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Motivated by nuclear safety issues, we study the heat transfers in a thin cylindrical fluid
layer with imposed fluxes at the bottom and top surfaces (not necessarily equal) and a
fixed temperature on the sides. We combine direct numerical simulations and a theoretical
approach to derive scaling laws for the mean temperature and for the temperature
difference between the top and bottom of the system. We find two asymptotic scaling
laws depending on the flux ratio between the upper and lower boundaries. The first one is
controlled by heat transfer to the side, for which we recover scaling laws characteristic
of natural convection (Batchelor, Q. Appl. Maths, vol. 12, 1954, pp. 209–233). The
second one is driven by vertical heat transfers analogous to Rayleigh–Bénard convection
(Grossmann & Lohse, J. Fluid Mech., vol. 407, 2000, pp. 27–56). We show that the
system is inherently inhomogeneous, and that the heat transfer results from a superposition
of both asymptotic regimes. Keeping in mind nuclear safety models, we also derive a
one-dimensional model of the radial temperature profile based on a detailed analysis of
the flow structure, hence providing a way to relate this profile to the imposed boundary
conditions.

Key words: convection

1. Introduction

When a severe accident (SA) occurs in a nuclear power plant, the radioactive fuel and
reactor metallic components melt and form a fluid called corium. The corium relocates
from the core to the lower plenum of the reactor vessel, where non-miscible oxidic and
metallic phases separate: the oxide phase contains the majority of the decay heat from
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Figure 1. (a) Sketch of the corium phase stratification in the lower plenum of a nuclear reactor vessel during
a SA. (b) Sketch of the modelled fluid metal layer in a vertical plane through the cylinder.

radioactive elements and heats from below the less dense liquid metal phase floating at the
surface (figure 1a). This top metal layer is usually thinner compared with the oxide layer
and, thus, concentrates the power from the oxide to the vessel wall. This phenomenon is
often referred to as the ‘focusing effect’ in the nuclear safety literature. When the external
cooling of the reactor vessel is implemented as a SA management strategy (Theofanous
et al. 1997; Carénini, Fichot & Seignour 2018), addressing the heat transfer through the
top metal layer is fundamental to predict the failure of the vessel or to justify its integrity.
This work focuses on this issue: a liquid metal layer considered as a cylindrical layer heated
from below, cooled at the side with a constant temperature (assuming that the wall is being
ablated and, thus, maintained at its melting temperature) and cooled at the top by radiative
heat transfer. One difficulty of the problem lies in the top boundary condition, due to the
interdependence of variables: the radiative heat flux from the upper surface depends on
the surface temperature, which is affected by heat transfer within the metal layer, which
in turn depends on the efficiency of the radiative heat flux. The approach proposed is to
prescribe a uniform heat flux leaving from the top of the layer and focus on analysing
the temperature profiles, fluid behaviour and heat transfers. This will allow correlating
these outputs with the input control parameters and encompass all possible configurations
within the reactor. Indeed, depending on the height of the metal layer and on the state of
the reactor vessel structures above the pool, the radiative heat transfer can either play a
major role for the power dissipation from the metal or be negligible. This approach has
also the advantage of decoupling the study of the metal layer from the modelling of the
radiative heat transfer. As illustrated in Le Guennic et al. (2020), the consideration of the
top radiative heat transfer introduces assumptions on its modelling directly in correlations
established for the behaviour of the metal layer. With the present approach, coupling with
more detailed radiative heat transfer models will be possible (Rein et al. 2023). The impact
of considering a uniform heat flux compared with a more realistic radiative exchange will
be evaluated in future studies.

Given the specific boundary conditions, a mixture of different types of convection
can be expected. Bottom heating and top cooling is reminiscent of Rayleigh–Bénard
configurations with an imposed flux often investigated in the literature (e.g. Hurle et al.
1967; Chapman & Proctor 1980; Otero et al. 2002; Verzicco & Sreenivasan 2008;
Johnston & Doering 2009; Fantuzzi 2018). The lateral cooling is additionally expected
to sustain natural convection, which has also been the subject of numerous studies (e.g.
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Convection in a thin cylinder at low Prandtl number

Batchelor 1954; Churchill & Chu 1975; Bejan & Tien 1978; George & Capp 1979;
Wells & Worster 2008; Ng et al. 2015; Shishkina 2016). In integral SA codes, like
the ASTEC code developed by IRSN (Chatelard et al. 2014), the entire process of a
reactor core meltdown accident is simulated, from initiating events to the release of
radioactive materials. Different modules address different aspects of the accident, the
corium behaviour in the lower plenum of the vessel being one of them (Carénini, Fleurot
& Fichot 2014). In such a code, the focusing effect evaluation is based on a simplified
approach proposed by Theofanous et al. (1997), which combines correlations from both
Rayleigh–Bénard and natural convection. It is assumed that the fluid in the bulk is
thoroughly mixed and that the vertical heat transfer is symmetrical, meaning that the
temperature difference between the bottom and the bulk is equal to the temperature
difference between the bulk and the top. The validity of this approach was checked,
in particular with the BALI-metal facility (Bonnet & Seiler 1999). Water was used to
simulate the corium, and the top boundary condition was controlled by conduction through
an epoxy plate and a temperature-regulated heat exchanger. This set-up was designed to
closely resemble the conditions in a reactor with radiative heat transfer at the top. The
BALI-metal tests have shown that, for a shallow layer thickness (aspect ratio above 10), the
0D model overestimates the side heat flux. However, CFD simulations of the metal layer
(Shams et al. 2020) showed that fluid properties (water versus steel) have a significant
effect on the global behaviour, especially the Prandtl number. With steel, the lateral heat
flux is up to 50 % higher compared with water under similar conditions. This questions
the validity of using water as a simulant for molten steel, and consequently, the previously
derived model for integral SA codes.

More generally, the competition between forced convection involving dominant vertical
heat fluxes and horizontal or natural convection involving dominant horizontal heat fluxes
is at the core of many geophysical situations. The competition between Rayleigh–Bénard
and horizontal modes of convection is important for the dynamics within subglacial
lakes in Greenland and Antarctica (Couston, Nandaha & Favier 2022; Livingstone
et al. 2022). Planetary oceans are another example, since they receive latitudinally
dependent solar radiations while being heated from the bottom by the geothermal flux
(Wang et al. 2016). Finally, heterogeneous heat fluxes along the core-mantle boundary
in the Earth’s core, which are due to large-scale convective patterns within the solid
mantle, can sustain large-scale azimuthal flows (Sumita & Olson 1999; Mound & Davies
2017).

This paper presents three-dimensional (3-D) direct numerical simulations (DNS) of a
liquid layer with a fixed Prandtl number of 0.1 motivated by nuclear safety issues involving
liquid metals (Carénini et al. 2018), with the aim of (i) getting a better understanding of
the fluid behaviour and heat transfers for different characteristics found in reactors, (ii)
establishing scaling laws, and (iii) deriving a one-dimensional (1-D) model suitable for
use in integral SA codes.

