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Abstract
We investigate the relationship between a dark matter halo’s mass profile and measures of the velocity dispersion of kinematic tracers
within its gravitational potential. By predicting the scaling relation of the halo mass with the aperture velocity dispersion, Mvir − σap, we
present the expected form and dependence of this halo mass tracer on physical parameters within our analytic halo model: parameterised
by the halo’s negative inner logarithmic density slope, α, its concentration parameter, c, and its velocity anisotropy parameter, β. For these
idealised halos, we obtain a general solution to the Jeans equation, which is projected over the line of sight and averaged within an aperture
to form the corresponding aperture velocity dispersion profile. Through dimensional analysis, the Mvir − σap scaling relation is devised
explicitly in terms of analytical bounds for these aperture velocity dispersion profiles: allowing constraints to be placed on this relation for
motivated parameter choices. We predict the M200 − σap and M500 − σap scaling relations, each with an uncertainty of 60.5% and 56.2%,
respectively. These halo mass estimates are found to be weakly sensitive to the halo’s concentration and mass scale, and most sensitive to
the size of the aperture radius in which the aperture velocity dispersion is measured, the maximum value for the halo’s inner slope, and the
minimum and maximum values of the velocity anisotropy. Our results show that a halo’s structural and kinematic profiles impose only a
minor uncertainty in estimating its mass. Consequently, spectroscopic surveys aimed at constraining the halo mass using kinematic tracers
can focus on characterising other, more complex sources of uncertainty and observational systematics.
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1. Introduction

In modern theories of structure formation, galaxies and galaxy
clusters are predicted to be embedded within massive, non-
baryonic, dark matter halos (e.g. White & Rees 1978; White &
Frenk 1991). Although such halos are a fundamental prediction
of these theories, they have not been observed directly, instead
being inferred by their gravitational influence on luminous tracers.
Observational estimates for the masses of these halos are typically
deduced from the observed kinematics of tracer populations such
as stars, star clusters, or galaxies (e.g. Eke et al. 2004; Robotham
et al. 2011), from X-ray emission of hot gas within the halo’s
gravitational potential (e.g. Vikhlinin et al. 2006, 2009; Babyk &
McNamara 2023), or from gravitational lensing (e.g. Hoekstra
et al. 2013).

The Halo Mass Function (HMF) quantifies the number density
of dark matter halos in the universe per unit mass interval, and
is a key prediction of any theory of cosmological structure forma-
tion. The general form of the HMF has been predicted analytically
(Press & Schechter 1974; Sheth & Tormen 2002), but accurate
characterisation of its form requires N-body cosmological simu-
lations. A range of functional forms have been published (see, e.g.
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Murray et al. 2013a, for a comprehensive summary) with a particu-
lar focus on its form in the standard�-ColdDarkMatter (�CDM)
model. Meanwhile, the amplitude and shape of the HMF are sen-
sitive to cosmological parameters (see, e.g. Murray et al. 2013b),
and its lower-mass end slope depends on the nature of dark matter
(such as Warm Dark Matter, e.g. Smith & Markovic 2011).

When constructing the HMF, spectroscopic surveys measure
galaxy spectra to estimate distance and recessional velocity, which
allows one to infer the line of sight velocity distributions of large
galaxies, groups and clusters of galaxies. These line of sight velocity
distributions can be converted to line of sight velocity dispersions,
which, when averaged within a given projected radius (i.e. aper-
ture) relative to the centre and systemic velocity of the association,
is taken to be proportional to the assumed dark matter halo mass
of the galaxy, group, or cluster. The parameterised relationship
between halo mass and aperture velocity dispersion is typically
calibrated using cosmological N-body simulations (e.g. Eke et al.
2004; Robotham et al. 2011), with the uncertainty in the halo mass
recovered from these estimators typically of the order 0.3–0.5 dex.
These estimates are further challenged by the deficient number of
group members typically available within a system, introducing
a large statistical uncertainty in these calculations (see, e.g. Beers
et al. 1990).

Recent work on measurement of the HMF using galaxies as
kinematic tracers (e.g. the Galaxy And Mass Assembly survey,
Driver et al. 2022) have highlighted the need for robust halo
mass estimates that are model independent. This motivates the
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work presented in this paper: the development of a theoretical
toolkit to quantify the relationship between dark matter halos with
generalised, albeit spherically symmetric, mass profiles and the
permitted velocity distributions of kinematic tracers embedded
within them. Such a toolkit allows us to understand how uncer-
tainties in a halo’s structure (e.g. the inner slope of the density
profile) and tracer kinematics (e.g. the velocity anisotropy) are
likely to propagate through into observational inferences of halo
masses.

To illustrate this point, note that the kinematics of tracer pop-
ulations embedded within large gravitational systems that are
spherically symmetric and in virial equilibrium are predictable
analytically. There is a relationship between the system’s mass pro-
file, its gravitational potential, and the velocity dispersion of bound
tracers on a given orbit, but the precise form is complicated by
the kinds of orbits that the tracers follow (e.g. isotropic or pref-
erentially radial). This makes separating the respective influences
of the mass profile and orbital properties of the observed velocity
dispersion difficult, leading to the well-known ‘mass-anisotropy
degeneracy’ (Binney & Mamon 1982), and represents an inherent
uncertainty when seeking a relationship between halo mass and
tracer kinematics.

Quantifying the level of this uncertainty is important for a vari-
ety of reasons, but for our purposes we wish to understand its
likely impact on inferences of the HMF. We do this by adopting
physically motivated bounds on the form of the dark matter halo
density profile (e.g. a range of inner slopes but a fixed outer slope)
and varying the velocity anisotropy of the tracer population, in
turn fixing the correspondence of the halo mass to the observed
velocity dispersion within this parameter space. This approach is
complementary to investigations of the structural (e.g. Navarro
et al. 1997, hereafter NFW; Navarro et al. 2010) and kinematic
(e.g. Benson 2005; Aung et al. 2021; Bakels et al. 2021) proper-
ties obtained directly from N-body simulations, and allows us to
explore halo mass uncertainties, simulation-independently, over a
general parameter space, in a flexible and self-consistent manner.
Moreover, by deriving a scale-free relationship between the veloc-
ity dispersion and the halo mass over such a parameter space, this
halo mass scaling relation can be constrained.

