# Real Hypersurfaces <br> in Complex Two-Plane Grassmannians with Vanishing Lie Derivative 

Young Jin Suh


#### Abstract

In this paper we give a characterization of real hypersurfaces of type $A$ in a complex twoplane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right)$ which are tubes over totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ in terms of the vanishing Lie derivative of the shape operator $A$ along the direction of the Reeb vector field $\xi$.


## 0 Introduction

In the geometry of real hypersurfaces there were some characterizations of homogeneous real hypersurfaces of type $A_{1}, A_{2}$ in complex projective space $\mathbb{C} P^{m}$ and of type $A_{0}, A_{1}, A_{2}$ in complex hyperbolic space $\left(C^{m}\right.$. As an example, we say that the shape operator $A$ and the structure tensor $\phi$ commuting with each other, that is $A \phi=\phi A$, is a model characterization of this type hypersurface, which is a tube over a totally geodesic $\mathbb{C} P^{k}$ in $\mathbb{C} P^{m}$ (See Okumura [8]), a tube over a totally geodesic $\mathbb{C} H^{k}$ in $\mathbb{C} H^{m}$, or a horosphere in $\left(\mathrm{CH}^{m}\right.$ (See Montiel and Romero [7]).

Now let us denote by $G_{2}\left(\mathbb{C}^{m+2}\right)$ the set of all complex two-dimensional linear subspaces in $\mathbb{C}^{m+2}$, which is said to be a complex two-plane Grassmannian. This Riemannian symmetric space $G_{2}\left(\mathbb{C}^{m+2}\right)$ is equipped with both a Kähler structure $J$ and a quaternionic Kähler structure $\mathfrak{J}$ not containing $J$. Then for real hypersurfaces $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ we have considered the two natural geometric conditions that $[\xi]=\operatorname{Span}\{\xi\}$ or $\mathfrak{D}^{\perp}=\operatorname{Span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ be invariant under the shape operator $A$ of $M$, where $\xi=-J N$ and $J_{\nu}=-J_{\nu} N, \nu=1,2,3$ for a unit normal vector field $N$ of $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$. (See the details in [2, 3].)

The first result in this direction is the classification of real hypersurfaces in

$$
G_{2}\left(\mathbb{C}^{m+2}\right)
$$

satisfying both conditions mentioned above. Namely, Berndt and the present author [2] have proved the following:

Theorem A Let $M$ be a connected real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. Then both $[\xi]$ and $\mathfrak{D}^{\perp}$ are invariant under the shape operator of $M$ if and only if
(A) $M$ is an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$, or
(B) $m$ is even, say $m=2 n$, and $M$ is an open part of a tube around a totally geodesic (O) $P^{n}$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

[^0]In [3], Berndt and the present author have given a characterization of real hypersurfaces of type $A$ in Theorem A when the shape operator $A$ of $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ commutes with the structure tensor $\phi$, which is equivalent to the condition that the Reeb flow on $M$ is isometric, that is $\mathcal{L}_{\xi} g=0$, where $\mathcal{L}$ (resp. $g$ ) denotes the Lie derivative(resp. the induced Riemannian metric) of $M$ in the direction of the Reeb vector field $\xi$. Namely, we proved the following:
Theorem B Let $M$ be a connected orientable real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. Then the Reeb flow on $M$ is isometric if and only if $M$ is an open part of a tube around some totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

When the Reeb flow on $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ is isometric in Theorem B, we say that the Reeb vector field $\xi$ on $M$ is Killing. This means that the metric tensor $g$ is invariant under the Reeb flow of $\xi$ on $M$. In this paper, specifically we assert a characterization of real hypersurfaces of type $A$ in Theorem $A$ by another geometric Lie invariant, that is, the shape operator $A$ of $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ is invariant under the Reeb flow on $M$ as follows:

Main Theorem Let $M$ be a connected orientable real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. Then the Reeb flow on $M$ satisfies $\mathcal{L}_{\xi} A=0$ if and only if $M$ is an open part of a tube around some totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