This paper is divided into four sections. Section 2 introduces the governing equations
and the numerical simulation tool used. Section 3 focuses on identifying the heat transfer
mechanisms for the asymptotic regimes (dominant side or top heat flux) by analysing
scaling laws for mean temperature variables. We conclude that a minima, a 1-D radial
temperature description of the turbulent regime is necessary for nuclear safety evaluations.
Hence, we delve into the fluid flow structure to determine this temperature profile. Finally,
§ 4 discusses the implications of our results for nuclear safety evaluations and outlines
future developments of our work.
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2. Mathematical and numerical formulation

2.1. Governing equations
We consider the flow of an incompressible fluid with buoyancy effects being included
using the Boussinesq approximation. The fluid is confined within a cylinder of thickness
H and radius R (see figure 1b) and gravity is pointing downward g = −gez. It is heated
from below with a uniform heat flux per unit area φin and cooled from above by a
uniform outgoing flux φout. Note that we are interested in the cases where φin /=φout so
that the residual heat flux is necessarily escaping the domain through the side boundary.
The dimensional temperature on the side boundary is fixed at θ0. We model the bottom
interface between the oxide layer and the liquid metal layer by a no-slip rigid boundary
(a rigid crust forms at the oxide surface due to cooling, Carénini et al. 2018); we model
the upper free surface of the liquid layer by a rigid stress-free boundary, neglecting free
surface deformations. The side boundary is a rigid no-slip boundary. Lengths are rescaled
using the height of the cylinder H while time is rescaled using the vertical diffusive time
scale H2/κ , with κ the constant thermal diffusivity. The dimensionless temperature T is
defined relatively to the imposed side temperature and rescaled using the imposed bottom
flux φin,

T = k
φinH

(θ − θ0) , (2.1)

where k is the thermal conductivity. The dimensionless conservation equations of
momentum, mass and energy are then

1
Pr

(
∂u
∂t

+ u · ∇u
)

= −∇P + RaφTez + ∇2u, (2.2)

∇ · u = 0, (2.3)

∂T
∂t

+ u · ∇T = ∇2T. (2.4)

Here u, P and T are the dimensionless velocity, pressure and temperature of the fluid,
respectively. The problem is characterised by four dimensionless parameters: the aspect
ratio Γ , the flux ratio RF, the Rayleigh–Roberts number Raφ that is based on the heat flux
imposed at the bottom φin and the Prandtl number Pr fixed to 0.1 throughout the paper.
They are defined by

Γ = R
H

, RF = φout

φin
, Raφ = βgφinH4

kνκ
, Pr = ν

κ
= 0.1, (2.5a–d)

where β is the thermal expansion coefficient and ν is the kinematic viscosity, both assumed
to be constant. The dimensionless boundary conditions can be written as

u(z = 0) = 0 and
∂T
∂z

(z = 0) = −1,

∂u
∂z

(z = 1) = ∂v

∂z
(z = 1) = w(z = 1) = 0 and

∂T
∂z

(z = 1) = −RF,

u(r = Γ ) = 0 and T(r = Γ ) = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.6)

where u = (u, v, w) are the velocity components in cylindrical coordinates er, eϕ, ez,
respectively.
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Convection in a thin cylinder at low Prandtl number

2.2. Numerical approach

2.2.1. Nek5000
The governing equations (2.2)–(2.4) with boundary conditions (2.6) are solved
numerically using Nek5000 (Fischer 1997; Deville, Fischer & Mund 2002), which has
been used extensively in thermal convection studies (e.g. Scheel, Emran & Schumacher
2013; Léard et al. 2020; Terrien, Favier & Knobloch 2023). The entire cylindrical
geometry is discretised using up to E = 36 608 hexahedral elements that have been refined
close to all boundaries to properly resolve viscous and thermal boundary layers. The
velocity is discretised within each element using Lagrange polynomial interpolants based
on tensor-product arrays of Gauss–Lobatto–Legendre quadrature points. The polynomial
order N on each element varies between 6 and 10 in this study. We use the 3/2 rule for
dealiasing with extended dealiased polynomial order 3N/2 to compute nonlinear products.
A third-order time stepping using a mixed explicit–implicit backward difference approach
is used. A summary of the simulations physical and numerical parameters is provided in
table 1 in the Appendix.

2.2.2. Numerical protocol and statistics
We initialise all simulations with a fluid at rest and a uniform temperature field T = 0
everywhere. Infinitesimal temperature perturbations of amplitude 10−3 are introduced.
Thermal convection grows during a transient that typically lasts for approximately five
vertical diffusive times, and which is longer as the aspect ratio Γ increases. Once the
system has reached a statistically stationary state, various spatio-temporal averages are
computed. Note that we have tested that different initial conditions (for example, starting
with the equilibrium diffusive temperature distribution) eventually lead to the same
statistically stationary state.

We first define the temporal and volume average operator 〈.〉 over the whole fluid domain
volume V and over time τ as

〈T〉 = 1
τV

∫ t0+τ

t0

∫
V

T dV dt. (2.7)

The typical τ value ranges between 2 and 0.2 diffusive times for the lowest and the
largest Rayleigh–Roberts numbers, respectively. Additionally, adding specific variables
as a subscript means that an average along those specific directions is made. We always
consider temporal averages during the statistically steady state so that the time variable
is never explicitly written. For instance, 〈.〉ϕ indicates an average in time and along the
azimuthal direction only.

2.2.3. Filtered simulations
While most of the results discussed below are obtained using DNS, some extreme cases
were only accessible via filtered simulations following the approach described in Fischer &
Mullen (2001). To distinguish between DNS and filtered simulations, a viscous dissipation
criterion has been used. The mean viscous dissipation rate ε, is defined by

ε = 2Pr 〈S : S〉 with S = 1
2

(∇u + ∇uT)
. (2.8)

A simulation with polynomial order N is considered to be a DNS when the time and
volume-averaged viscous dissipation ε is varying by less than 5 % when compared with
the same simulation but using N + 2 polynomial order. A simulation failing to satisfy this
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criteria is labelled as filtered and numerical stability is ensured by using a 1 % filter on the
last two polynomials (Fischer & Mullen 2001). Note that in the system studied, the Prandtl
number is 0.1, meaning that the filter does not impact the more diffusive temperature field
but only the viscous dissipation at small scales.

Alternatively, we also used the criterion discussed in Scheel et al. (2013) that compares
the isotropic Kolmogorov dissipative scale with the numerical grid size. For all the DNS
simulations presented in this study, the numerical grid size (L) is below the Kolmogorov
dissipative scale (ηK) (see table 1 in Appendix).

3. Results

3.1. Qualitative overview
Let us start with a qualitative description of the different flow regimes. First, irrespective
of the control parameters, no motion-less steady state exists in this system. Maintaining a
constant temperature at the side generates a radial temperature gradient, which cannot
be balanced by the hydrostatic pressure gradient. This leads to natural convection in
the form of a downward recirculation along the side boundary and then towards the
centre along the bottom boundary. At low Raφ , this flow is axisymmetric, while at larger
Raφ , an instability develops and breaks the symmetry, leading to a drifting thermal
branches pattern associated to the most extreme heat fluxes and temperatures found in
the system. While these observations call for a linear stability analysis to identify the
symmetry-breaking mechanism, we leave this aspect to future works. The focus of the
present work is to identify scaling laws in the turbulent regime at large Rayleigh–Roberts
numbers Raφ , irrespective of the underlying linear instability mechanism.

We first present 3-D visualisations showing both the temperature field at the surface
and streamlines coloured with the velocity amplitude in figure 2. We focus on the
representative case Raφ = 107 and compare two flux ratios, RF = 0.1 and 0.9, and
three aspect ratios, Γ = 4, 8 and 16. At low flux ratio (see figure 2a–c), a large-scale
temperature pattern is clearly visible, with a number of azimuthal branches increasing
with Γ . This thermal pattern is associated with intense radially outward flows. As we
will see, these regimes are dominated by convective motions reminiscent of horizontal
convection (Hughes & Griffiths 2008). At high flux ratio (see figure 2d–f ), the system is
more azimutally symmetrical and more intense fluctuations cover most of the domain.
We also observe a clear temperature gradient between the core of the cylinder and
the isothermal side boundary. As we will see, these regimes are dominated by thermal
structures reminiscent of Rayleigh–Bénard convection (Bodenschatz, Pesch & Ahlers
2000).

