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PROJECTIVE RESOLUTIONS FOR GRAPH PRODUCTS

by DANIEL E. COHEN
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Let I" be a finite graph together with a group G, at each vertex v. The graph product G(T) is obtained from
the free product of all G, by factoring out by the normal subgroup generated by {g~'h~'gh;geG,, heG,} for
all adjacent v, w.

In this note we construct a projective resolution for G(I') given projective resolutions for each G, and
obtain some applications.
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Let I" be a finite graph together with a group G, at each vertex v. The graph product
G(I') is obtained from the free product of all G, by factoring out by the normal
subgroup generated by {g~'h"'gh;ge G, heG,} for all adjacent v, w.

In this note we construct a projective resolution for G(I') given projective resolutions
for each G,, and obtain some applications. The applications are already known, but the
current setting provides extra insight into the situations discussed. The construction is
quite easy, since G(I') is built up from the vertex groups by direct products and
amalgamated free products. For ease of notation, we denote G(I') simply by G.

To each vertex group G, we take a projective resolution by right modules for which
the zero-dimensional module is the group ring. We denote this resolution by Q,—+RG,—
R—0.

We will need to choose an ordering of the vertices. Let K be a complete subgraph of
I', whose vertices, in the chosen order, are v,,...,v,. Then G(K)=G, x-- xG,,. The
tensor product Q, ®z - ®rQ,, is an RG(K)-module, and we define Py to be
(Qu, ®r " ®rQ,.) ®rey) RG. This, of course, stands for a sequence of RG-modules.

Let C(I') be the set of all complete subgraphs of I'. Define P(I') to be the direct sum
Y kecay Px- The boundary operators in the projective resolutions of the vertex groups
give, in the usual way, boundary operators in tensor products. This gives rise to a
boundary operator in P(I'). Because our notation is such that the boundary of a one-
dimensional element of Q, is not in Q,, we see that P, is not a subcomplex of P(I');
however, Y, c ¢ P, is a subcomplex.

Theorem. P(I')»>RG->R—0 is a projective RG-resolution for the trivial module R.
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We will give some applications of the theorem before proving it. The following
corollary is immediate.

Corollary 1. Let the vertex groups of a graph product over a finite graph all be FP,
(for any n< o), of finite cohomological dimension, or FP or FL. Then the graph product
has the same property.

Chiswell [4] defines an Euler characteristic for any FP group, and he obtains in [5] a
formula for the Euler characteristic of a graph product, using the inductive decompo-
sition of a graph product in terms of amalgamated free products and direct products.
Our theorem (which relies on this decomposition) makes it clearer where Chiswell’s
formula comes from. However, his proof also holds for Brown’s definition [3] of the
Euler characteristic, which ours does not appear to.

Let G be a group, and let P be a finitely generated projective RG-module. Then
Hattori [7] and Stallings [8] define a trace function t,, which is an element of R(G/G').
Let 7, be the coefficient of 1 in t,. When G is FP take a projective resolution P which is
finitely generated in all dimensions and zero in all but finitely many. Chiswell defines
the Euler characteristic of G to be Y & (— 1),

Let G be a subgroup of H, and let P be a finitely generated projective RG-module.
Then P ® g RH is a finitely generated projective RH-module, and tp g . gy 1S the image
in R(H/H') of tp; hence tpg . ru=71p. Also, if Q is a finitely generated projective
RF-module, for some group F, then P ®zQ is a finitely generated projective (G x F)-
module, and tpg o=tp @ty in R(G x F)[(Gx F)'=R(G/G') @ g R(F/F'), hence tpg, 0=
1p7o. These facts can be found in [2], and are easy to prove directly.

Let I' be a finite graph, with an FP group at each vertex. For each complete
subgraph K of I', with vertices v,,...,v,, let xx=(x,,—1)...(x,,— 1), where y,, is the
Euler characteristic of the group at the vertex v, From our main theorem and the
remarks in the previous paragraph, we immediately deduce the following formula due to
Chiswell [5] (our formula differs slightly from his, because he includes the empty
subgraph and we do not).

Corollary 2. With the above notation, (GT)—1=Y xk, the sum being taken over all
complete subgraphs of T'.

Let (Y;S) be a presentation of a group. This group then has a free resolution whose
basis in dimension 1 is (a set bijective with) Y, and whose basis in dimension 2 is (a set
bijective with) S. The boundary operator in dimension 2 can be described by means of
the Fox derivatives.

Take such a presentation {Y,;S,> for each vertex group of a graph product, and take
the corresponding free resolutions. Then the graph product has a presentation
U Y,lUS,uC), where C is the set of all [a,b] for aeY,beY, and all adjacent
vertices v and w such that v <w in the chosen ordering of the graph.