## 1 Riemannian Geometry of $G_{2}\left(\mathbb{C}^{m+2}\right)$

In this section we give basic material about complex two-plane Grassmannians

$$
G_{2}\left(\mathbb{C}^{m+2}\right),
$$

for details see [2, 3]. The special unitary group $G=S U(m+2)$ acts transitively on $G_{2}\left(\mathbb{C}^{m+2}\right)$ with stabilizer isomorphic to $K=S(U(2) \times U(m)) \subset G$. Then $G_{2}\left(\mathbb{C}^{m+2}\right)$ can be identified with the homogeneous space $G / K$, which we equip with the unique analytic structure for which the natural action of $G$ on $G_{2}\left(\mathbb{C}^{m+2}\right)$ becomes analytic.

Now let us denote by $\mathfrak{g}$ and $\mathfrak{f}$ the Lie algebra of $G$ and $K$, respectively, and by $\mathfrak{m}$ the orthogonal complement of $\mathfrak{f}$ in $\mathfrak{g}$ with respect to the Cartan-Killing form $B$ of $\mathfrak{g}$. Then $\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{m}$ is an $\operatorname{Ad}(K)$-invariant reductive decomposition of $\mathfrak{g}$. We put $o=e K$ and identify $T_{o} G_{2}\left(\mathbb{C}^{m+2}\right)$ with $\mathfrak{m}$ in the usual manner. Since $B$ is negative definite on $\mathfrak{g}$, its negative restricted to $\mathfrak{m} \times \mathfrak{m}$ yields a positive definite inner product on $\mathfrak{m}$. By $\operatorname{Ad}(K)$-invariance of $B$ this inner product can be extended to a $G$-invariant Riemannian metric $g$ on $G_{2}\left(\mathbb{C}^{m+2}\right)$.

The Lie algebra $\mathfrak{f}$ has the direct sum decomposition $\mathfrak{f}=\operatorname{su}(m) \oplus \operatorname{su}(2) \oplus \mathfrak{R}$, where $\mathfrak{R}$ is the center of $\mathfrak{f}$. Viewing $\mathfrak{f}$ as the holonomy algebra of $G_{2}\left(\mathbb{C}^{m+2}\right)$, the center $\mathfrak{R}$ induces a Kähler structure $J$ and the su(2)-part a quaternionic Kähler structure $\mathfrak{J}$ on $G_{2}\left(\mathbb{C}^{m+2}\right)$. If $J_{1}$ is any almost Hermitian structure in $\mathfrak{J}$, then $J J_{1}=J_{1} J$, and $J J_{1}$ is a symmetric endomorphism with $\left(J J_{1}\right)^{2}=I$ and $\operatorname{tr}\left(J J_{1}\right)=0$.

A canonical local basis $J_{1}, J_{2}, J_{3}$ of $\mathfrak{J}$ consists of three local almost Hermitian structures $J_{\nu}$ in $\mathfrak{J}$ such that $J_{\nu} J_{\nu+1}=J_{\nu+2}=-J_{\nu+1} J_{\nu}$, where the index is taken modulo three. Since $\mathfrak{J}$ is parallel with respect to the Riemannian connection $\bar{\nabla}$ of
$\left(G_{2}\left(\mathbb{C}^{m+2}\right), g\right)$, there exist for any canonical local basis $J_{1}, J_{2}, J_{3}$ of $\mathfrak{J}$ three local oneforms $q_{1}, q_{2}, q_{3}$ such that

$$
\begin{equation*}
\bar{\nabla}_{X} J_{\nu}=q_{\nu+2}(X) J_{\nu+1}-q_{\nu+1}(X) J_{\nu+2} \tag{1.1}
\end{equation*}
$$

for all vector fields $X$ on $G_{2}\left(\mathbb{C}^{m+2}\right)$.