3.2. Low flux ratio regime
This section is devoted to the low flux ratio regime for which we fix RF = 0.1 as a
representative value. We first discuss the mean temperature scaling as a function of the
two other input parameters Raφ and Γ before providing a theoretical explanation based on
simple dimensional arguments.

3.2.1. Scaling for RF = 0.1
In this section we fix RF = 0.1, meaning that 90 % of the power transferred through
the lower boundary goes out through the side, and we seek scaling laws for the mean
temperature systematically varying Raφ and Γ . For each simulation, the statistically
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Figure 2. Each of the six subplots shows the 3-D view of (i) on the left half, the temperature field at the top
surface and (ii) on the right half, some velocity streamlines. Plots (a–c) show results for RF = 0.1 and (d–f ) for
RF = 0.9, with Γ = 4 for (a,d), Γ = 8 for (b,e) and Γ = 16 for (c, f ). In all cases, Pr = 0.1 and Raφ = 107.
Note that the temperature colour scale is the same for all plots.

stationary state is reached, which typically takes 5 diffusive time scales, and we compute
the mean temperature of the system noted 〈T〉 using the space–time average operator
defined in (2.7).

The mean temperature evolution with Raφ and Γ is reported in figure 3. When the
value of Raφ increases, the mean non-dimensional temperature of the system decreases
as expected (see figure 3a). This is because a higher Rayleigh–Roberts number results in
more efficient heat transfers within the system, leading to an average temperature getting
closer to the side temperature that is zero in our dimensionless units (2.1). Note however
that the dimensional temperature obviously increases when we increase the heat flux.
When Raφ exceeds 105, a power-law behaviour emerges with an exponent that appears
to be unaffected by Γ . Upon estimating the power exponent (best fit using the least square
method), it has been found that 〈T〉 ∼ Ra−0.20±0.03

φ . To determine the mean exponent,
we compute the average of the exponents associated with Γ = 4, 5, 8, 16 considering
Raφ � 105 data only, while the variability is quantified by the largest difference between
these exponents. This scaling law is derived by considering DNS and filtered simulation
data. The exclusion of the filtered data from the analysis only leads to a slight alteration in
the scaling law, resulting in 〈T〉 ∼ Ra−0.21±0.03

φ .
Additionally, when Γ increases at constant Raφ , the mean temperature of the system

increases. Indeed, when Γ increases for a fixed Raφ , the ratio between the heating bottom
surface and the cooling lateral surface also increases, leading to a larger global energy
input into the system. Figure 3(b) shows that when Raφ is greater than 105, a power-law
behaviour in Γ also emerges. Considering both DNS and filtered simulation data, and
employing a consistent methodology for exponent estimation as applied to the Raφ

dependence, we obtain 〈T〉 ∼ Γ 0.83±0.11 whereas we find that 〈T〉 ∼ Γ 0.89±0.08 without
taking filtered data into account. Once again these results indicate a minor influence of the
filtered simulations on the overall scaling behaviour.

The two scalings can be combined leading to the following final power law:

〈T〉 ∼ Ra−1/5
φ Γ 4/5. (3.1)
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Figure 3. Log-log plot of the mean temperature evolution with Rayleigh number for different aspect ratios in
(a) and with the aspect ratio for different Rayleigh numbers in (b). The width of the thick light lines is equal
to 3 times the standard deviation of the mean temperature time series at the statistically stationary state. The
dash-dotted lines show the best power-law fit for each Γ in (a) and Raφ in (b). Empty/full symbols respectively
indicate filtered/DNS simulations. Here Pr = 0.1 and RF = 0.1.
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a φ1
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Figure 4. Compensated mean temperature following (3.1) as a function of Raφ . Different symbols/colours
correspond to different aspect ratios. The coloured areas indicate 3 times standard deviations of the mean
temperature time series at the statistically stationary state multiplied by Ra1/5

φ Γ −4/5. Empty/full symbols
respectively indicate filtered/DNS simulations. Here Pr = 0.1 and RF = 0.1.

Here the particular exponent values will be theoretically justified below (see § 3.2.2) and
fall well into the fitted range of exponents found from our simulations.

Figure 4 shows the mean temperature, compensated by scaling (3.1) as a function of
Raφ . All rescaled data converge to the same constant close to unity. For Γ = 4, the scaling
law seems to apply when Raφ > 105, whilst it is necessary to wait until Raφ = 108 when
Γ = 16. In the following section, we use dimensional analysis to gain insight into the
physics underlying this scaling.
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Figure 5. Sketch of the side boundary layers when Pr < 1.

3.2.2. Theoretical analysis for RF = 0.1
We focus on the sidewall considering the dimensionless steady axisymmetrical governing
equations using cylindrical coordinates

u
∂u
∂r

+ w
∂u
∂z

= −Pr
∂P
∂r

+ Pr∇2u, (3.2)

u
∂w
∂r

+ w
∂w
∂z

= −Pr
∂P
∂z

+ RaφPrT + Pr∇2w, (3.3)

1
r

∂ru
∂r

+ ∂w
∂z

= 0, (3.4)

u
∂T
∂r

+ w
∂T
∂z

= ∇2T. (3.5)

Due to the low Prandtl regime, the viscous boundary layer is nested within the thermal
one. A diagram of this configuration is shown in figure 5. The behaviour of the vertical
(ws) and radial (us) velocities at the edge of the viscous boundary layer is derived from
the conservation of mass (3.4) and energy (3.5). We assume that the typical scale of
variation in the radial direction is the dimensionless thickness of the side boundary layer
(∂/∂r ∼ 1/δ). This thickness may either represent the thermal boundary layer (δth) or the
viscous boundary layer (δv), depending on whether the radial variation under consideration
pertains to temperature or velocity. Moreover, we assume that the scale of variation in
height is the dimensionless height equal to 1 (∂/∂z ∼ 1). Then mass conservation (3.4)
leads to

us

δv

∼ ws. (3.6)

On the left-hand side of (3.5), both advection terms, u∂rT and w∂zT , scale as wsT , due to
mass conservation (3.6). Because radial variations are much larger than height variations
near the lateral boundaries, we assume that the dominant term in the Laplacian operator
scales with the dimensionless thickness of the side boundary layer squared (∇2 ∼ 1/δ2).
Therefore, (3.5) leads to

ws ∼ 1/δ2
th. (3.7)

Let us now approximate the temperature variation across the thermal boundary layer (δTs)
by the average temperature of the system 〈T〉 (recall that the dimensionless temperature
on the sidewall is zero). Within the thermal boundary layer, we expect a force balance
between the inertia term and the buoyancy term, so that the vertical momentum balance
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(3.3) reduces to

u
∂w
∂r

+ w
∂w
∂z

� RaPrT. (3.8)

On the left-hand side of (3.8), each advection term, u∂rw and w∂zw, scales like w2
s , due

to mass conservation (3.6). Then (3.8) reduces to w2
s ∼ RaφPr〈T〉 or, equivalently, using

(3.7),

δth ∼ (
RaφPr 〈T〉)−1/4

. (3.9)

Finally, to link the heat flux applied on the bottom surface to the thermal characteristics of
the side, a global flux balance is required. Integrating (3.5) over the volume at steady state
leads to

πΓ 2 (1 − RF) = 2πΓ
〈T〉
δth

, (3.10)

where the left-hand side corresponds to the power mismatch between the lower and upper
boundaries, which is balanced by the conducting flux across the thermal boundary layer
on the right-hand side. Thus, the averaged temperature 〈T〉 is proportional to the aspect
ratio and to the thickness of the thermal boundary layer