Consider the resolution of the graph product obtained by our theorem from the free
resolutions of the vertex groups. It will be a free resolution whose basis in dimension 1
will be | ) Y,. In dimension 2 it will have two kinds of basis elements. The members of
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U S, form the first kind, while the second kind consists of all a ® b, where ae Y,,beY,,
for all adjacent vertices v and w such that v<w. Thus this basis is bijective with the
basis given by the presentation of the graph product. Further, the boundary operator
given by the theorem is exactly that given by the presentation.

In dimension 3 there are four kinds of basis elements. The first kind consists of all
basis elements in dimension 3 of the resolutions of the vertex groups. The second kind
consists of all a ® s where aeY,, se8,, for all adjacent vertices v and w such that v<w.
The third kind consists of all s® b where seS,, beY,, for all adjacent vertices v and w
such that v<w. The fourth kind consists of all a® b ® ¢ where ae Y, be Y, ceY, and
{u,v,w} is a complete subgraph with u<v<w.

The boundary operator can be explicitly described for the basis elements of the
second, third, and fourth kinds. When this is done, we recover a result of Baik, Howie
and Pride [1].

Proof of Theorem. It is easy to see, by standard results, that the relevant modules
are projective, and we need only show that the sequence is exact.

We begin with the case when I' is complete, and first assume that it has only two
vertices, u and v. It is well-known (see, for instance, [3, V.1.1]) that there is a projective
resolution

(Q. ®:Q,) ®(Q.®rRG,) @ (RG, ®rQ)>RG—-R-0.

Then our result follows from the isomorphisms

Qu ®R Qu;(Qu ®R Qu) ®RG RG
Qu ®R RGv;Qu ®RGu RG

RGu ®R ngQv ®RG.,RG'

When T is complete on the vertex set v,,...,v,, with k>2, the result is immediate by
induction, as G=(G,, x -** x G, _,) x G,,.

Now suppose that I' is not complete, and that its vertex set is V. Then there will be a
pair of vertices x,y which are not adjacent. Let 'y, I',, I', be the full subgraphs whose
vertex sets are V—{x,y}, V—{y}, V—{x} respectively; let G,,G,,G, be the correspond-
ing graph products. It is easy to see that G=G, *¢, G,.

We can assume, inductively, that the theorem holds for I'; (i=0,1,2). Since the
functor — ®gg, RG is exact, we have long exact sequences

Z PK—’RG,'®RG‘RG'—’R ®RG|RG_’0'

KeC(Ty)

We then have a commutative diagram
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0> T Py o (sz)@<sz) W S Pg -0

KeC([o) KeC(I'y) KeC(I'3) KeC(I)
! l l
0 —’RGO ®RGO RG_' (RGl ®RG: RG)@(RGZ ®RGz RG) - RG hd 0
! l |

0 > R®ge,RG - (R ® g, RG) ® (R ®rg, RG) - R -0
l ! l
0 0 0
Here, the top row stands for a sequence of modules and maps. The left and middle
colums are exact (when expanded out into such a sequence), by the inductive
assumption. The middle row is trivially exact. The top row is also exact (when expanded
out, this means that it is exact in each dimension), since C(I'q)=C(I"y)n C(T;),
obviously, while C(I')=C(I",) v C(I,), since any complete subgraph must lie in I'; or in
I',, because x and y are not adjacent.
The bottom row was shown to be exact by Swan [9]. By standard homological
algebra, the right column is also exact, as required.

Acknowledgement. I thank the referee for suggesting a clearer proof of the theorem
than my original proof.

REFERENCES

1. Y.-G. Bai, J. Howie and S. J. Pripg, The identity problem for graph products, J. Algebra
162 (1993), 168-177.

2, H. Bass, Euler characteristics and characters of discrete groups, Invent. Math. 35 (1976),
155-196.

3. K. S. Brown, Cohomology of groups (Graduate texts in mathematics 87, Springer-Verlag,
1982).

4. 1. M. CHisweLL, Euler characteristics of groups, Math. Z. 147 (1976), 1-11.

5. 1. M. CuisweLL, The Euler characteristic of graph products and Coxeter groups, Discrete
groups and geometry (W. J. Harvey and C. MacLachlan, eds., London Mathematical Society
Lecture Notes 173, Cambridge University Press, 1992), 36-46.

6. E. R. Green, Graph products of groups (Ph.D. Thesis, University of Leeds, 1990).
7. A. Hatrtori, Rank elements of a projective module, Nagoya Math. J. 25 (1965), 113-120.

8. J. R. Staiuings, Centerless groups—an algebrain formulation of Gottlieb’s theorem,
Topology 4 (1965), 129-134.

9. R. G. Swan, Groups of cohomological dimension one, J. Alg. 12 (1969), 585-610.

ScHOOL OF MATHEMATICAL SCIENCES
QuEeeN MARY AND WESTFIELD COLLEGE
MiLe Enp Roabp

Lonpon EI 4NS

ENGLAND

E-mail address: D.E.Cohen@qmw.ac.uk

https://doi.org/10.1017/50013091500006313 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500006313