## 2 Some Fundamental Formulas for Real Hypersurfaces in $G_{2}\left(C^{m+2}\right)$

In this section we derive some basic formulae from the Codazzi equation for a real hypersurface $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

The induced Riemannian metric on $M$ will also be denoted by $g$, and $\nabla$ denotes the Riemannian connection of $(M, g)$. The Kähler structure $J$ of $G_{2}\left(\mathbb{C}^{m+2}\right)$ induces an almost contact metric structure $(\phi, \xi, \eta, g)$ on $M$. Furthermore, let $J_{1}, J_{2}, J_{3}$ be a canonical local basis of $\mathfrak{J}$. Then each $J_{\nu}$ induces an almost contact metric 3-structure $\left(\phi_{\nu}, \xi_{\nu}, \eta_{\nu}, g\right)$ on $M$. Using the expression for the curvature tensor $\bar{R}$ of $G_{2}\left(\mathbb{C}^{m+2}\right)$ given in [2] and [3], the Codazzi equation becomes

$$
\begin{aligned}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X= & \eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}(X) \phi_{\nu} Y-\eta_{\nu}(Y) \phi_{\nu} X-2 g\left(\phi_{\nu} X, Y\right) \xi_{\nu}\right\} \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}(\phi X) \phi_{\nu} \phi Y-\eta_{\nu}(\phi Y) \phi_{\nu} \phi X\right\} \\
& +\sum_{\nu=1}^{3}\left\{\eta(X) \eta_{\nu}(\phi Y)-\eta(Y) \eta_{\nu}(\phi X)\right\} \xi_{\nu} .
\end{aligned}
$$

The following identities can be proved in a straightforward method and will be used frequently in subsequent calculations, (see [10, 11]):

$$
\begin{gather*}
\phi_{\nu+1} \xi_{\nu}=-\xi_{\nu+2}, \quad \phi_{\nu} \xi_{\nu+1}=\xi_{\nu+2} \\
\phi \xi_{\nu}=\phi_{\nu} \xi, \quad \eta_{\nu}(\phi X)=\eta\left(\phi_{\nu} X\right)  \tag{2.1}\\
\phi_{\nu} \phi_{\nu+1} X=\phi_{\nu+2} X+\eta_{\nu+1}(X) \xi_{\nu} \\
\phi_{\nu+1} \phi_{\nu} X=-\phi_{\nu+2} X+\eta_{\nu}(X) \xi_{\nu+1}
\end{gather*}
$$

where the index $\nu$ denotes $\nu=1,2,3$.
Now let us put

$$
J X=\phi X+\eta(X) N, \quad J_{\nu} X=\phi_{\nu} X+\eta_{\nu}(X) N
$$

for any tangent vector $X$ of a real hypersurface $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$, where $N$ denotes a unit normal vector field of $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$. Then from this and the formulas (1.1)
and (2.1) we have that

$$
\begin{gather*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi, \quad \nabla_{X} \xi=\phi A X  \tag{2.2}\\
\nabla_{X} \xi_{\nu}=q_{\nu+2}(X) \xi_{\nu+1}-q_{\nu+1}(X) \xi_{\nu+2}+\phi_{\nu} A X  \tag{2.3}\\
\left(\nabla_{X} \phi_{\nu}\right) Y=-q_{\nu+1}(X) \phi_{\nu+2} Y+q_{\nu+2}(X) \phi_{\nu+1} Y+\eta_{\nu}(Y) A X-g(A X, Y) \xi_{\nu} \tag{2.4}
\end{gather*}
$$

Moreover, from $J J_{\nu}=J_{\nu} J, \nu=1,2,3$, it follows that

$$
\begin{equation*}
\phi \phi_{\nu} X=\phi_{\nu} \phi X+\eta_{\nu}(X) \xi-\eta(X) \xi_{\nu} \tag{2.5}
\end{equation*}
$$

