‘parent—child matching’ function m of Definition 8.2.

PROPOSITION 8.11. Suppose that |A] > (2q + 2) ma& wu(a). For any balanced sequence
ac
i, Aj),andp : G — {0} U[LA]..[qA magt( u(a)l] realizing (v;) € [A, qA]Z up to error
ae
2, there exists a bijection

m:{(v, j,k):veH, jell.pW)],ke [1..qA"]} < {(u,l):u € Hiy1,l € [l.pm)]}

such that if m(v, j, k) = (u, 1), thenu € P~'N{v}.
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Proof. We begin by describing a technique for producing bijections like the one we want.
Let G be alocally finite bipartite graph with vertex partition ¢’ LI 2. A perfect matching for
G is a collection £ of edges of G such that every vertex of G belongs to exactly one edge
from £ [CSC10, §H.2]. We say that G satisfies the Hall conditions [CSC10, Definition
H.3.1] if the set of G-neighbors of any finite subset of 4" or &7 is at least as large as the
subset itself. By [CSC10, Theorem H.3.6], G admits a perfect matching if and only if it
satisfies the Hall conditions.

In our case, for a given i, we take 2 tobe {(v, j, k) : v € H;, j € [l..p], k € [1..qA"]}
and € to be {(u,l) : u € Hiy1,1 € [1..e9,]}, with an edge of G connecting (v, j, k) and
(u, 1) whenever u € P~IN{v}. If £ were a perfect matching for G, then we could define
the desired bijection m by taking m (v, j, k) = (u, [), such that (v, j, k) and (u, [) span an
edge of £. Therefore we only need to verify that G satisfies the Hall conditions.

Because any two villagers in the same village will have the same G-neighbors, without
any loss of generality, we may take any finite subset X of &2 to be of the form X =
{(v,j,k):veR, jel[l.p)], ke [1..qu]}, for some finite subset R of H;. In G, X
has g p-1 g neighbors. On the other hand, in the villages R, there are pg villagers, each
of which is to be matched with ¢ children. We therefore need to show that

‘IA[ PR = Pp-INR-

Similarly, without any loss of generality, we may take any finite subset of % to be of the
form X = {(u,!) :u € R, I € [1..0(u)]}, for some finite subset R of H; 1. #X = g and
X has g®i parp g neighbors in G. Thus, we will also need to show that

a2 PR < PN PR-

When the inequalities above are established, the proof of the proposition will be
complete.
To show our desired inequalities, we need the following identities on any finite subsets
R, T of any horosphere H.
(1) r<2usgr +v ug and (1) v ur<2usr + pr. This follows from Corollary 8.9,
because g realizes v u up to error 2.
2) wpr={/A) pp-17 and (2') X ppr > pr: From the definition of y and shortlex
shelling, we have that

Y ) =@

P(b)=a

holds, giving (2) directly. For (2) observe that, in addition, p-1p7r = pr holds.
(3) q”/x <qand (3') \g~? < g by the definition of each A in a balanced sequence.
(4) aP~'R c P7'3R and, if R is ‘sibling-closed’, that is, if R satisfies R = P~ PR,
then (4) 9PR D POR.

By Definition 7.2, if v, w are connected by an edge in the divergence graph, then
P(v), P(w) are identical or are connected by an edge in their divergence graph. It follows
that NP~'R ¢ P~'N'R and NPR > PNR. The first inclusion implies (4). Under the
assumption that R is sibling closed, the second inclusion implies (4”).
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(5) (q+2)ur <gpr because for any ve HY, pw) > |v]>A> 2q¢+2)-
max 4 p(a) and g (v) = 0 = u(v) otherwise.
We define v/ := v; 11, so that v' = ¢g® /Av and conversely v = Ag~2V'.
For the — map, we need, for finite RC H, that

qA PR = p-INR

q“9r < q"Quar +v 1g) by (1),
A
q
= T(ZMP—IaR‘f‘VMP—lR) by (2),
<2q pup-15g +V mp-ig by (3) and definition of v/,

<2q pp-15r +2 wyp-1g + ®p-1g by (1)
<29 pp-1gr T2 p-1yr +9p-1g by (4),
S ®p-19r T Op-1R by (5),
= Pp-INR as desired.