〈T〉 ∼ δth(1 − RF)Γ. (3.11)

Combining (3.9) and (3.11), the mean temperature can therefore be expressed in terms of
the control parameters through the relationship

〈T〉 ∼ Ra−1/5
φ Γ 4/5 (1 − RF)4/5 Pr−1/5. (3.12)

These simple dimensional arguments allow us to recover the scaling (3.1) obtained via
numerical simulations. In addition, this reveals the dependencies on RF and Pr, which we
did not observe since both these parameters have been fixed for now. Note that assuming
that the average temperature is representative of the temperature difference across the
radial thermal boundary layer is presumably only valid when the Rayleigh–Roberts
number is large enough to mix efficiently the bulk of the convective system. In order to
compare our results with existing literature, it is standard to use the Nusselt number (the
ratio of convective to diffusive heat flux). However, this measurement is only meaningful
when the heat transfer can be unambiguously defined, that is, when the average isothermal
surfaces are parallel. Or in other words, when temperature varies only along one dimension
in the system. In our system there is no specific direction for heat transfer except in
the asymptotic regime of high or low flux ratio. In these scenarios, it is conceivable to
determine the Nusselt value, which indicates the main heat flux direction (vertical for
RF → 1 and horizontal for RF = 0).

In the low flux ratio regime, the heat flux mainly goes in the horizontal direction;
therefore, we define the Nusselt number by the relationship

φin ≡ k
R

(〈θ〉 − θ0) Nu. (3.13)

With the choice made for the non-dimensional temperature, the Nusselt number reads as
the inverse of the mean temperature, hence

Nu ∼ Ra1/5
φ Γ 1/5 (1 − RF)−4/5 Pr1/5. (3.14)

Although we find a 1/5 exponent for the Rayleigh dependency, reminiscent of the
horizontal convection scaling of the Rossby (1965) regime, it is important to note that the
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force balance in the boundary layer is different. In Rossby (1965) buoyancy and viscosity at
the bottom both play a role, while in our case, the balance is between inertia and buoyancy
on the vertical side boundary. The equivalent Rayleigh exponent based on a temperature
scale (instead of a flux scale as done here) is 1/4 and corresponds to the scaling of vertical
convection identified by Batchelor (1954). Furthermore, in a two-dimensional rectangular
system with identical thermal boundary conditions to the present case (except at the top
boundary where RF was set to 0), Ganzarolli & Milanez (1995) identified a Nusselt scaling
law. We obtain identical exponents for the Rayleigh–Roberts number and the aspect ratio
as those found by Ganzarolli & Milanez (1995). Both exhibited 1/5 exponents. It is worth
mentioning that the validity of the Rayleigh scaling was recently shown to be limited to
laminar boundary layers by Shishkina (2016), so that a different scaling is expected at even
large Rayleigh–Roberts numbers (we considered Raφ � 109). Previous works (George
& Capp 1979) also pointed out this possibility. Finally, our results show the same 1/5
Prandtl exponent dependence predicted by Shishkina (2016) and recently emphasized by
Zwirner et al. (2022). However, we recall here that we have not checked this Prandtl scaling
with our numerical simulations, which were all performed at Pr = 0.1.

To validate the underlying physical approximations required to derive our scaling
law, we now examine the secondary variables, specifically the thickness of the thermal
boundary layer and the vertical velocity. Thanks to the relations (3.7) and (3.11), the scaling
laws for those quantities can be written as

δth ∼ Ra−1/5
φ Γ −1/5 (1 − RF)−1/5 Pr−1/5,

ws ∼ Ra2/5
φ Γ 2/5 (1 − RF)2/5 Pr2/5.

⎫⎬
⎭ (3.15)

The thickness of the thermal boundary layer is estimated by determining the radius
at which 90 % of the maximum temperature near the edge is reached, while the vertical
velocity is based on seeking the minimum vertical velocity near the edge. More precisely,
we first compute the vertical velocity at mid-height of the domain to avoid the influence
of the top and bottom boundaries, and we average in time and in the azimuthal direction.
We then search for the first peak of negative vertical velocity, starting from the boundary
and moving toward the centre of the domain. We conducted these measurements for aspect
ratios of 4 � Γ � 16 and for 105 � Raφ � 108. Results shown in figure 6 are in excellent
agreement with the scaling laws (3.15), hence, further validating our approach.

3.3. High flux ratio regime
We now consider the other limiting case of a flux ratio close to unity. We follow the same
approach as in the previous section and we start with scalings obtained from numerical
simulations followed by a theoretical explanation.

3.3.1. Scaling for RF = 0.9
We now fix RF = 0.9, meaning that 90 % of the heating power goes out through the top
surface. Similarly to the precedent section, we seek power laws systematically varying
Raφ and Γ . However, in this second regime closer to the classical Rayleigh–Bénard
configuration, heat transfers are mainly along the vertical direction. We therefore focus
on the mean temperature difference between the top and bottom surfaces, denoted �Tv
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Figure 6. Log-log plot of (a) the size of the thermal boundary layer and (b) the absolute value of the vertical
peak velocity near the edge (defined as the first minimum of the negative vertical velocity at mid-height,
starting from the boundary and moving toward the centre of the domain) versus the determined scaling laws
(3.15) for different Raφ and aspect ratios. The dash-dotted lines correspond to the scaling laws and for all
the simulations. Empty/full symbols respectively indicate filtered/DNS simulations. The input parameters are
Pr = 0.1 and RF = 0.1.

and computed as

�Tv = 〈T(t, r, ϕ, z = 0) − T(t, r, ϕ, z = 1)〉rϕ , (3.16)

where the average corresponds to a temporal and surfacic average along radius and
azimuthal angle. As we will see below, this averaged quantity is more relevant than the
mean temperature of the system that was more representative of the radial temperature
differences between the bulk and the side boundary when RF = 0.1. The evolution of
the mean temperature difference with Raφ and Γ is plotted in figure 7. We observe
that, as Raφ increases, �Tv decreases, suggesting that the system becomes more
homogeneous vertically. The decrease in the top–bottom temperature difference appears
to be independent of the aspect ratio, which suggests a local mechanism. Note also that
this vertical temperature difference is the same at different locations, as will be further
discussed below in § 3.5. When Raφ is larger than 105, a power-law scaling emerges with
an exponent Ra−0.20±0.02

φ independently of Γ . As we will show below, the closest relevant
scaling is given by

�Tv ∼ Ra−1/5
φ . (3.17)

3.3.2. Theoretical analysis for RF = 0.9
In this configuration close to Rayleigh–Bénard convection, one might initially assume that
the system is controlled by the heat flux across a thin thermal boundary layer (Malkus
1954). Let us define the Rayleigh number based on the temperature difference Ra�Tv =
(βg�TvH3)/(νκ), which is an output parameter in our case since the temperature
difference is not known a priori. Note that in the asymptotic limit where RF tends to
one, Ra�Tv and Raφ are getting proportional to each other with the Nusselt number
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Figure 7. Log-log plot of the bottom–top temperature difference for different Γ values. The error bars are
computed by taking 3 times the standard deviation of the bottom–top temperature difference time series at
the statistically stationary state. The dash-dotted line corresponds to the best-fit scaling law Ra−1/5

φ , the blue
diamond (♦) plot shows the horizontally homogeneous Chapman & Proctor (1980) configuration (RF = 1 in a
doubly periodic Cartesian box) and the continuous black line corresponds to the Grossmann & Lohse (2000) Il
regime written in terms of flux Rayleigh number Raφ . Empty/full symbols respectively indicate filtered/DNS
simulations. The input parameters are Pr = 0.1 and RF = 0.9.