## 3 Proof of the Main Theorem

Before giving the proof of our theorem, let us determine which of the model hypersurfaces given in Theorem A satisfy the formula $\mathcal{L}_{\xi} A=0$. First note that

$$
\begin{aligned}
\left(\mathcal{L}_{\xi} A\right) X & =\mathcal{L}_{\xi}(A X)-A \mathcal{L}_{\xi} X \\
& =\nabla_{\xi}(A X)-\nabla_{A X} \xi-A\left(\nabla_{\xi} X-\nabla_{X} \xi\right) \\
& =\left(\nabla_{\xi} A\right) X-\nabla_{A X} \xi+A \nabla_{X} \xi \\
& =\left(\nabla_{\xi} A\right) X-\phi A^{2} X+A \phi A X \\
& =0
\end{aligned}
$$

for any vector field $X$ on $M$. Then the assumption $\mathcal{L}_{\xi} A=0$ holds if and only if $\left(\nabla_{\xi} A\right) X=\phi A^{2} X-A \phi A X$. In this section we will show that only a tube over a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ satisfies the formula $\mathcal{L}_{\xi} A=0$.

Now let us consider a real hypersurfaces of type $A$, that is, a tube over a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$. By Proposition A of [11] we know that $\xi \in \mathfrak{D}^{\perp}$ and that the shape operator $A$ and the structure tensor $\phi$ commute with each other. Then this implies that $\xi$ is principal, that is, $A \xi=\alpha \xi$, where $\alpha=\sqrt{8} \cot (\sqrt{8} r)$. Differentiating this one, by (2.2) we have

$$
\begin{aligned}
\left(\nabla_{X} A\right) \xi & =\nabla_{X}(A \xi)-A \nabla_{X} \xi \\
& =\alpha \nabla_{X} \xi-A \nabla_{X} \xi \\
& =\alpha \phi A X-A \phi A X
\end{aligned}
$$

On the other hand, by the equation of Codazzi and the assumption of $\mathcal{L}_{\xi} A=0$ we have

$$
\begin{align*}
\left(\nabla_{X} A\right) \xi=- & \phi X-\sum_{\nu}\left\{\eta_{\nu}(\xi) \phi_{\nu} X-\eta_{\nu}(X) \phi_{\nu} \xi\right\}  \tag{3.1}\\
& -3 \sum_{\nu} \eta_{\nu}(\phi X) \xi_{\nu}+\phi A^{2} X-A \phi A X
\end{align*}
$$

where $\sum_{\nu}$ denotes the summation from $\nu=1$ to 3 . Then from these two formulas we have

$$
\begin{align*}
\alpha \phi A X-A \phi A X=- & \phi X-\phi_{1} X+\sum_{\nu} \eta_{\nu}(X) \phi_{\nu} \xi  \tag{3.2}\\
& -3 \sum_{\nu} \eta_{\nu}(\phi X) \xi_{\nu}+\phi A^{2} X-A \phi A X
\end{align*}
$$

Now let us check case by case whether two sides in (3.2) are equal to each other as follows:

Case 1. $X=\xi=\xi_{1}$
In this case it can be easily checked that two sides are equal to each other.

Case 2. $X=\xi_{2}, \xi_{3}$
Then we may put $A \xi_{2}=\beta \xi_{2}, A \xi_{3}=\beta \xi_{3}$, where $\beta=\sqrt{2} \cot (\sqrt{2} r)$. Then by putting $X=\xi_{2}$ in (3.2) we have

$$
\alpha \beta \phi \xi_{2}=-3 \xi_{3}-3 \sum_{\nu} \eta_{\nu}\left(\phi \xi_{2}\right) \xi_{\nu}+\beta^{2} \phi \xi_{2}
$$

From this we know $\beta(\alpha-\beta) \phi \xi_{2}=2 \xi_{3}$, which implies that both sides are equal to $2 \xi_{3}$.

Case 3. $X \in T_{\lambda}=\left\{X \mid X \perp \mathbb{H} \xi, \phi X=\phi_{1} X\right\}$
Then by putting $X \in T_{\lambda}, \lambda=-\sqrt{2} \tan (\sqrt{2} r)$ in (3.2) we have

$$
\alpha \lambda \phi X=-\phi X-\phi_{1} X+\sum_{\nu} \eta_{\nu}(X) \phi_{\nu} \xi-3 \sum_{\nu} \eta_{\nu}(\phi X) \xi_{\nu}+\lambda^{2} \phi X
$$

from this it implies that $\lambda(\alpha-\lambda) \phi X=-2 \phi X$. This gives our assertion.