Our theoretical tool-kit is laid out and explored in Section 2.
In particular, we present an overview of predictions from N-
body simulations and observations for the form of the dark
matter halo density profile, and the analytical framework for
relating a halo’s structure to its kinematic profiles. Using the
Navarro–Frenk–White (NFW) profile as our template, we moti-
vate a generalised halo mass profile, which we call the ‘ideal
physical halo’, and we use the virial theorem to constrain the
correspondence between the halo mass and its kinematic observ-
ables. In Section 3 these kinematic profiles are derived, with an
analysis of their bounds over the outlined parameter space fix-
ing constraints on the halo mass. Scaling relations are presented
in Section 4, providing the central result of this study, with the
dependence on the chosen parameter space outlined thereafter.
We present our conclusions in Section 5.

2. Theoretical background andmethods

2.1. The NFW profile

We begin our theoretical background by considering the NFW
profile, which describes the spherically averaged mass distribution

of dark matter halos (NFW 1995; NFW 1996; NFW 1997). This
has been studied extensively in the literature (e.g. Łokas &Mamon
2001), and so provides us with a useful comparison when we
consider our generalised profiles.

The NFW profile, derived from fits to the ensemble average
of dynamically relaxed halos in cosmological N-body simulations,
has the density profile, ρ(r), given by:

ρ(r)
ρcrit,0

= δchar

r/rs (1+ r/rs)2
, (1)

where r is the halocentric radius, rs is the scale radius, ρcrit,0 is the
present critical density of the universe, and δchar is the character-
istic density. Equation (1) is observed to provide a good fit to the
mass profiles of halos simulated over a large range of halo masses,
cosmological parameters, and cosmological models; in this sense
it is regarded as a universal profile.

The concentration parameter c

Physical properties of halos are typically quoted in terms of their
so-called virial parameters. These parameters describe gravita-
tional structures that are in virial equilibrium, as the state in
which its gravitational potential energy is balanced by its internal
energy (approximately; cf. Cole & Lacey 1996). The virial mass,
Mvir, is defined as the mass enclosed within a spherical volume of
halocentric radius rvir, called the virial radius, whereby:

Mvir ≡ 4
3
πr3vir�ρcrit,0, (2)

such that the mean density enclosed at rvir is equal to the virial
overdensity parameter, �, times the present critical density of the
universe, ρcrit,0 (e.g. White 2001).

The spherical collapse model in an Einstein de-Sitter universe
predicts � ≈ 178, but the common convention is that � = 200,
which is independent of cosmology and redshift, thus defining the
virial massM200 and virial radius r200. These halo parameters,M200
and r200, reasonably model the halo’s virial mass and radius in
a �CDM universe. An alternative, commonly used in studies of
galaxy clusters, is to use � = 500; this is because observations of
X-ray cluster emission are typically limited to smaller halo radii,
requiring a smaller enclosed mass be predicted. This allows one to
define the halo massM500 and the halo radius r500.

It is common in the literature for the NFW profile to be nor-
malised by its virial parameters: by integrating the density profile
over the volume of a sphere of halocentric radius rvir, and demand-
ing the enclosed mass be equal to the virial mass. This naturally
gives rise to the concentration parameter, c, defined as the ratio of
the virial radius, rvir, to the scale radius, rs, as:

c≡ rvir
rs

. (3)

The concentration parameter is known from N-body simulations
to vary weakly with halo mass, in general being higher for low-
mass systems (e.g. NFW 1996; Bullock et al. 2001; Ludlow et al.
2014), with typical values in the �CDM cosmology of c= 5 for
cluster-scale halos, and c= 10 for galaxy-scale halos.

Importantly, this definition of the concentration parameter
depends on the choice of virial overdensity parameter, �, that
specifies the virial radius. This is because r500 < r200, and by def-
inition in Equation (3), this implies an overdensity-dependent
concentration parameter, such that c500 < c200. In this paper, we
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refer to the concentration only as c, and take appropriate values
when specifying different choices of �.

The NFW profile: scale-free form

We introduce a dimensionless radial scale, s, defined as:

s≡ r
rvir

, (4)

where r is the halocentric radius. This allows us to rewrite
Equation (1) in the scale-free form:

ρ(s, c)
�ρcrit,0

= g(c)
3s(1+ cs)2

, (5)

where c is the NFW concentration and g(c) is called the NFW
concentration function, defined as:

g(c)= c2

ln (1+ c)− c
(1+c)

. (6)

The NFW gravitational potential

The gravitational potential, �(r), of a spherically symmetric halo
of density, ρ(r), is given by:

�(r)= −4πG
[
1
r

∫ r

0
r′2ρ(r′)dr′ +

∫ ∞

r
r′ρ(r′)dr′

]
, (7)

where G is Newton’s gravitational constant, and r is the halo-
centric radius. In scale-free form, normalised in terms of virial
parameters, the gravitational potential can be expressed as:

�(s)
v2vir

= −3
[
1
s

∫ s

0
s′2

ρ(s′)
�ρcrit,0

ds′ +
∫ ∞

s
s′

ρ(s′)
�ρcrit,0

ds′
]
, (8)

in the ratio to the square of the virial circular velocity, vvir, defined
as the circular velocity of a particle orbiting a gravitational mass
Mvir, at a radius rvir, as:

v2vir ≡
GMvir

rvir
. (9)

Taking the form of the NFW profile as in Equation (5), the
associated gravitational potential is:

�(s, c)
v2vir

= − g(c)
c2

ln (1+ cs)
s

. (10)

2.2. Constructing a generalised halo profile

We now consider the case of the generalised halo profile. We
assume spherical symmetry and a density profile with a logarith-
mic density slope (hereafter, for brevity, slope) that is shallower at
small radius and steeper at larger radius. The NFW profile is one
specific example of this generalisation.

There is reasonable consensus that the outer slope of virialised
dark matter halos varies as ρ(r)∼ r−3, as found in numerical sim-
ulations (e.g. NFW 1996), consistent with observations of galaxy
kinematics (e.g. Prada et al. 2003) and theoretically expected
for typical halo mass assembly histories (e.g. Lu et al. 2006;
Ludlowet al. 2013). However, comparison of theoretical predic-
tions and observational limits on the inner slope is complicated,
because of the complex coupling between darkmatter and baryons
during galaxy assembly, such that the inner density of dark mat-
ter halos may be sensitive to, e.g. its mass accretion history or
episodic stellar feedback, which may have a complex dependence

on halo mass (e.g. Di Cintio et al. 2014; Chan et al. 2015; Tollet
et al. 2016). For this reason, we focus on spherically symmetric
halos with outer slope −3, and inner slope −α, with ρ(r)∼ r−α at
small halocentric radii. We refer to these generalised NFW halos
as ‘ideal physical halos’.