(as defined in Rayleigh–Bénard convection) being the proportionality coefficient (Cioni,
Ciliberto & Sommeria 1997). The classical scaling �Tv ∼ Ra−1/3

�Tv
would equivalently

give Ra−1/4
φ , which is not compatible with our result (3.17). Our regime is closer to the

regime Il predicted by Grossmann & Lohse (2000) in which an energetic approach is
used to estimate the viscous and thermal dissipation rates for the Pr < 1 case. In the Il
regime, dissipation rates are dominated by their boundary layer contributions, therefore,
the Il regime is obtained at relatively low Ra�Tv , i.e. when the turbulence is sufficiently
underdeveloped, so that the dissipation is mostly concentrated within the boundary layers.

Considering a homogeneous bulk (reached at sufficiently high Rayleigh–Roberts
numbers) and thanks to the Il regime of Grossmann & Lohse (2000), the Nusselt scaling
Nu ∼ δ−1

b ∼ Ra1/4
�Tv

, where δb is the thickness of the bottom thermal boundary layer,

leads to �Tv ∼ Ra−1/5
φ consistent with (3.17). It is noteworthy that analogy with the Il

regime only makes sense if one assumes an equivalence between the upper and lower
thermal boundary layers, which is not necessarily the case here since the velocity boundary
conditions are mixed (free slip at the top, no slip at the bottom). In addition, all the results
of the study of Grossmann & Lohse (2000) are obtained with an imposed temperature
difference contrary to the imposed heat flux here.

When RF tends to 1, our configuration is close to the one studied by Chapman &
Proctor (1980), where a constant flux is imposed at the bottom surface and goes out
by the top surface (RF = 1) in a horizontally infinite domain (Γ = ∞). This limiting
case can be explored with a Cartesian box of size 2 × 2 × 1 periodic in both horizontal
directions, with the same imposed flux at the top and bottom and with no-slip and free-slip
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conditions, respectively, at the bottom and top. Figure 7 shows �Tv measured after the
statistically stationary state is obtained. We also plot the temperature difference �Tv

predicted by the Il regime scaling, keeping the prefactor determined for rigid boundaries
and imposed temperatures (Grossmann & Lohse 2000). We find good agreement between
the local Cartesian set-up and the Il regime, with the same Rayleigh exponent being
found. A slight difference in the prefactor is nevertheless noted. Modifying the thermal
and velocity boundary conditions did not have a significant impact, with only a minor
change in the prefactor. Our RF = 0.9 case is also found to be in good agreement with
the Il regime, but with a small difference. Here 10 % of the flux exits through the side,
leading to a disruption in the vertical temperature gradient and, therefore, a difference in
the temperature difference from bottom to top caused by the baroclinic flow.

Another way to verify the relevance of the Il regime is to check the bottom thermal
boundary layer behaviour. The scaling law predicts that δb ∼ Ra−1/5

φ . A measure of
the bottom thermal boundary layers has been done based on the temperature variance
computed as

σT =
〈(

T(t, r = Γ/2, ϕ, z) − 〈T(t, r = Γ/2, ϕ, z)〉ϕ
)2

〉1/2

ϕ
. (3.18)

We focus here on the temperature at r = Γ/2 to avoid the side and centre areas that are
more significantly affected by the overall baroclinic circulation driven at the sidewall.
In figure 8(a), σT as a function of the altitude z is plotted for different Raφ and for
Γ = 16. Near the top and bottom boundaries, the temperature variance is rapidly varying,
which indicates the existence of boundary layers. In the bulk 0.2 < z < 0.8, the system
is more homogeneous especially when Raφ is high. Vertical dotted lines indicate the
thickness of the bottom boundary layer δb. It is estimated as the position z for which the
temperature variance has decreased by 90 % compared with its value at the boundary.
We used the temperature variance rather than the vertical temperature profile because the
recirculation flow (induced by the cold side) involves a heat transport mechanism similar
to the horizontal convection (Mullarney, Griffiths & Hughes 2004) altering the thermal
boundary layer structure. In figure 8(b) the corresponding boundary layer thickness is
plotted as a function of Raφ for several Γ at RF = 0.9. It is independent of Γ and
scales like δb ∼ Ra−0.20±0.05

φ (determined by the least square method). The Il regime law
(Grossmann & Lohse 2000) is also plotted and is consistent with our measurements at
RF = 0.9 in terms of exponent, with again an offset on the prefactor presumably due to
residual effects of the large-scale circulation driven at the sidewall.

3.4. Intermediate regimes
In §§ 3.2 and 3.3 we have identified two different temperature averages that seem to
characterise the system behaviour in the low/high flux ratio regimes. We now investigate
the case RF = 0.5 where the heat flux equally goes out through the top and the side.
As before, we seek power laws systematically varying Raφ and Γ . In the precedent
limiting regimes, heat transfers were dominantly radial or vertical, but the outgoing flux
is now evenly distributed between the top and side boundaries, so that a mixed state is
expected. Thus, we now carry out an analysis using both the mean temperature 〈T〉 and
the top/bottom temperature difference �Tv .

Figure 9 shows plots of both the mean temperature 〈T〉 and the bottom–top temperature
difference �Tv compensated by the low/high flux ratio scaling law, respectively, for a
fixed value of Γ = 8 and for the three flux ratios RF ∈ [0.1, 0.5, 0.9]. The best-fit power
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Figure 8. (a) Plot of the temperature variance with the altitude z for different Raφ at Γ = 16, Pr = 0.1
and RF = 0.9. The irregular profile for Raφ = 108 is due to a lack of statistical samples for this very costly
computation. The vertical dotted lines indicate the boundary layer altitudes based on the 90 % decrease of the
temperature variance near the bottom. (b) Log-log plot of the bottom boundary layer with Raφ for different Γ .
The continuous black line represents the Grossmann & Lohse (2000) scaling corresponding to the Il regime.
Empty/full symbols respectively indicate filtered/DNS simulations. The input parameters are Pr = 0.1 and
RF = 0.9.
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Figure 9. (a) Compensated mean temperature, (b) compensated bottom–top temperature difference as a
function of Raφ for RF = 0.1 (◦), RF = 0.5 (�), RF = 0.9 (♦). The error bars are computed by taking 3
times the standard deviation of the time series at the statistically stationary state multiplied by Ra1/5

φ Γ −4/5 and

Ra1/5
φ , respectively. Empty/full symbols respectively indicate filtered/DNS simulations. The input parameters

are Pr = 0.1 and Γ = 8.

laws for 〈T〉 and �Tv at the intermediate flux ratio of RF = 0.5 do not correspond to
the scaling laws observed in previous regimes, exhibiting dependencies of Ra−0.23±0.02

φ

and Ra−0.13±0.05
φ , respectively. To clarify these observations, let us define the averaging

operator

〈T〉 (r1 < r < r2) = 1
τπ(r2

2 − r2
1)

∫ t0+τ

t0

∫ 1

0

∫ 2π

0

∫ r2

r1

T r dr dϕ dz dt, (3.19)
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Figure 10. (a) Mean temperature 〈T〉 and (b) bottom–top temperature difference �Tv , defined on successive
rings with Raφ . The step radius is 0.8, starting from 0 to 0.8 and ending from 7.2 to 8. For (a), the
power-law exponent (slope) is measured for each ring. The inset in (b) shows a log-log plot of �Tv and
associated power-law exponents for the most inner rings. Empty/full symbols respectively indicate filtered/DNS
simulations. The input parameters are Pr = 0.1, Γ = 8 and RF = 0.1.