Case 4. $X \in T_{\mu}=\left\{X \mid X \perp \mathbb{H} \xi, \phi X=-\phi_{1} X\right\}$
By putting $X \in T_{\mu}, \mu=0$, in (3.2) we know that both sides are all vanishing.
Accordingly we conclude that real hypersurfaces of type $A$ in Theorem A satisfy $\mathcal{L}_{\xi} A=0$. In this section we are going to give the complete classification of real hypersurfaces $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ satisfying $\mathcal{L}_{\xi} A=0$.

Now let us take an orthonormal basis $\left\{e_{1}, \ldots, e_{4 m-1}\right\}$ for the tangent space $T_{x} M$, $x \in M$, of a real hypersurface $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$. Then by the equation of Codazzi we may put

$$
\begin{align*}
\left(\nabla_{e_{i}} A\right) X-\left(\nabla_{X} A\right) e_{i}= & \eta\left(e_{i}\right) \phi X-\eta(X) \phi e_{i}-2 g\left(\phi e_{i}, X\right) \xi  \tag{3.3}\\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}\left(e_{i}\right) \phi_{\nu} X-\eta_{\nu}(X) \phi_{\nu} e_{i}-2 g\left(\phi_{\nu} e_{i}, X\right) \xi_{\nu}\right\} \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}\left(\phi e_{i}\right) \phi_{\nu} \phi X-\eta_{\nu}(\phi X) \phi_{\nu} \phi e_{i}\right\} \\
& +\sum_{\nu=1}^{3}\left\{\eta\left(e_{i}\right) \eta_{\nu}(\phi X)-\eta(X) \eta_{\nu}\left(\phi e_{i}\right)\right\} \xi_{\nu},
\end{align*}
$$

from which, together with the formulas (2.1) and (2.5) it follows that

$$
\begin{align*}
& \sum_{i=1}^{4 m-1} g\left(\left(\nabla_{e_{i}} A\right) X, \phi e_{i}\right)  \tag{3.4}\\
&=-(4 m-2) \eta(X) \\
&+\sum_{\nu}\left\{g\left(\phi_{\nu} X, \phi \xi_{\nu}\right)+\eta_{\nu}(X) \operatorname{Tr} \phi \phi_{\nu}+2 g\left(\phi_{\nu}^{2} \xi, X\right)\right\} \\
&-\sum_{\nu} g\left(\phi_{\nu} \phi X, \phi \phi_{\nu} \xi\right)-\sum_{\nu} \eta(X) g\left(\phi \xi_{\nu}, \phi \xi_{\nu}\right) \\
&=-(4 m-2) \eta(X)-3 \eta(X)+\sum_{\nu} \eta_{\nu}(\xi) \eta_{\nu}(X)+\sum_{\nu} \eta_{\nu}(X) \operatorname{Tr} \phi \phi_{\nu} \\
& \quad-\sum_{\nu} \eta_{\nu}(\xi) g\left(\phi_{\nu} \phi X, \xi\right)-3 \eta(X)+\sum_{\nu} \eta^{2}\left(\xi_{\nu}\right) \eta(X) \\
&=-4(m+1) \eta(X)+2 \sum_{\nu} \eta_{\nu}(\xi) \eta_{\nu}(X)+\sum_{\nu} \eta_{\nu}(X) \operatorname{Tr} \phi \phi_{\nu}
\end{align*}
$$

where in the second equality we have used the formulas

$$
\begin{aligned}
& \sum_{\nu} g\left(\phi_{\nu} \phi X, \phi \phi_{\nu} \xi\right)=\sum_{\nu} \eta_{\nu}(\xi) g\left(\phi_{\nu} \phi X, \xi\right), \\
& \sum_{\nu} g\left(\phi \xi_{\nu}, \phi \xi_{\nu}\right)=3 \eta(X)-\sum_{\nu} \eta^{2}\left(\xi_{\nu}\right) \eta(X), \\
& \sum_{\nu} g\left(\phi_{\nu}^{2} \xi, X\right)=-3 \eta(X)+\sum_{\nu} \eta_{\nu}(\xi) \eta_{\nu}(X),
\end{aligned}
$$

and respectively in the third equality,

$$
-\sum_{\nu} \eta_{\nu}(\xi) g\left(\phi_{\nu} \phi X, \xi\right)=\sum_{\nu} \eta_{\nu}(\xi) \eta_{\nu}(X)-\sum_{\nu} \eta(X) \eta_{\nu}^{2}(\xi)
$$