To find an injection in the other direction, we need that for finite R C H'

q %pr < oNPR-

We replace R with its sibling closure P~!PR; the left-hand side of the inequality
cannot decrease and the right does not change, thus establishing the inequality for all R.
We compute:

q prR < q 22 par + V' 1R) by (1),
<q 2@k pupar + VA upr) by (2),
<2xg~® wypr +Vv UPR by (4') and definition of v,
<2quypr +2 mapr +opr by (3') and (1),
< ©aPR t+ OPR by (5),
= PNPR as desired.
This completes the proof of Proposition 8.11. O

PROPOSITION 8.12. For some N, there exists a populated shelling X with population
bound N and growth by powers of q, and so the SFT ¥ is non-empty.

Proof. Take A > (2g + 2) max u(a) and N > [qgA max p(a)]. O]
acA acA

9. Aperiodicity
Any infinite hyperbolic group admits a shortlex shelling X such that dX is periodic—for
example take a horofunction with axis defined by a cycle in the shortlex FSA. By contrast,
Proposition 9.5 shall show that for a populated shelling X on a one-ended hyperbolic group,
0X cannot have an infinite-order period, completing the proof of our main theorem. The
idea is to show that any period of X would induce a period of the ‘growth sequence’
A; := A(h~1(i)) (this follows from Lemma 9.1), and then show that periods of the growth
sequence cannot exist (Corollary 9.4).

We begin by showing that any infinite-order period, say X - 7w = 8X for 7w € G,
translates horospheres to horospheres and does not fix any horosphere as follows.
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LEMMA 9.1. Given a shortlex shelling X = (h, state, P), if X is periodic under some

infinite-order element w € G, then h(wg) = h(g) + Cy for some non-zero constant
C, €.

Proof. Write h -  for g — h(mwg), so that
O(h - ) = (Oh) - m = Oh.

By Lemma 3.19, h and & - 7 differ by a constant, that is, there is some C, € Z such that
h(xg) = h(g) + Cx.

We may see that C; # 0 as follows. Without loss of generality, let 0 = h(1g). If
Cr=0,then...,n !, 1g,m, 2, ... is a quasi geodesic lying in a horosphere [BH99,
Corollary I11.77.3.10]. By [BH99, Corollary III.H.1.7] there is some N so that any geodesic
from 1 to any 7¥ remains within an N neighborhood of (7%). Any k with d(1g, %) >
2N + 28, contradicts Lemma 3.22. O

LEMMA 9.2. Let X = (h, state, P, g, A, m) be a populated shelling. For any horosphere
H and any v € H™, there is some finite S C H such that all the descendants of villagers
inv lie in P™*S, the future of S. Furthermore, there is some finite S' C H so that every
villager living in P™*S is descended from a villager living in S’

Proof. We write ng for the projection from G x N — G. Write Q(u, ) = (v, j) where
(v, j, k) is the unique triple such that m(v, j, k) = (u, I).

We will show that there is a universal constant R so that for any villager (¢, /) andn € N,
we have d(g(Q"(u, I)), P" (1)) < 2R. The proposition will follow: For any v in any H,
take S to be the 2 R-neighborhood of v and let S be the 2 R-neighborhood of S.