The dark matter halo inner slope α

The NFW profile is the α = 1 member of the class of ideal physical
halos, with a divergent density profile, i.e. a ‘cusp’, in the cen-
tral region. If instead the density profile were to flatten to some
constant value in the central region, such that α � 0, this would
instead be referred to as a ‘core’.

Numerical simulations consistently predict halo cusps, whilst
observations indicate that the halos of dark matter dominated
galaxies are cored (i.e., α = 0; e.g. Moore 1994; de Blok et al.
2003), a tension known as the ‘core-cusp problem’. The strength
of the predicted inner cusp, as measured by α, could be as steep
as α � 1.5; this has been predicted in simulations of initial proto-
halo structures undergoing gravitational collapse (Ogiya & Hahn
2018). Motivated by these results, we investigate inner slopes sen-
sibly bounded by the range of values α ∈ [0, 1.5]: incorporating
both cores and cusps, applicable to halos over a wide-range of
masses, formation histories and feedback physics, and agnostic to
the tension between simulated and observed halo structures.

The ideal physical halo profile

Analogous to the virialised, scale-free NFW profile, we can con-
struct a corresponding density profile to describe the ideal physical
halos, as a function of the dimensionless radius, s, and param-
eterised by its concentration, c, and inner slope, α, such that:

ρ(s, c, α)
�ρcrit,0

= u(c, α)
3sα(1+ cs)3−α

, (11)

with u(c, α) representing a generalised concentration function,
defined by the integral:

u(c, α)≡
[∫ 1

0

s2−αds
(1+ cs)3−α

]−1

. (12)

In this form, the NFW profile from Equation (5) is recovered by
setting α = 1, with the associated NFW concentration function
recovered as g(c)≡ u(c, α = 1).

The ideal physical halo gravitational potential

The scale-free gravitational potential of an ideal physical halo is
then given by the profile:

�(s, c, α)
v2vir

= −u(c, α)
[
1
s

∫ s

0

s′2−αds′

(1+ cs′)3−α
+

∫ ∞

s

s′1−αds′

(1+ cs′)3−α

]
.

(13)

2.3. Kinematic profiles of dark matter halos

Here we consider the kinematics of a non-dissipational tracer pop-
ulation (e.g. stars, galaxies) in the gravitational potential of a dark
matter halo.

The velocity dispersion of tracer populations

The components of the orbital velocity of a tracer population will
vary depending on its radius within its host dark matter halo. The
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standard deviation of these velocities over the tracer population is
known as the velocity dispersion. Typically, the velocity anisotropy
parameter, β(r), as introduced in Binney (1980), is used to charac-
terise the relation between the angular and radial components of
the velocity dispersion; this measure is typically defined as:

β(r)≡ 1− σ2
θ (r)

σ2
r (r)

, (14)

as a function of halocentric radius, r, and where σθ (r) and σr(r) are
the angular and radial velocity dispersions, respectively.

The Jeans equation

The relationship between the radial velocity dispersion, σr(r), the
density, ρ(r), and the gravitational potential, �(r), of a spherically
symmetric mass distribution is described by the Jeans equation:

d
dr

[
ρ(r)σ2

r (r)
] + 2β(r)

r
ρ(r)σ2

r (r)= −ρ(r)
d�(r)
dr

. (15)

This differential equation encodes a ‘mass-anisotropy degener-
acy’, as the velocity dispersion depends on a coupling of both the
anisotropy and the underlying density and gravitational poten-
tial of the system, which can be challenging to disentangle in
kinematic observations.

In the simple case of a constant anisotropy, β(r)= β, the gen-
eral solution to the Jeans equation is (Binney 1980; Binney &
Tremaine 2008):

σ2
r (r, β)=

r−2β

ρ(r)

∫ ∞

r
r′2βρ(r′)

d�(r′)
dr′

ds′. (16)

In our virial, scale-free framework, this general solution is given
by the profile:

σ2
r (s, β)
v2vir

= s−2β �ρcrit,0

ρ(s)

∫ ∞

s
s′2β

ρ(s′)
�ρcrit,0

d
ds′

[
�(s′)
v2vir

]
ds′. (17)

The velocity anisotropy parameter β

To model the velocity dispersion of a dark matter halo, rea-
sonable physical values for the anisotropy parameter, β, need to
be assumed. Theoretically, the anisotropy parameter can vary
between purely radial orbits, of β = 1 (when σθ = 0), isotropic
orbits, of β = 0 (when σθ = σr), and purely circular orbits, when
β → −∞ (when σr = 0).

Numerical simulations of galaxy clusters have consistently
predicted isotropic orbits in the central region of a halo (e.g.
Debattista et al. 2008), with its spherically averaged value increas-
ing radially from the centre of a halo up to values of β � 0.25− 35
near r200 (e.g. Thomas et al. 1998; Lemze et al. 2012). Some obser-
vational surveys have measured the velocity anisotropy within
galaxy clusters by calibrating X-ray observables to a predicted
universal relation between the dark matter and gas temperature
recovered from simulations (e.g. Host et al. 2009): yielding an aver-
age value of β � 0.3 in the central region that radially increases
towards β � 0.5 at about 20–30% of r200, where this calibration
diminishes.

As these studies consistently predict a spherically averaged
anisotropy within 0� β� 0.5 between the halo’s centre and r200,
we will take this bound β ∈ [0, 0.5] to model the kinematics of the
ideal physical halos.