representing a temporal and volume average restricted to a particular radius range r1 < r <

r2. A similar definition without vertical integration is used for the top–bottom temperature
difference. In figure 10 we show such local averages for various increasing values of
the limiting radii r1 and r2. We fix RF = 0.1, Γ = 8 and 103 < Raφ < 109. The mean
temperature exhibits different power laws with varying exponents in different radial
regions. Close to the side boundary (7.2 < r < Γ = 8 typically), the local average 〈T〉
follows a Ra−1/5

φ scaling, corresponding the low flux ratio regime as expected from the
proximity with the sidewall circulation. In the bulk however (0 < r < 0.8 typically), an
exponent of −0.27 is obtained, reminiscent of the scaling observed for the high flux ratio
regime. This implies that even at a flux ratio RF = 0.1, the high flux ratio mechanism
persists in some form close to the centre. As shown in figure 10(b), �Tv(r1 < r < r2)
also exhibits a regime transition. For r > 4, �Tv becomes negative at low Raφ and
increasingly negative towards the edge, highlighting the sidewall impact on the dynamics.
In the centre region however (0 < r < 0.8), the power law for �Tv is consistent with the
Il Grossmann & Lohse (2000) regime, following a Ra−1/5

φ dependency, as expected from
the quasi-homogeneous behaviour of the bulk convection far from the sidewall.

The system is therefore inherently inhomogeneous with a permanent interaction between
two limiting regimes: one in the bulk defined by the Il Grossmann & Lohse (2000) regime,
and the other one near the edge defined by vertical natural convection. In the asymptotic
regimes, the limiting mechanism (side and bottom–top boundary layers, respectively, for
RF = 0.1 and 0.9) controls the overall heat transfers and thermal structure. The variation
of the flux ratio parameter involves a continuous transition with a gradual shift from the
dominance of one regime to another. But for any flux ratio, signatures of both regimes can
be seen in the radial profiles, as will be studied below. The regime interaction artificially
arises from describing an inhomogeneous system using global variables (〈T〉, �Tv). In
fact, these two mechanisms operate simultaneously but in different locations. The high
flux ratio regime is primarily located near the centre of the domain, while the low flux ratio
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Figure 11. Radial profile of the bottom–top temperature difference (a) and of the mean temperature (b) for
RF = 0.1 (�), RF = 0.5 (♦) and RF = 0.9 (◦). The horizontal lines indicate the radial-mean value for RF = 0.9
in (a) and RF = 0.1 in (b), while the dash lines indicate the rp value for RF = 0.1. The input parameters are
Raφ = 107, Γ = 8 and Pr = 0.1.

regime is predominantly located at the side. Our study hence shows that the global mean
temperature values 〈T〉 and �Tv are not adequate to fully characterise the system at any
flux ratio due to the presence of two distinct mechanisms, and the radial inhomogeneities
in the system statistics, as discussed in the next section.

3.5. Radial inhomogeneities
In this section we study the radial structure of the two temperature variables examined
previously. In figure 11 we present the spatio-temporal averages 〈T〉ϕz and 〈�Tv〉ϕ as
a function of radius, for different flux ratio values with Raφ = 108 and Γ = 8. For
RF = 0.9, �Tv is constant on a large part of the domain except near the sidewall where
an inhomogeneity is clearly visible. The lower the RF the larger this inhomogeneous
domain, as illustrated in figure 11(a). Indeed, as RF decreases, the sidewall circulation
gets stronger and perturbs the bulk forced convection that tends to vertically homogenise
the temperature. The radial evolution of the mean temperature (figure 11b) also reveals
two distinct regions. One region is located near the lateral sidewall and displays a nearly
constant temperature (excluding the thin boundary layer developing along the sidewall)
in good agreement with the volume-averaged temperature at low flux ratio, shown as a
thin horizontal line for RF = 0.1. The second, inner region shows a linear increase in
temperature towards the centre. An increase in the prescribed heat flux at the top affects
the radial temperature profile. Indeed, when RF = 0.9, the uniform temperature zone is
getting pushed towards the sidewall, while the same temperature gradient is observed
in the central region. Regarding the intermediate case RF = 0.5, the two distinct areas
previously identified can still be seen, but the plateau zone is smaller compared with the
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Figure 12. Log-log plot of the radial temperature gradient in (a) and of the RMS radial velocity in (b) as a
function of Raφ , with various values of Γ shown with symbols and of RF shown with colours. The dash-dotted
lines indicate the best-fit power law. The coloured areas are computed by taking the standard deviation of the
radial temperature gradient and the square of the radial velocity in the bulk for (a,b), respectively. Empty/full
symbols respectively indicate filtered/DNS simulations. The input parameter is Pr = 0.1.

case RF = 0.1. The size of this region is directly tied to the magnitude of the lateral heat
flux and will be further studied in the next section by analysing the flow structure.

In view of these two zones clearly identified in the radial temperature profile, we suggest
to approximate it (outside the outer thermal boundary layer) by considering the three
parameters model

〈T〉ϕz (r) =
⎧⎨
⎩

GTrp

(
1 − r

rp

)
+ Tp for r � rp,

Tp for r � rp,

(3.20)

with the constant temperature near the sidewall Tp, the slope of the temperature profile
in the linear region GT and the transition radius rp. In the next sections we focus on the
determination of each of these parameters and discuss their physical origin.

3.5.1. Radial temperature gradient
First, let us compute the slope of the radial temperature profile GT as |〈d〈T〉ϕz/dr〉r| and

the radial velocity modulus computed as
√

〈〈u〉2
ϕz〉r restricted to r � 5/8Γ and r � 0.95Γ ,

respectively, for RF = 0.1 and 0.9, 105 < Raφ < 108 and considering Γ = 4, 8 and 16. All
data are plotted in figure 12. Both the mean temperature gradient and the radial velocity
do not significantly depend on the flux ratio, nor on the aspect ratio, and they seem to be
anti-correlated with each other. Indeed, they both follow a power-law behaviour with Raφ ,
with the same approximate exponent 1/3 but positive for the radial velocity and negative
for the temperature gradient. This suggests that, to understand the physical origin of the
thermal gradient, a closer look at the flow structure is necessary.

To do so, we consider the representative case Raφ = 107 and Γ = 8. We compute in a
r, z plane and, for both regimes, RF = 0.1 and RF = 0.9, the norm of the velocity field
denoted Un, shown in the top panels of figure 13, as well as the velocity fluctuations field
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Figure 13. Map in the r, z plane of the mean (a,b) and fluctuating (c,d) velocity norm for (a,c) RF = 0.1
and (b,d) RF = 0.9. The dashed lines indicate the rp value. The input parameters are Pr = 0.1, Γ = 8 and
Raφ = 107.

denoted un
′, shown at the bottom. Those fields are computed as follows:

Un(r, z) = [〈u〉2
ϕ + 〈w〉2

ϕ

]1/2
, un

′(r, z) = [〈(u − 〈u〉ϕ)2〉ϕ + 〈(w − 〈w〉ϕ)2〉ϕ
]1/2

.

(3.21a,b)

In both regimes a global circulation surrounds the whole domain, with intense mean
velocities close to the boundaries. In the bulk, fluctuations dominate the flow, at least
for 0 < r < 5 at RF = 0.1 and up to the side boundary layer for RF = 0.9. These regions
correspond to the domain with a significant radial gradient of the mean temperature, shown
in figure 11. In order to understand the emergence of the radial temperature gradient, let
us look at the heat transport equation. We average it in time, in azimuth, but also over
a particular thickness h. This thickness corresponds to the altitude at which the vertical
profile of the radial velocity 〈u〉ϕr changes sign. We denote this averaging operation as
〈•〉ϕh. To clarify, we do not average over the whole depth because the terms related to
radial advection would vanish owing to continuity.

