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Abstract

Following Bradonjić and Saniee, we study a model of bootstrap percolation on the
Gilbert random geometric graph on the 2-dimensional torus. In this model, the expected
number of vertices of the graph is n, and the expected degree of a vertex is a log n for
some fixed a > 1. Each vertex is added with probability p to a set A0 of initially infected
vertices. Vertices subsequently become infected if they have at least θa log n infected
neighbours. Here p, θ ∈ [0, 1] are taken to be fixed constants.

We show that if θ < (1 + p)/2, then a sufficiently large local outbreak leads with
high probability to the infection spreading globally, with all but o(n) vertices eventu-
ally becoming infected. On the other hand, for θ > (1 + p)/2, even if one adversarially
infects every vertex inside a ball of radius O(

√
log n), with high probability the infection

will spread to only o(n) vertices beyond those that were initially infected.
In addition we give some bounds on the (a, p, θ ) regions ensuring the emergence of

large local outbreaks or the existence of islands of vertices that never become infected.
We also give a complete picture of the (surprisingly complex) behaviour of the analogous
1-dimensional bootstrap percolation model on the circle. Finally we raise a number of
problems, and in particular make a conjecture on an ‘almost no percolation or almost
full percolation’ dichotomy which may be of independent interest.
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1. Introduction

1.1. Background

Bootstrap percolation encompasses a widely studied family of cellular automata on net-
works. Originally introduced by Chalupa, Leath, and Reich in 1979 [17] in the context of
magnetic systems, it has since been used to model a great variety of phenomena—from the
spreading of fads or beliefs in social networks [18, 25, 38], to financial contagion and default
on obligations in economic networks [3], to the activation of neurons in the brain [2, 31] or the
spread of viruses in human populations [18]. This plethora of applications has led to significant
work on bootstrap percolation from network scientists, physicists, engineers, and computer
scientists as well as mathematicians.
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Bootstrap percolation in random geometric graphs 1255

Formally, an s-threshold bootstrap process on a graph G = (V, E) is defined as follows.
At time t = 0, an initial set of vertices A0 ⊆ V is infected (or activated, if one prefers to
avoid contagious connotations). Then at each time step t ≥ 0, the vertices of G having at
least s neighbours in At become infected and are added to At to form At+1. The infection
thus spreads throughout the graph, and results in a set A∞ := ⋃

t≥0 At of eventually infected
vertices.

If G is a finite graph, the key question of interest is then the following: what proportion of
vertices of G eventually become infected? This obviously depends on the choice of the set of
initially infected vertices A0. In most of the work on bootstrap percolation to date, A0 is chosen
according to a Bernoulli process on the vertices of G: each vertex v ∈ V is included in A0
with probability p independently of all other vertices. One then asks for which initial infection
probability p the infection spreads to ‘most’ of V (almost percolation, |A∞| = |V|(1 − o(1))
for some sequence of graphs with |V| → ∞), or to all of V (percolation, |A∞| = |V|) with high
probability (w.h.p., meaning with probability 1 − o(1)).

Aizenman and Lebowitz [1] were the first to investigate this kind of question when G =
[n]d, the d-dimensional n × n × · · · × n grid graph. In a landmark result in 2003, Holroyd [27]

showed that for 2-threshold bootstrap percolation on [n]2, pc([n]2, 2) = π2

18 log n was a sharp
threshold for percolation, in the sense that if p = c

log n is the initial infection probability and

c > 0 is fixed, then if c < π2

18 , w.h.p. the infection does not spread to the entire square grid,

while if c > π2

18 , then w.h.p. every vertex of [n]2 eventually becomes infected. Surprisingly,
this result disproved predictions for the value of the critical threshold that had been made
based on numerical simulations for the problem. Holroyd’s results were then extended to other
dimensions d and thresholds s by Balogh, Bollobás, Duminil-Copin, and Morris [9].

Motivated by the applications of bootstrap percolation to the modelling of real-life network
phenomena, there has been growing interest over the past decade in the study of bootstrap
percolation on random graphs. An important work in this vein was the study of bootstrap
percolation on Erdös–Rényi random graphs Gn,q by Janson, Łuczak, Turova, and Vallier [30] in
2012. Recall that the random graph Gn,q is obtained by taking [n] := {1, 2, . . . , n} as a vertex
set, and including each pair ij as an edge of the random graph with probability q, independently
of all the other pairs. The authors of [30] determined inter alia for every threshold s ≥ 2 and
q the critical thresholds p = p(n, s, q) for the infection probability at which the size of A∞
goes from w.h.p. o(n) to w.h.p. n − o(n) (almost percolation) and from w.h.p. n − o(n) to w.h.p.
n (percolation).