Now let us denote by $U$ the vector $\nabla_{\xi} \xi=\phi A \xi$. Then by (2.2) its derivative can be given by

$$
\nabla_{e_{i}} U=\eta(A \xi) A e_{i}-g\left(A e_{i}, A \xi\right) \xi+\phi\left(\nabla_{e_{i}} A\right) \xi+\phi A \nabla_{e_{i}} \xi
$$

Then its divergence is given by

$$
\begin{align*}
\operatorname{div} U & =\sum_{i} g\left(\nabla_{e_{i}} U, e_{i}\right)  \tag{3.5}\\
& =h \eta(A \xi)-\eta\left(A^{2} \xi\right)-g\left(\left(\nabla_{e_{i}} A\right) \xi, \phi e_{i}\right)-g\left(\phi A e_{i}, A \phi e_{i}\right)
\end{align*}
$$

where $h$ denotes the trace of the shape operator of $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.
Now we calculate the squared norm of the following:

$$
\begin{align*}
\|\phi A-A \phi\|^{2} & =\sum_{i} g\left((\phi A-A \phi) e_{i},(\phi A-A \phi) e_{i}\right)  \tag{3.6}\\
& =\sum_{i, j} g\left((\phi A-A \phi) e_{i}, e_{j}\right) g\left((\phi A-A \phi) e_{i}, e_{j}\right) \\
& =\sum_{i, j}\left\{g\left(\phi A e_{j}, e_{i}\right)+g\left(\phi A e_{i}, e_{j}\right)\right\}\left\{g\left(\phi A e_{j}, e_{i}\right)+g\left(\phi A e_{i}, e_{j}\right)\right\} \\
& =2 \sum_{i, j} g\left(\phi A e_{j}, e_{i}\right) g\left(\phi A e_{j}, e_{i}\right)+2 \sum_{i, j} g\left(\phi A e_{j}, e_{i}\right) g\left(\phi A e_{i}, e_{j}\right) \\
& =-2 \sum_{j} g\left(\phi A e_{j}, A \phi e_{j}\right)+2 \sum_{j} g\left(\phi A e_{j}, \phi A e_{j}\right) \\
& =2 \operatorname{Tr} A^{2}-2 h \eta(A \xi)+2 \sum_{i} g\left(\left(\nabla_{e_{i}} A\right) \xi, \phi e_{i}\right)+2 \operatorname{div} U
\end{align*}
$$

where $\sum_{i}\left(\right.$ resp. $\left.\sum_{i, j}\right)$ denotes the summation from $i=1$ to $i=4 m-1$ (resp. from $i, j=1$ to $4 m-1$ ) and in the final equality we have used (3.5). From this together with the formula (3.4) it follows that

$$
\begin{align*}
\operatorname{div} U= & \frac{1}{2}\|\phi A-A \phi\|^{2}-\operatorname{Tr} A^{2}+\alpha h  \tag{3.7}\\
& +4(m+1)-2 \sum_{\nu} \eta_{\nu}^{2}(\xi)-\sum_{\nu} \eta_{\nu}(\xi) \operatorname{Tr} \phi \phi_{\nu}
\end{align*}
$$

From this formula, together with the assumption $\mathcal{L}_{\xi} A=0$ we want to show that the structure tensor $\phi$ and the shape operator $A$ commute with each other, that is, $\phi A-A \phi=0$. Then by Theorem B we are able to assert that $M$ is a tube over a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