The projected surface mass density profile

When observers make contact with the velocity dispersion of
tracer populations, information is projected along the line of sight
direction. The projection of the halo density profile is the surface
mass density profile, �(R), as a function of the projected radius,
R, which is the projection of the halocentric radius, r, along the
line of sight direction. For a spherically symmetric mass distribu-
tion of density profile ρ(r), its surface mass density is given by the
projection:

�(R)= 2
∫ ∞

R

rρ(r)dr√
r2 − R2

. (18)

Anticipating a scale-free description, we introduce a dimension-
less projected radius, S, as the ratio of the projected radius to the
virial radius, whereby:

S≡ R
rvir

, (19)

such that the surface mass density can be expressed by the profile:

�(S)
�vir

= 3
2

∫ ∞

S

ρ(s)
�ρcrit,0

sds√
s2 − S2

. (20)

In the above profile, we have scaled the surface density by the virial
surface density, �vir, defined as the mean surface density corre-
sponding to a virial mass, Mvir, when projected within a cylinder
of projected radius rvir, such that:

�vir ≡ Mvir

πr2vir
. (21)

The line of sight velocity dispersion

Tomake contact with the velocity dispersion of a galaxy or cluster,
observers measure the projection of the radial velocity disper-
sion along the line of sight, known as the line of sight velocity
dispersion, σlos(R), as observed at some projected radius, R. For
a spherical non-rotating gravitational system, the line of sight
velocity dispersion of a system with constant anisotropy, β, can
be recovered from the integral expression (Binney & Mamon
1982):

σ2
los(R, β)=

2
�(R)

∫ ∞

R

(
1− βR2

r2

)
ρ(r)σ2

r (r, β)rdr√
r2 − R2

, (22)

where σr(r, β) is the constant-anisotropy radial velocity dispersion,
and ρ(r) and �(R) are the density and surface mass density pro-
files, respectively. In terms of the dimensionless variables, s and S,
in a scale-free formulation, this observable takes the form:

σ2
los(S, β)
v2vir

= 3
2

�vir

�(S)

∫ ∞

S

(
1− βS2

s2

)
ρ(s)

�ρcrit,0

σ2
r (s,β)
v2vir

sds
√
s2 − S2

. (23)

Of note, this integral expression for the line of sight velocity dis-
persion can be simplified in the case of isotropic, β = 0 orbits,
reducing to the form:

σ2
los(S, β = 0)

v2vir
= 3

2
�vir

�(S)

∫ ∞

S

√
s2 − S2

ρ(s)
�ρcrit,0

d
ds

[
�(s)
v2vir

]
ds,

(24)
which provides a convenient simplification when numerically
integrating these profiles.
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The aperture velocity dispersion

Due to the poor statistics of group members usually recovered
in observations, the line of sight velocity dispersion of all group
members is typically averaged within a fixed projected radius,
called the aperture radius,Rap. This aperture-averaged velocity dis-
persion is known as the aperture velocity dispersion, σap(<Rap).
Analytically, this observable can be derived from the integral
expression (Łokas & Mamon 2001):

σ2
ap(<Rap, β)=

∫ Rap
0 �(R)σ2

los(R, β)RdR∫ Rap
0 �(R)RdR

, (25)

in terms of some constant anisotropy, β, and where σlos(R, β) is
the constant-anisotropy line of sight velocity dispersion, and�(R)
is the surface mass density profile. Finally, we can express this
observable in our scale-free formalism, in terms of a dimensionless
aperture radius, Sap, as:

σ2
ap(<Sap, β)

v2vir
=

∫ Sap
0

�(S)
�vir

σ2
los(S,β)
v2vir

SdS∫ Sap
0

�(S)
�vir

SdS
. (26)

2.4. Predictions for theMhalo − σap scaling relation

With these scale-free kinematic profiles for the ideal physical
halos, we now seek to establish a correspondence between the
aperture velocity dispersion, σap, and the halo mass, Mhalo, in the
form of a scaling relation.

Dimensional analysis

To derive this scaling relation, we use the method of dimen-
sional analysis: allowing the form of the relationship between
different physical quantities to be predicted from dimensional
requirements of their base units. For the desired scaling rela-
tion, we seek to establish a correspondence between the halo’s
mass, Mhalo (measured in M�), and its velocity dispersion, σap
(measured in km s-1), by positing some combination of physical
constants to ensure dimensionality, and by introducing a dimen-
sionless prefactor, A. In this case, we can reasonably assume the
correspondence depends on the physical constants: G (measured
in Mpc km2 s−2 M−1

� ), and ρcrit,0 (measured in M� Mpc−3), such
that dimensional requirements entail the form:

Mhalo =A ·
√

1
ρcrit,0G3 · σ3

ap, (27)

with quantitative constraints on this relation dependent on a
prediction for this dimensionless prefactor,A.

To constrain A, we can use the virial theorem to relate the
halo’s virial mass to its virial circular velocity, by utilising the
definitions in Equations (2) and (9), whereby:

Mvir =
√

3
4π�ρcrit,0G3 · v3vir, (28)

which takes on the same dimensional form as Equation (27) above.
By taking the virial mass, Mvir, in either approximation M200 or
M500, as an approximation to the halo mass,Mhalo, we can use this
correspondence to recover the scaling relation:

Mvir =
√

3
4π�ρcrit,0G3 ·

[
σap

ξ

]3

, (29)

composed in terms of the aperture velocity dispersion, σap, by
introduction of the dimensionless parameter, ξ , defined as:

ξ ≡ σap(<Rap)
vvir

. (30)

This dimensionless parameter, ξ , is the scale-free form of the
aperture velocity dispersion, measured within a specified aperture
radius, Rap, and so can be determined and constrained analytically
from Equation (26) when modelling the ideal physical halos.

Constraining the scaling relation

When determining this parameter ξ continuously over the param-
eter space of ideal physical halos – for halos with inner slope
α ∈ [0, 1.5] and velocity anisotropy β ∈ [0, 0.5] – its value will be
bounded in some region, ξ ∈ [ξmin, ξmax], when measured within
some given aperture radius, Rap.

From this analytic modelling, the bounds predicted for ξ will
allow the scaling relationship Mvir − σap in Equation (29) to be
constrained, as bounded within a corresponding minimum and
maximum proportionality. This technique for constraining the
scaling relation quantifies the form predicted by dimensional anal-
ysis, and in doing so circumvents the mass-anisotropy degeneracy
that arises in the Jeans equation within the prescribed bounds in
halo parameters.

Taking the values of the physical constants in Equation (29),
the halo mass scaling relation reduces to the correspondence:

Mvir

M�
= 3.288× 106

ξ 3�1/2h
·
[ σap

km s−1

]3
, (31)

where h is the Hubble parameter, h≡H0/100 km s−1Mpc−1, for
H0 the Hubble constant. The Hubble parameter has been mea-
sured to high precision from the Cosmic Microwave Background,
within an error of one percent or less. In this study, we take
the Planck result h= 0.6751 (Planck Collaboration et al. 2016),
neglecting its uncertainty as this error will be tiny compared to
the anticipated bounds in the scaling relation.