Our averaging procedure allows us to distinguish between the mean flow carrying hot
fluid from the centre to the edge of the domain in the upper region z > h and cold fluid
advected from the edge to the centre in the bottom region z < h.

By decomposing the temperature and velocity fields between mean and fluctuating
components, the heat equation can be written as

∂T ′

∂t
+ (U + u′) · ∇(T + T ′) = ∇2(T + T ′), (3.22)

where U = (U, V, W)T = 〈u〉ϕh and T = 〈T〉ϕh respectively represent the velocity and
temperature mean component and u′ = (u′, v′, w′)T, T ′ the fluctuating ones.

Thus, the heat equation reads

U
dT
dr

+
〈
u′ ∂T ′

∂r

〉
ϕh

+
〈
(W + w′)

∂T ′

∂z

〉
ϕh

= 1
h

+ 1
r

d
dr

(
r

dT
dr

)
+ 1

2πh

∫ 2π

0

∂T ′

∂z |z=h
dϕ.

(3.23)
Neglecting the mean vertical transport (third term on the left-hand side), diffusive terms

(second and third terms on the right-hand side) and the transport induced by fluctuations
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Figure 14. Radial profile of the mean temperature (a,b) and of the radial velocity modulus (c,d) for different
Raφ and for (a,c) RF = 0.1 and (b,d) RF = 0.9. The other input parameters are Pr = 0.1 and Γ = 16. The
dash-dotted lines correspond to the theoretical slope (3.24) for the top row and to the mean value of the radial
velocity modulus for the bottom row.

(second and fourth terms on the left-hand side), (3.23) reduces to

dT
dr

� 1
Uh

. (3.24)

The radial temperature gradient appears to be inversely proportional to the radial
velocity. Note that our approach here was guided and validated by empirical observations,
and we did not perform any formal ordering between the various terms of (3.23). In
figure 14 we plot the radial temperature profiles and the radial velocity modulus profiles
for both regimes RF = 0.1 and RF = 0.9, with Γ = 16 and Raφ between 105 and 108.
We also plot the theoretical radial temperature gradient estimated by (3.24). To do so,
U was estimated as the mean value of the radial velocity modulus (〈|〈u〉ϕ|〉z) when 2 <

r < 10 and 2 < r < 12, respectively, for RF = 0.1 and RF = 0.9, i.e. when the velocity
is relatively constant. It can be seen in figure 14 that when Raφ increases, the values
of the radial velocity modulus profile increases while the radial temperature gradient
decreases. Furthermore, we can see that our estimate (3.24) matches very well to the radial
temperature profiles observed in simulations.

This model derives from the assumption that the mean flow is responsible for the radial
temperature gradient. One could have argued that on the contrary, the radial temperature
gradient creates the flow by a baroclinic torque: the temperature gradient would then be
proportional (and not inversely proportional as we observe) to U. Thus, as will be further
detailed in the next sections, we conclude that the side cold temperature generates the mean
flow that then builds up the radial temperature gradient. Incidentally, the radial gradient
scaling with Raφ shown in figure 12, GT ∼ Ra−1/3

φ , implies that it decreases faster with

Raφ than the mean temperature of the system (〈T〉 ∼ Ra−1/5
φ , see (3.1)). This hints that the

radial thermal gradient is a secondary aspect of the thermal structure. At first order, the
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Figure 15. Map in the r, z plane of the temperature field averaged in time and azimuthal direction. The input
parameters are Raφ = 107, Γ = 8, RF = 0.1 and Pr = 0.1.

plateau scaling is the dominant factor, which explains why the scaling of the low flux ratio
regime works well at high Raφ values for all RF, at least in the vicinity of the sidewall.

3.5.2. Temperature plateau value
The physical reason behind the uniform radial temperature profile near the sidewall,
particularly visible at low RF, is not trivial. Indeed, figure 15 shows that the temperature
map averaged over azimuth and time, but not over depth, is very heterogeneous along
the vertical direction. A cold zone is localized at the bottom close to the edge, in close
connection with the localized, strong velocity zone seen in figure 13(a,c). Indeed, close
to the sidewall, there is a strong downward flow that then turns into a cold jet with a
characteristic radial extent, seemingly corresponding to the plateau area on the temperature
profile. The larger Raφ , the more extended this area. Actually, as we shall see, when Raφ

increases, the cold jet that drives the global recirculation gets more inertia and propagates
more into the domain. Averaging over depth, the Tp plateau value is well predicted by
(3.11) resulting from the analysis of the heat transfer through the side boundary layer
made in the first regime. We now focus on understanding the cold jet dynamics in order to
estimate the rp parameter.

3.5.3. Cold jet penetration length
We assume that the cold jet is a turbulent, self-similar structure, where a given amount of
momentum initially injected at the side is propagating in the radial direction and heated
from below by the lower plate. Following the seminal work of Morton, Taylor & Turner
(1956), it is well known that the thickness of jets and thermal plumes increases linearly
along their propagation direction due to the turbulent entrainment of the ambient fluid
(see also, e.g. List 1982; Turner 1986). Our structure can be seen as a mixture between a
jet and a plume, and so it is natural to fit its thickness by a linear growth as

b = α(Γ − r) + r0, (3.25)

where r0 is the radius close to the sidewall and α a constant known as the entrainment
coefficient. In figure 16 the thickness of the cold jet is plotted as a function of the radius
for the case where Raφ = 108, Γ = 8, and for RF = 0 and 0.7. We estimate the cold jet
thickness at a given r by seeking the depth where the ratio between the radial velocity
(averaged in time and azimuthal direction) and the maximal value of this velocity located
in the cold jet is equal to 0.5. We see the linear behaviour corresponding to the cold
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Figure 16. Plot of the cold plume thickness b as a function of the radius. The blue points are the data, while
the continuous line in orange is the best fit. The insets show the radial velocity normalized by the maximal
velocity inside the jet, as a function of the height normalized by the jet thickness. Several radii indicated by the
colour bar are shown going from near the edge (red) to the bulk (blue). Here Raφ = 108, Γ = 8, Pr = 0.1 and
RF = 0 and 0.7, respectively, for (a,b).

jet spreading starting near the edge and stopping where r ≈ 5/8Γ for RF = 0 and r ≈
0.8Γ for RF = 0.7. The experimental entrainment coefficient ranges between 0.091 and
0.121. These values are consistent in terms of order of magnitude with values reported in
the jets/plumes literature for other configurations (e.g. Carazzo, Kaminski & Tait 2006;
Fischer et al. 2007; Van Reeuwijk & Craske 2015). Note that it does not make sense to be
more quantitative here, since each configuration gives a different value for α.