Now let us take an inner product (3.1) with the Reeb vector field $\xi$. Then we have

$$
\begin{align*}
g\left(\left(\nabla_{X} A\right) \xi, \xi\right) & =-\sum_{\nu} \eta_{\nu}(\xi) \eta_{\nu}(\phi X)-3 \sum_{\nu} \eta_{\nu}(\phi X) \eta_{\nu}(\xi)-g(A \phi A X, \xi)  \tag{3.8}\\
& =-4 \sum_{\nu} \eta_{\nu}(\xi) \eta_{\nu}(\phi X)+g(A X, U)
\end{align*}
$$

On the other hand, by the almost contact structure $\phi$ we have

$$
\phi U=\phi^{2} A \xi=-A \xi+\eta(A \xi) \xi=-A \xi+\alpha \xi
$$

where the function $\alpha$ denotes $\eta(A \xi)$. From this, differentiating and using (2.2) gives

$$
\begin{align*}
\left(\nabla_{X} \phi\right) U+\phi \nabla_{X} U=- & \left(\nabla_{X} A\right) \xi-A \nabla_{X} \xi+(X \alpha) \xi+\alpha \nabla_{X} \xi  \tag{3.9}\\
& -g(A X, U) \xi+\phi \nabla_{X} U
\end{align*}
$$

Then by taking an inner product (3.9) with $\xi$ and using $U=\phi A \xi$ we have

$$
\begin{aligned}
g\left(\left(\nabla_{X} A\right) \xi, \xi\right) & =g(A X, U)+X \alpha-g\left(\nabla_{X} \xi, A \xi\right) \\
& =2 g(A X, U)+X \alpha
\end{aligned}
$$

From this, together with (3.8), we have

$$
\begin{equation*}
g(A X, U)+4 \sum_{\nu} \eta_{\nu}(\xi) \eta_{\nu}(\phi X)+X \alpha=0 \tag{3.10}
\end{equation*}
$$

Now substituting (3.1) and (3.10) into (3.9) and using (2.2), we have

$$
\begin{align*}
4 \sum_{\nu} \eta_{\nu}(\xi) \eta_{\nu}(\phi X)+\phi \nabla_{X} U=\phi X & +\sum_{\nu}\left\{\eta_{\nu}(\xi) \phi_{\nu} X-\eta_{\nu}(X) \phi_{\nu} \xi\right\}  \tag{3.11}\\
& +3 \sum_{\nu} \eta_{\nu}(\phi X) \xi_{\nu}-\phi A^{2} X+\alpha \phi A X
\end{align*}
$$

Then the above equation can be rewritten as follows:

$$
\begin{aligned}
\phi \nabla_{X} U=\phi X & -\phi A^{2} X+\alpha \phi A X+\sum_{\nu}\left\{\eta_{\nu}(\xi) \phi_{\nu} X-\eta_{\nu}(X) \phi_{\nu} \xi\right\} \\
& +3 \sum_{\nu} \eta_{\nu}(\phi X) \xi_{\nu}-4 \sum_{\nu} \eta_{\nu}(\xi) \eta_{\nu}(\phi X) \xi
\end{aligned}
$$

From this, summing up from 1 to $4 m-1$ for an orthonormal basis of $T_{x} M, x \in M$, we have

$$
\begin{align*}
\sum_{i} g\left(\phi \nabla_{e_{i}} U, \phi e_{i}\right)= & \operatorname{div} U+\|U\|^{2}  \tag{3.12}\\
= & (4 m-2)-\operatorname{Tr} A^{2}+\eta\left(A^{2} \xi\right)+\alpha\{\operatorname{Tr} A-\alpha\} \\
& \quad-\sum_{\nu} \eta_{\nu}(\xi) \operatorname{Tr} \phi \phi_{\nu} \\
& \quad-\sum_{\nu} g\left(\phi_{\nu} \xi, \phi_{\nu} \xi\right)+3 \sum_{\nu} g\left(\xi_{\nu}, \xi_{\nu}\right)-3 \sum_{\nu} \eta^{2}\left(\xi_{\nu}\right)
\end{align*}
$$

where in the first equality we have used the notion of $\operatorname{div} U$. Then it follows that