In this Mvir − σap correspondence, the overdensity, �, must
be chosen to specify the virial mass approximation. Taking the
convention of � = 200 in Equation (31), the M200 − σap scaling
relation is predicted in the form:

M200

M�
= 3.444× 105

ξ 3 ·
[ σap

km s−1

]3
, (32)

and similarly, when taking � = 500, the M500 − σap scaling rela-
tion is predicted in the form:

M500

M�
= 2.178× 105

ξ 3 ·
[ σap

km s−1

]3
. (33)

In this study, we will predict these scaling relations for both the
M200 and M500 virial mass approximations. Thus, by deriving val-
ues for ξmin and ξmax within our scale-free framework of idealised
halos, corresponding to these two virial conventions, the halomass
scaling relations can be analytically predicted.

2.5. Regimes to bound theMvir − σap scaling relation

When deriving these bounds in ξ over the parameter space of
the ideal physical halos, for α ∈ [0, 1.5] and β ∈ [0, 0.5], two addi-
tional parameters must be fixed: the halo concentration, c, and the
aperture radius, Rap. These two parameters, in our scale-free for-
malism, depend on the choice in overdensity, �. As such, these

https://doi.org/10.1017/pasa.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2024.18


6 A. Sullivan et al.

parameters must be evaluated at appropriate values when� = 200
and � = 500, to separately bound each of the M200 − σap and
M500 − σap scaling relations.

Additionally, in this study we will consider these scaling rela-
tions separately at cluster-scale halo masses and galaxy-scale halo
masses, to take into account the mass dependence of the con-
centration parameter, c. As such, in this study we will consider
four distinct regimes in which to bound ξ , allowing us to pre-
dict four scaling relations: each requiring a fixed choice for the
scale-dependent parameters of c and Rap.

Fixing the concentration parameter c in each regime

For the concentration c, we will assume the typical �CDM values
when � = 200: fixing its value to c= 5 for cluster-scale halos and
c= 10 for galaxy-scale halos. When � = 500, we will assume to
first order that r500/r200 � 0.5a, reducing the concentration values
to c= 2.5 for cluster-scale halos and c= 5 for galaxy-scale halos.

Fixing the aperture radius Rap in each regime

For the aperture radius, Rap, a range in values is more appropriate
than setting a fixed value: as observational surveys that measure
the aperture velocity dispersion are usually limited in the number
of tracer populations available in a given system, and the aperture
radius chosen to calculate the velocity dispersion of the observable
tracers will vary accordingly.

In our scale-free formalism, this aperture radius appears in
dimensionless form Sap ≡ Rap/rvir, and so any range in values must
be specified in units of r200 (when � = 200) or r500 (when � =
500). For this reason, we will take the aperture radius between
Rap = 0.1r200 and Rap = r200, which in units of r500 we can equate as
approximately Rap = 0.2r500 and Rap = 2r500, when assuming again
to first order a factor of half between these radii.

The four regimes to bound theMvir − σap scaling relation

Thus, when evaluating ξ continuously over the parameter space
α ∈ [0, 1.5] and β ∈ [0, 0.5] for the ideal physical halos, the addi-
tional scale-dependent parameters Rap and c must be evaluated
in four distinct regimes, with the constraints on ξ in each regime
constraining one of four distinct scaling relations:

1. TheM200 − σap scaling relation for cluster-scale halos:
with parameters: Rap ∈ [0.1, 1]r200, c= 5.

2. TheM200 − σap scaling relation for galaxy-scale halos:
with parameters: Rap ∈ [0.1, 1]r200, c= 10.

3. TheM500 − σap scaling relation for cluster-scale halos:
with parameters: Rap ∈ [0.2, 2]r500, c= 2.5.

4. TheM500 − σap scaling relation for galaxy-scale halos:
with parameters: Rap ∈ [0.2, 2]r500, c= 5.

3. Analysis

3.1. Analytical profiles for the ideal physical halos

To constrain ξ in these four regimes, the aperture velocity disper-
sion profiles must be analytically modelled for the ideal physical

aThis value r500/r200 will depend on the specific form of the halo’s density profile. As r200
and r500 are both assumed to be approximations to the virial radius, this conversion is not
of strong importance, with any modification in their ratio being purely quantitative.

halos in terms of the parameters outlined. For this analysis, we
model the ideal physical halos with the scale-free density and
gravitational potential profiles detailed in Equations (11) and
(13), respectively. With these profiles, we can analytically predict
and numerically trace the radial, line of sight, and subsequently
the aperture velocity dispersion profiles for these halos in scale-
free form by making use of the kinematic profiles detailed in
Section 2.3.

The radial velocity dispersion of the ideal physical halos

The radial velocity dispersion profiles for the ideal physical halos,
in scale-free form, are derived from the general solution of the
Jeans equation from Equation (17), taking on the analytic form:

σ2
r (s, c, α, β)

v2vir
= u(c, α) · sα−2β(1+ cs)3−α

×
∫ ∞

s

s′2β−α−2ds′

(1+ cs′)3−α

[∫ s′

0

s′′2−αds′′

(1+ cs′′)3−α

]
.

(34)

These scale-free radial velocity dispersion profiles, σr/vvir, are
shown in Fig. 1, as a function of the dimensionless halocentric
radius, s≡ r/rvir. These panels encompass the variation of the
halo’s kinematics within the desired parameter space of α ∈ [0, 1.5]
and β ∈ [0, 0.5], and at fixed concentrations, c, corresponding to
the halo mass scales in the desired regimes. Within these panels,
as the velocity anisotropy is increased from β = 0 to β = 0.5 from
left to right across each row, the more cored, α = 0 and α = 0.5,
halo profiles become increasingly divergent at small halo radii.
However, in all instances, the isotropic, β = 0, profiles remain
well-behaved and bounded for all halo inner slopes.

The surface mass density of the ideal physical halos

To predict the projected velocity dispersion profiles for the ideal
physical halos, the surface mass density profile must be modelled.
By Equation (20), we can express this projected density profile, in
scale-free form, as:

�(S, c, α)
�vir

= u(c, α)
2

·
∫ ∞

S

s1−αds
(1+ cs)3−α

√
s2 − S2

. (35)

The line of sight velocity dispersion of the ideal physical halos

From the derived radial velocity dispersion and surface mass den-
sity profiles for the ideal physical halos, the corresponding line
of sight velocity dispersion can be derived from Equation (23),
producing the scale-free expression:

σ2
los(S, c, α, β)

v2vir
= u(c, α) ·

∫ ∞

S

{ (1− βS2

s2
)s1−2βds

√
s2 − S2

×
∫ ∞
s

s′2β−α−2ds′

(1+ cs′)3−α

[∫ s′
0

s′′2−αds′′

(1+ cs′′)3−α

]
∫ ∞
S

s1−αds
(1+ cs)3−α

√
s2 − S2

}
.