Furthermore, in the encapsulated graphs of figure 16, we plot the normalized radial
velocity with the height normalized by the thickness of the jet. The radial velocity is
normalized by the maximum values observed within the jet denoted vmax, which are
determined using the expression

vmax(r) = max
[| 〈u(t, r, ϕ, 0 � z � b)〉ϕ |] . (3.26)

This analysis is made for various radii ranging from the edge to the bulk. For both
flux ratios in figure 16, all velocity profiles collapse on a unique profile that indicates a
self-similar structure. In addition, when considering a fixed value of Raφ and Γ , a lower
flux ratio results in a larger radial extent of the cold jet (not shown). The propagation of
a jet on a heated plate is a well-studied topic (Schneider & Wasel 1985; Steinrück 1995;
Higuera 1997; Fernandez-Feria, del Pino & Fernández-Gutiérrez 2014; Fernandez-Feria &
Castillo-Carrasco 2016), often examined in the context of a jet with uniform inlet velocity
on a uniformly heated (imposed temperature) plate. The extension of the jet is determined
by the competition between inertia and buoyancy forces. The velocity of the jet decreases
due to entrainment of surrounding fluid, reducing its inertia, while lateral heating generates
a vertical buoyancy force. The transition point is typically defined when the inertia is
balanced by the buoyancy forces, often using a local Froude number to quantify this
transition (Daniels & Gargaro 1993; Fernandez-Feria & Castillo-Carrasco 2016),

Fr(r) =
(

v2
max(r)

βg�Tjet(r)b3(r)

)1/2

. (3.27)

Here, �Tjet represents the temperature difference between the bottom and the outside of
the cold plume (〈T〉ϕ(r, z = 0) − 〈T〉ϕ(r, z = b)) at a given r. In figure 17 the local Froude
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Figure 17. Local Froude number as a function of radius for Raφ = 108, Γ = 8, Pr = 0.1 and RF going from
0 to 0.9. The dotted horizontal line indicates Fr = 1 and the encapsulated plot represents a zoom on the area
where 4.5 < r < 7.

number is plotted as a function of the radius for several RF going from 0 to 0.9. Two areas
can be distinguished, near the edge where the cold jet inertia dominates (Fr > 1) and in
the bulk where buoyancy finally dominates (Fr < 1). In order to reach the equilibrium
between buoyancy and inertia (Fr ≈ 1), the cold jet travels a greater distance as the
flux ratio is lower. When the Froude number falls below a certain threshold (function
of Pr, Γ and Raφ), the cold jet is unable to be maintained, resulting in the radially
inward motions being hindered by the adverse pressure gradient caused by buoyancy
(Daniels & Gargaro 1993; Higuera 1997). In figure 18 we plot the radial temperature
profile (〈T〉ϕz(r)) rescaled by the plateau temperature (Tp) as a function of the radius
rescaled by the radius where Fr = 1, for various RF. We observe that as r/r(Fr = 1)

approaches 1, the rescaled temperature profiles converge towards the plateau temperature.
This convergence is particularly clear when the flux ratio is low. As RF increases, the
cold jet region becomes less meaningful, and in the asymptotic case where RF = 1, it
effectively disappears since all the heat flux is evacuated at the top. The transition radius
in (3.20) is thus well determined by the parameter rp = r(Fr = 1). We might notice on
figure 18 that accounting for this threshold is satisfying at first order only: while the critical
Froude number is close to 1, its exact threshold value might also slightly depend on the
aspect ratio and the Rayleigh number, which is left to future works.

4. Conclusions and future works

In this paper a systematic numerical study was made of a system where a thin cylindrical
layer of fluid (Pr = 0.1) is heated from below, one part of the heating power being
extracted from the top surface, the other part being extracted from the side. This system
is inherently heterogeneous in the radial direction: its spatial thermal structure results
from the superposition of two asymptotic regimes corresponding, respectively, to forced
and natural convection. Natural convection is of a Rayleigh–Bénard type and is modified
by the presence of a convective structure, similar to a turbulent jet, along the bottom
surface, originating from the sidewall. Combining various scaling laws, we have quantified
these two regimes as well as their radial extent to propose a generic model of the radial
temperature profile. This 1-D model is more relevant than existing models (developed
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Figure 18. Radial temperature profile rescaled by the plateau temperature as a function of the radius rescaled
by the radius where Fr = 1, for RF going from 0 to 0.9. The input parameters are Raφ = 108, Γ = 8 and
Pr = 0.1.

mostly for nuclear safety analyses) that were based only on the average temperature of the
system and neglected the radial variations of temperature (see Rein et al. (2023) for more
details).

One of the extensions of this work is to relax the constraint of a uniform heat flux at
the top and make it dependent on the radial position. This will make the analysis more
consistent, since we have shown that the system cannot be considered as homogeneous in
temperature, at least in the radial direction. This issue requires careful consideration and
systematic analysis, following, for instance, the recent work of Clarté et al. (2021).

The conclusions of this study allow us to better predict the average quantities of the
system. However, relying solely on mean values is insufficient for nuclear safety analysis.
Because of the turbulent nature of the system, important fluctuations are observed (in the
calculations) at the sidewall (see e.g. the observed thermal branches in figure 2). Such
events cannot be predicted by considering only the mean values. Therefore, it is also
necessary to consider the statistics of fluctuations and the potential for extreme values
of heat flux. In this view and for the extreme regimes relevant for the nuclear safety
application (i.e. Raφ up to 1010), the direct simulation tool, even filtered, is limited, in
particular to collect enough data for statistical convergence. Hence, our numerical study
could be adequately complemented by an experimental study. All the above-mentioned
points will be the focus of future works.
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Appendix. Summary of the simulation parameters

Raφ Γ Pr RF DNS/filtered E N ηK/L

102 [4, 5, 8, 16] 0.1 0.1 DNS [2688,3840, 9216,33 792] 6 14.2,13.4, 8.3,6
103 [4, 8, 16] 0.1 0.9 DNS [2688, 9216, 33 792] 8 [5.8, 4.4, 3.1]
103 8 0.1 0.5 DNS 9216 8 3.7
104 [4, 8, 16] 0.1 [0.1, 0.9] DNS [2688, 9216, 33 792] 10 [3.3, 2.7, 2.3]
104 5 0.1 0.1 DNS 3840 10 2.8
104 8 0.1 0.5 DNS 9216 10 2.5
3.104 [4, 8, 16] 0.1 0.1 DNS [2688, 9216, 33 792] 10 [2.5, 2, 1.8]
105 [4, 8, 16] 0.1 [0.1, 0.9] DNS [2688, 9216, 33 792] 10 [1.88, 1.56, 1.52]
105 5 0.1 0.1 DNS 3840 10 1.92
105 8 0.1 0.5 DNS 9216 10 1.52
3.105 [4, 8, 16] 0.1 0.1 DNS [2688, 9216, 33 792] 10 [1.43, 1.35, 1.36]
106 [4, 8, 16] 0.1 [0.1, 0.9] DNS [9984, 33 608, 33 792] 10 [4, 3.3, 1.22]

9984,9984, 33 608, 3.86,3.6,
106 5,6, 10,12,14 0.1 0.1 DNS 33 792,33 792 10 3,2.73,2.46
106 8 0.1 0.5 DNS 33 608 10 3.22
3.106 [4, 8, 16] 0.1 0.1 DNS [9984, 33 608, 33 792] 10 [3, 2.5, 1.12]
107 [4, 8, 16] 0.1 [0.1, 0.9] DNS [9984, 33 608, 36 608] 10 [2.2, 1.8, 1]
107 5 0.1 0.1 DNS 9984 10 2.3
107 8 0.1 0.5 DNS 33 608 10 1.74
3.107 4 0.1 0.1 DNS 9984 10 1.8
3.107 [8, 16] 0.1 [0.1, 0.9] filtered [33 792, 36 608] 10 [1.44, 0.78]
108 4 0.1 [0.1, 0.9] DNS 9984 10 1.27
108 5 0.1 0.1 DNS 9984 10 1.2
108 8 0.1 0.5 filtered 33 792 10 1.3
108 [8, 16] 0.1 [0.1, 0.9] filtered [33 792, 36 608] 10 [1.33, 0.62]
3.108 [4, 8, 16] 0.1 [0.1] filtered [9984, 33 792, 36 608] 10 [1.1, 1, 0.45]
109 [4, 8, 16] 0.1 [0.1, 0.9] filtered [9984, 33 792, 36 608] 10 [0.94, 0.7, 0.23]

Table 1. Simulations summary (DNS or filtered) according to the physical and numerical parameters.
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