Suppose that (u, ) is a descendant of a villager at v, that is, that 7 (Q"(u,l)) = v
for some n > 0 and [ € [1..ep (u)]. Let v" = P"(u) and take B to be a ball containing
{Pruli_o U {mg Q" u, DYy

By the definition of a shortlex shelling, B is modeled in X; that is there exists g € G
such that

6X0 : glu*lB = 6(h9 state, P) : le*lB'

Let y’ be the geodesic given by y'(k) = vg~! P¥(gv~'u), k € [0..(n + [g])].
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Let y be the path defined by: for k € [0..n], take y (k) = 7 Q% (u, I). For k € [n..(n +
1801 v (k) = vg™' P (g).

Observe that ho(gv~'y(k)) = ho(gv~'u) —k and therefore d(y (i), ¥ (j))
> i = Jjl.

We claim that d(y (k), y(k + 1)) < 638 + 1. For k < n, edges of the divergence graph
have length at most 26 (Lemma 7.3) and (by Definition 8.2 of a populated shelling)
mg(v, j, k) lies in P~ of the 3-neighborhood of v in the divergence graph in the
horosphere 4~ (h(v)). For k > n, d(y (k),y (k + 1)) = 1.

It follows that

li —jl=1h(y @) —h(y(GNI =dy @), y(j)) = (65 + Di — j|

for i, j € [0..(n + |g])]. Then y is a (68 + 1, 0)-quasi geodesic, as defined in [BH99,
Definition 1.8.22].

We have that y(0) = »'(0) = u and y(n + |g|) = y'(n + |g|) = vg~'. By Theorem
III.H.1.7 of [BH99] every point of y is within a universal bound, which is denoted there
by R = R(3, 65 + 1, 0), of some point of y. In particular, v € y is within R of some
point v” € y’. Because d(v/, v") = |h(v) — h(v")| = |h(v) — h(v")| < d(v, V") < R, by
the triangle inequality we conclude that d(v, v') < 2R. O

Recall that, if X = (h, state, P, g, A, m) is a populated shelling, then A is constant on
horospheres. Write A; for the value achieved by A on h=1i}. We will refer to (Aj)jez as
the growth sequence of X.

COROLLARY 9.3. In a populated shelling, there exists a non-empty finite set S C H
satisfying the following:

(1) log(pp-rs) = nlog(h) + O(1);

(2)  log(pp-ns) = Xizy Ailoglg) + O (D).

Proof. Recall (Remark 6.2) that on any finite S C H, up-ng = A" us. The functions
w and g have finite non-negative ranges, and have identical zero-sets (see Definition
8.2). Therefore, there are constants cy, c» > 0 such that for any v € G, c1p(v) <
w() < cop (v). Consequently cipp-ng < up-ng < crp-ng and the first equality (1)
follows.

Choose v e H™. By Lemma 9.2 there exists some finite S C H +, such that all of the
descendants of v lie in P~*S, the future of S and so pp-ng > (g XA )$v, the number of
such descendants.

Lemma 9.2 further shows there is some finite S’ € H so that every villager living in
P~*§ is descended from a villager living in S/, and so pp-ng < qZ'll Ai o pong. Together
these inequalities give (2). [

COROLLARY 9.4. The growth sequence in a populated shelling is not periodic.

Proof. Suppose the growth sequence (A;) is periodic, with period p € N. Let A=
Zle A;. For any k € N, taking n = pk, we have pk log(A) + O(1) = Ak log(q) and,
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thus, p log(L) + O(1/k) = A log(q). As k — oo,
log(q)/ log(h) = p/A € Q
a contradiction to our choice of ¢ with respect to A. O

PROPOSITION 9.5. Let 80X be the local data for a populated shelling X = (h, state, P, g,
A, m). Then the stabilizer of X in G contains no infinite-order element.

Proof. Suppose 7 is in the stabilizer of dX, so that X - 7 = 8X and & has infinite order.
By Lemma 9.1, there is a non-zero C; € Z such that h(wg) = h(g) + C,. Writing (A;)
for the growth sequence of X, it follows that Aj,g) = Ap(g)+c, forevery g € G and, hence,
(A;) is Cx-periodic, in contradiction to Lemma 9.4. O
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