(36)

These scale-free line of sight velocity dispersion profiles, σlos/vvir,
are shown in Fig. 2, as a function of the dimensionless projected
radius, S≡ R/rvir.
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Figure 1. The radial velocity dispersion profiles for the ideal physical halos, in scale-free form σr/vvir, traced over the scaled halocentric radius, r/rvir. Each row varies the halo
concentration, c, and each column varies the velocity anisotropy, β. Within each box, each colour varies the halo inner slope, α.

Figure 2. The line of sight velocity dispersion profiles for the ideal physical halos, in scale-free form σlos/vvir, traced over the scaled projected radius, R/rvir. Each row varies the
halo concentration, c, and each column varies the velocity anisotropy, β. Within each box, each colour varies the halo inner slope, α.
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Figure 3. The aperture velocity dispersion profiles for the ideal physical halos, in scale-free form ξ ≡ σap(<Rap)/vvir, traced over the scaled aperture radius, Rap/rvir. Each row varies
the halo concentration, c, and each column varies the velocity anisotropy, β. Within each box, each colour varies the halo inner slope, α.

The aperture velocity dispersion of the ideal physical halos

Taking the profiles for the surfacemass density and the line of sight
velocity dispersion into Equation (26), the aperture velocity dis-
persion profile for the ideal physical halos, in scale-free form, takes
the form:

σ2
ap(<Sap, c, α, β)

v2vir
= u(c, α) ·

∫ Sap
0 SdS

{∫ ∞
S

(1− βS2
s2

)s1−2βds√
s2−S2∫ Sap

0 SdS
[∫ ∞

S
s1−αds

(1+cs)3−α
√
s2−S2

]

×
∫ ∞

s

s′2β−α−2ds′

(1+ cs′)3−α

[∫ s′

0

s′′2−αds′′

(1+ cs′′)3−α

]}
.

(37)

These scale-free aperture velocity dispersion profiles, σap/vvir, are
shown in Fig. 3, as a function of the dimensionless aperture radius,
Sap ≡ Rap/rvir.

3.2. Constraints on ξ

When the scale-free aperture velocity dispersion, σap/vvir, of the
ideal physical halos from Equation (37) is traced within a given
dimensionless aperture radius, Sap ≡ Rap/rvir, this will evaluate the
dimensionless parameter ξ ≡ σap(<Rap)/vvir. By measuring this
value globally over the parameter space corresponding to those
outlined within each of the four regimes, the values of ξmin and
ξmax in each case will be determined.

Constraints on ξ within each of the four regimes

These four regimes in which ξ is to be bounded can be traced
within the panels of Fig. 3: as the regions corresponding to
Rap/rvir ∈ [0.2, 2] when c= 2.5, in the top row, and when c= 5, in
the middle row; and for Rap/rvir ∈ [0.1, 1] when c= 5, in the mid-
dle row, and when c= 10, in the bottom row. It is clear from this
figure that the values of ξmin and ξmax in each of these four regimes
are set at the end-points of the range in aperture radii, in each
instance. Fig. 4 evaluates these ξ ≡ σap(<Rap)/vvir profiles from
Fig. 3, now at each of these end-points in aperture radii, within
each of the four regimes, producing eight distinct windows. The
values of ξmin and ξmax are then simply the minimum and maxi-
mum values within each of the four rows of Fig. 4. These results
produce the constraints in Table 1.

4. Results

4.1. TheMvir − σap scaling relations

With the bounds devised for ξmin and ξmax, as detailed in Table 1,
the halo mass scaling relations from Section 2.4 – Equations (32)
and (33) – will be constrained in each of the four outlined regimes.
These constraints allow us to form a quantified prediction for
each scaling relation, along with a quantified uncertainty, with this
uncertainty taken to encompass the total range predicted for each
scaling relation, propagated by these constraints in ξ , within each
regime.

These four scaling relations are shown in Fig. 5, with the
M200 − σap scaling relations shown in the top row, and the
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Figure 4. The aperture velocity dispersion profiles for the ideal physical halos, in scale-free form ξ ≡ σap(<Rap)/vvir, evaluated at fixed aperture radii and traced over halo inner
slopes, α. Each row fixes the halo concentration, c, and evaluates the profile at a minimum (left column) and maximum (right column) value for the aperture radius, in scale-free
form Rap/rvir. These fixed parameters correspond to particular choices in the overdensity, �, and the halo mass scale: corresponding to � = 500 in the top two rows, split into
cluster-scale (top row) and galaxy-scale (second row, from top)masses, and� = 200 in the bottom two rows, split into cluster-scale (third row, from top) and galaxy-scale (bottom
row) masses. Within each box, each colour varies the velocity anisotropy, β.

Table 1. The constraints placed on ξ ≡ σap(<Rap)/vvir over the parameter space
of the ideal physical halos, in the four outlined regimes, corresponding to two
conventions in the overdensity,� = 200 and� = 500, and two halomass scales,
galaxy and cluster masses, set by the concentration values.

Overdensity Bounds in
parameter Aperture radius Concentration ξ ≡ σap(<Rap)/vvir
� = 200 Rap ∈ [0.1, 1] r200 c= 5 ξmin = 0.605 ξmax = 0.877

c= 10 ξmin = 0.618 ξmax = 0.966

� = 500 Rap ∈ [0.2, 2] r500 c= 2.5 ξmin = 0.584 ξmax = 0.880

c= 5 ξmin = 0.576 ξmax = 0.822

M500 − σap scaling relations shown in the bottom row, each at
galaxy and cluster masses, as in the left-most and central pan-
els, respectively. In the right-most panels of this figure, as shown
in purple, the galaxy and cluster mass predictions are merged to
form a total, encompassing prediction for each scaling relation.
Each of these scaling relations and their predicted uncertainties
are presented analytically below.

TheM200 − σap scaling relation

Taking the mid-range value of theM200 − σap scaling relation and
the uncertainty encompassing its bounding, this scaling relation is
predicted, at galaxy-scale halo masses, as:

M200 = (9.21± 5.39) ·
[ σap

100 km s−1

]3 · 1011 M�, (38)

and at cluster-scale halo masses, as:

M200 = (10.32± 5.21) ·
[ σap

1 000 km s−1

]3 · 1014 M�, (39)

each with a corresponding uncertainty of 58.5% and 50.5%,
respectively. Merging these intervals, as in Fig. 5, the total predic-
tion is then:

M200 = (9.68± 5.86) ·
[ σap

1 000 km s−1

]3 · 1014 M�, (40)

with the uncertainty increasing to 60.5%.