$$
\begin{align*}
\operatorname{div} U= & (4 m-2)-\operatorname{Tr} A^{2}+\alpha \operatorname{Tr} A-\sum_{\nu} \eta_{\nu}(\xi) \operatorname{Tr} \phi \phi_{\nu}  \tag{3.13}\\
& -\left\{3-\sum_{\nu} \eta\left(\xi_{\nu}\right) \eta\left(\xi_{\nu}\right)\right\}+9-3 \sum_{\nu} \eta^{2}\left(\xi_{\nu}\right) \\
= & 4(m+1)+\alpha h-\operatorname{Tr} A^{2}-\sum_{\nu} \eta_{\nu}(\xi) \operatorname{Tr} \phi \phi_{\nu}-2 \sum_{\nu} \eta^{2}\left(\xi_{\nu}\right),
\end{align*}
$$

where we have used $\|U\|^{2}=\|A \xi\|^{2}-\alpha^{2}$ in (3.12).
Now if we compare (3.7) with the formula (3.13), we finally assert that the squared norm $\|A \phi-\phi A\|^{2}$ vanishes, that is, the structure tensor $\phi$ and the shape operator $A$ commute with each other. Then by Theorem B in the introduction we are able to assert that $M$ is a tube over a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$. This completes the proof of our Main Theorem.

Remark 3.1 Let $M$ be a real hypersurface in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right)$ satisfying $\mathcal{L}_{\xi} \phi=0$. Then it is not difficult to show that the conditions $\mathcal{L}_{\xi} \phi=0$ and $\mathcal{L}_{\xi} A=0$ are equivalent. So we remark here that a real hypersurface $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ satisfying $\mathcal{L}_{\xi} \phi=0$ is also congruent to a tube over a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

Remark 3.2 In paper [10] due to the present author we have proved some nonexistence properties for real hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with parallel shape operator $\nabla A=0$. Also in [11] we have investigated some real hpersurfaces $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ when the structure tensors $\phi_{\nu}, \nu=1,2,3$, commute with the shape operator $A$ of $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

Acknowledgement The author would like to express his sincere gratitude to the referee for careful reading of the manuscript and valuable comments.

## References

[1] J. Berndt, Real hypersurfaces in quaternionic space forms. J. Reine Angew. Math. 419(1991), 9-26.
[2] J. Berndt and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians. Monat. Math. 127(1999), 1-14.
[3] Isometric flows on real hypersurfaces in complex two-plane Grassmannians. Monat. Math. 137(2002), 87-98.
[4] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space. Trans. Amer. Math. Soc. 269(1982), 481-499.
[5] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space. Trans. Amer. Math. Soc. 296(1986), 137-149.
[6] A. Martinez and J. D. Pérez, Real hypersurfaces in quaternionic projective space. Ann. Mat. Pura Appl. 145(1986), 355-384.
[7] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space. Geom. Dedicata 20(1986), 245-261.
[8] M. Okumura, On some real hypersurfaces of a complex projective space. Trans. Amer. Math. Soc. 212(1975), 355-364.
[9] J. D. Pérez and Y. J. Suh, Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_{i}} R=0$. Differential Geom. and Appl. 7(1997), 211-217.
[10] Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator. Bull. Austral. Math. Soc. 67(2003), 493-502.
[11] , Real hypersurfaces in complex two-plane Grassmannians with commuting shape operator. Bull. Austral. Math. Soc. 68(2003), 379-393.
[12] K. Yano and M. Kon, CR-submanifolds of Kaehlerian and Sasakian manifolds. Birkhäuser, Boston, Basel, Strutgart, 1983.

Kyungpook National University
Department of Mathematics
Taegu 702-701
Korea
e-mail: yjsuh@mail.knu.ac.kr


[^0]:    Received by the editors February 1, 2004; revised July 5, 2004.
    This work was supported by grant Proj. No. R14-2002-003-01001-0 from the Korea Science \& Engineering Foundation.

    AMS subject classification: Primary: 53C40; secondary: 53C15.
    (C) Canadian Mathematical Society 2006.