TheM500 − σap scaling relation

Similarly, when taking the mid-range value and the associated
uncertainty for the M500 − σap scaling relation, we deduce that at
galaxy-scale halo masses, this scaling relation is predicted as:

M500 = (7.65± 3.73) ·
[ σap

100 km s−1

]3 · 1011 M�, (41)

and at cluster-scale halo masses, as:

M500 = (7.06± 3.87) ·
[ σap

1 000 km s−1

]3 · 1014 M�, (42)

each with a corresponding uncertainty of 48.7% and 54.8%,
respectively. Upon merging these intervals, the total prediction is
then:
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Figure 5. Our predictions for the halo mass–aperture velocity dispersion scaling relations,M200 − σap andM500 − σap, when the aperture velocity dispersion is measured within an
aperture radius, Rap, inside the range specified in each panel. The uncertainties in these scaling relations are quantified by constraints on the dimensionless parameter ξ , given in
Table 1, derived over specified halo parameters. These scaling relations are presented for galaxy halomasses (left, in light blue) and cluster halomasses (middle, in light red), and
then combined (right, in purple) to make a total prediction, encompassing both scales. The solid dotted lines enclosing each interval correspond to the minimum and maximum
bounds in the scaling relation, with the solid central line tracing its mid-range value.

M500 = (7.29± 4.09) ·
[ σap

1 000 km s−1

]3 · 1014 M�, (43)

with the uncertainty increasing to 56.2%.

4.2. Parameter dependence of the scaling relations

To derive these scaling relations, four parameters have been mod-
elled: the aperture radius, Rap, the halo concentration, c, the halo
density inner slope, α, and the velocity anisotropy, β. With refer-
ence to Fig. 4, tracing ξ ≡ σap(<Rap)/vvir throughout this param-
eter space, we can comment on the dependence of the values of
ξmin and ξmax – and subsequently the dependence of the scaling
relations – on these assumed parameters.

Dependence on the aperture radius Rap

When comparing our predictions to real observations, the aper-
ture radius, Rap, is the most variable and observationally sensitive

parameter assumed in this model: as its value chosen in a given
observation will depend upon the group statistics available for
each galaxy or galaxy cluster. In our model, we circumvented this
sensitivity by prescribing a range in values for the dimensionless
aperture, in scale-free form Sap ≡ Rap/rvir, to reasonably capture
this variability.

Expectedly, within Fig. 4 it is clear that at smaller aperture
radii (as in the left-most column) there is a larger difference
between each constant-β curve tracing ξ at any halo inner slope,
α, than there is at larger aperture radii (as in the right-most col-
umn). As these aperture velocity dispersion orbits become more
strongly convergent within larger aperture sizes, it is clear that
choosing a higher minimum aperture radius in this model would
pose a stronger constraint on the halo mass in each scaling rela-
tion. Even more, if the aperture radius could be chosen at a large,
fixed value of Rap � r200 � 2r500, the uncertainty in the scaling rela-
tion would be significantly reduced; however, this would reduce
the applicability and generality of our predictions. Furthermore,
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observations usually do not know the size of the aperture radius in
relation to the halo’s virial radius, in either r200 or r500 units, fur-
ther complicating assuming a fixed aperture radius in any realistic
prediction.

Dependence on the concentration parameter c

Throughout this study, we have fixed the halo concentration, c, to
particular halo mass scales: c= 5 and c= 10 for cluster-scale and
galaxy-scale halo masses, respectively, when � = 200; and c= 2.5
and c= 5 for cluster-scale and galaxy-scale halo masses, respec-
tively, when � = 500. In Fig. 5, showing the predicted scaling
relations at different halo mass scales – and hence different con-
centrations – it can be seen that there is only a weak sensitivity
in these relations to this choice in concentration. Comparing the
galaxy-scale and cluster-scale scaling relations, in either � = 200
or � = 500 convention, it is clear that the intervals spanned in
these predictions are strongly overlapping. Taking the M200 − σap
scaling relation, where a change from c= 5 to c= 10 represents
a change in halo mass of approximately three orders of magni-
tude, the fact that these separate regimes are strongly overlapping
implies that these predictions are not strongly sensitive to the
choice of concentration, or correspondingly to the halo mass scale.

In �CDM cosmological simulations, concentrations of dark
matter halos typically fall within c ∈ [4, 22] (e.g. Zhao et al. 2003).
Despite not considering, when � = 200, the concentrations of
super-massive clusters, c� 5, or dwarf galaxies, c� 10, as this
sensitivity to the concentration is weak, it is expected that these
limiting halo mass scales will be reasonably contained within our
predictions.

Dependence on the halo inner slope α

The dependence of the value of ξ on the halo inner slope, α, is evi-
dent in Fig. 4, tracing ξ continuously between α = 0 and α = 1.5 in
each of the four regimes that bound the halo mass scaling relation.
Within these panels, in the bottom three rows, the rate of change
of ξ with respect to α (the gradient of the curves in these panels) is
consistently maximised at the largest, cuspiest halo inner slope of
α = 1.5 in this range. Consequently, in these regimes, the value of
ξmax is strongly sensitive to the maximum value chosen for α: if a
larger maximum halo inner slope α� 1.5 was to be numerically
or observationally motivated, the lower bound of these scaling
relations would decrease, increasing the total uncertainty in the
estimate. Alternatively, and physically more likely, if cuspy halo
inner slopes could be ruled out below some value α� 1.5, this
would decrease the uncertainty in these predictions.

In contrast, in the top c= 2.5 row of Fig. 4, this trend changes:
the rate of change of ξ with respect to α becomes steepest towards
the minimum, cored halo inner slope, α = 0, particularly for the
most anisotropic, β = 0.5, curve. In this case, ξmin is strongly
dependent on this choice in the minimum value of α. However,
as the existence of cores remains unresolved (see, e.g. Oman et al.
2015, for potential interpretations), and as halo inner slopes α < 0
are unphysical, this sensitivity to the minimum value of α in our
model is unlikely to be exploited, without strong precedent to
rule out the possibility of halo cores. As such, it is the maximum
bound of the halo’s inner slope, chosen in our analysis as α = 1.5,
that imposes the most significant dependence for our predictions,
across all four chosen regimes.

Dependence on the velocity anisotropy β

As seen in Fig. 4, across all four intervals, increasing the value of
the velocity anisotropy, β, always increases the value of ξ at any
halo inner slope between α = 0 and α = 1.5. In particular, when
all other parameters are fixed, it is always the isotropic, β = 0,
value that sets the minimum value of ξ , and the most anisotropic,
β = 0.5, value that sets the maximum value of ξ . As such, the val-
ues of ξmin and ξmax in the scaling relations are sensitive to both
the minimum and maximum bounds for β, respectively.

More detailed analysis of the kinematics of a dark matter halo
could choose to model the anisotropy by some function, β = β(r),
of halocentric radius, r. One well-known example is the Osipkov–
Merritt (OM) velocity anisotropy model (Merritt 1985), which
models the anisotropy as isotropic below the so-called anisotropy
radius, and radially increasing beyond. Analytic studies have
shown that the scale-free aperture velocity dispersion, σap/vvir,
for an NFW profile modelled with an OM anisotropy, is strongly
converged to the same profile with an isotropic, β = 0, spheri-
cally averaged anisotropy (Łokas & Mamon 2001). As such, if the
OM anisotropy model or a similar radially increasing model could
be observationally motivated – rather than assuming a parameter
space of spherically averaged, constant β values, as in this study –
such modelling would be expected to significant decrease the
uncertainty within the predicted scaling relations.

4.3. Limitations of the model

The results derived in this study are limited in their application to
observable systems by the number of accessible kinematic tracers
of the gravitational potential (e.g. satellite galaxies). The number
of satellites increases from of order unity (O(1)) on Milky Way
mass scales toO(102 − 103) on the scale of galaxy groups and clus-
ters (see, e.g. Berlind &Weinberg 2002), and so it is on the scales
of massive galaxy groups and clusters that radial varying veloc-
ity dispersions derived directly from a system’s satellite galaxies
can be measured most accurately. When limited by poor statis-
tics, the observed aperture velocity dispersion will not necessarily
converge with its analytic prediction, even if the halo is otherwise
self-similar. This incomplete sampling of a halo’s kinematic trac-
ers imposes the need for an additional uncertainty, which would
need to be introduced into the scaling relations to permit a more
reasonable application to observations (see, e.g. Robotham et al.
2011). Whilst not pursued here, the contribution of this statistical
error could be investigated with numerical simulations, to better
inform the applicability of our results.

Beyond the practical challenge of having a sufficient number of
kinematic tracers, the hierarchical nature of structure formation
means that the assumptions of virial equilibrium and spherical
symmetry of the gravitational potential are not always sufficient.
Numerical simulations reveal that halos tend to be preferentially
prolate, with more-massive haloes tending to be least spherical
and most prolate (e.g. Bett et al. 2007); therefore we expect the
measured line of sight velocity distribution to be biased, resulting
in projection effects that will cause deviations from our pre-
dicted scaling relations, otherwise not accounted for in our model.
Similarly, the prevalence of accretion and mergers impacts the
assumption of virial equilibrium (e.g. Power et al. 2012), causing
deviations from the expected equilibrium velocity dispersion for
of order a dynamical time. Numerical simulations are required for
a careful treatment of these effects.
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5. Conclusion

This study has explored the relationship between the dark mat-
ter halo mass, its density profile, and the kinematic properties of
its tracers moving within its gravitational potential. In particular,
we have demonstrated that an analysis of the kinematic profiles of
an idealised framework of halos – referred to as the ideal physical
halos – can be used to make predictions for the scaling relation
between the halo’s mass and its observed aperture velocity disper-
sion, with this method entirely independent of numerical models
or simulation calibrations.

Through this approach, we have predicted theM200 − σap scal-
ing relation with an uncertainty of 60.5%, and the M500 − σap
scaling relation with an uncertainty of 56.2%, with both of these
predictions accounting for variation in the aperture radius, the
halo mass scale, the halo’s inner slope, and the velocity anisotropy
of its tracer populations. The uncertainty in these results are
approximately an order of magnitude below the estimators utilised
in current spectroscopic surveys targeting the halo mass, as cali-
brated from numerical group catalogues. The implication of our
study is that the variation of the halo’s structural and kinematic
profiles contribute only a small component of the uncertainty
established in these numerical calibrations. Larger uncertainty
contributions to this scaling relation are expected to arise in
projection effects when spherical symmetry is broken, and in
sampling biases when only few group members are observed in
a given halo. This latter effect introduces a significant statisti-
cal error when compared to our theoretical predictions, as the
aperture velocity dispersion measured when only few tracers are
available can attain a large deviation from its analytically predicted
value. If future studies robustly quantify a sampling error to couple
to our analytic predictions, this would produce a more accessi-
ble halo mass estimate for application to present and upcoming
spectroscopic surveys.

More fundamentally, our study has developed an analytic tool-
kit for studying the properties of dark matter halos in terms of
well-defined parameters: grounded upon physically valid assump-
tions and circumventing any universality in halo form, albeit
assuming spherical symmetry, and by prescribing physically moti-
vated ranges for each parameter value. Within this parameter
space, we showed that our scaling relation predictions are most
sensitive to the minimum aperture radius in which the aperture
velocity dispersion is measured, the maximum value permitted for
the halo’s inner slope, taken in our study as α = 1.5, and the min-
imum and maximum bounds in the velocity anisotropy, taken in
our study as β = 0 and β = 0.5. The dependence of these scaling
relations on the halo’s concentration was shown to be minimal,
implying a weak dependence of this estimator on the halo’s mass
scale.

As complex and dynamic objects, dark matter halos have often
remained in the exclusive focus of simulations. We have demon-
strated that an analytical framework can be constructed for an
idealised class of halos, to predict the halo mass-aperture velocity
dispersion scaling relation in a way that is theoretically grounded,
simulation-independent and largely insensitive and agnostic to
any universality in the halo’s structural and kinematic profiles.
We hope that our predictions will assist towards a strong and reli-
able halo mass estimator for upcoming probes of the HMF, which
excites the prospect of constraining the nature of dark matter.

This paper is the first in a series of papers predicting the scaling
relations of dark matter halos. The second paper will predict the

scaling relations of galaxy clusters with observable measures of its
intracluster gas emission: in particular, its mean-weighted X-ray
temperatures and the integrated Sunyaev–Zeldovich effect. Future
work will use cosmological hydrodynamical simulations (e.g. The
Three Hundred, Cui et al. 2018) to test the range of validity of this
model’s predictions on astrophysically realistic systems.
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