Bootstrap percolation has been rigorously studied on several other random graph mod-
els: random regular graphs [10, 28], power-law random graphs [4], Bienaymé–Galton–Watson
trees [12], random graphs with specified vertex degrees [28], toroidal grids with random long
edges added in (a special case of the Kleinberg model) [29], and inhomogeneous random
graphs [21], amongst others. A motivation for the latter two models is that they may have
degree distributions or spatial characteristics that more closely resemble those of the real-life
networks motivating the study of bootstrap percolation.

For similar reasons, there has been interest in bootstrap percolation models on random geo-
metric graphs. Indeed, many real-life networks have a distinctly spatial structure that affects
their behaviour and properties. Thus it is natural to study bootstrap percolation on random
graph models in which geometry plays a role. This was first done in 2014 by Bradonjić and
Saniee [15], who introduced a model for bootstrap percolation on random geometric graphs
that is the focus of the present paper.
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The Gilbert disc model is the most widely studied random geometric graph model, and was
first defined by Gilbert [23] in 1961; indeed ‘random geometric graph’ without any further
qualifier usually refers to the Gilbert model. Given a measurable metric space �, a Gilbert
random geometric graph Gr(�) is obtained by taking as the vertex set the point-set P resulting
from a Poisson point process of intensity 1 on �. Two vertices v, v′ in P are then joined by an
undirected edge if their distance in � is less than r. In other words, the neighbours of a vertex
v are precisely those points of P \ {v} that lie inside the ball of radius r centred at v.

Gilbert studied his model in the case where � =R
2, the 2-dimensional plane equipped

with the usual Euclidean distance and Lebesgue measure. The study of the Gilbert model
and related random geometric graph models on such unbounded spaces is known as contin-
uum percolation, and is the subject of a monograph of Meester and Roy [35]. In a different
direction, researchers have been interested in random geometric graph models in bounded,

finite-dimensional spaces, in particular when � is either Sd
n := [0, n

1
d ]d, the d-dimensional

box of volume n, or Td
n := (

R/n1/d
Z
)d

, the d-dimensional torus of volume n, where d is fixed
and n is large. For both of these choices of �, standard results on concentration of the Poisson
distribution imply that Gr(�) w.h.p. has n + o(n) vertices.

In the case � = Td
n (where we can ignore boundary effects and all vertices look the same),

Gr(�) can be viewed as a natural geometric analogue of the Erdös–Rényi random graph. Let
αd denote the volume of the d-dimensional unit ball. Then the expected degree of a vertex
in Gr(Td

n ) is precisely αdrd. A classic result of Penrose [36] established that the threshold for
connectivity for Gr(Td

n ) occurs at αdrd = log n: if αdrd = a log n and a > 0 is fixed, then for a <

1, w.h.p. Gr(Td
n ) contains isolated vertices and thus fails to be connected, while for a > 1, w.h.p.

Gr(Td
n ) is connected. Much more is known about Gilbert random geometric graphs (which,

together with the closely related k-nearest-neighbour model, have been applied in a variety of
contexts, for example to model sensor networks [8] and ad hoc wireless networks [40], and for
cluster analysis in spatial statistics [24]). We refer the interested reader to the monograph of
Penrose [37] devoted to the topic.

Bradonjić and Saniee considered the Gilbert disc model Gr(T2
n ) where r is given by

πr2 = a log n, for some constant a > 1 and n large. They studied θa log n-threshold bootstrap
percolation on this host graph—i.e. where the threshold for infection is a proportion θ of the
expected degree of a vertex. This is somewhat in contrast to previous work, where typically the
threshold for infection was fixed rather than growing with the number of vertices n, but may
be a more suitable choice of parameter for modelling situations such as the spread of a fad or
fashion in a social network.

Bradonjić and Saniee’s paper featured a mixture of rigorous results and simulations. On
the theoretical side, they proved two results. First of all, they determined [15, Theorem 1] an
explicit function f1(a, θ ) such that if the initial infection probability p is fixed and satisfies
p < f1(a, θ ), then w.h.p. the infection does not spread at all: A∞ = A0, and every vertex that is
initially uninfected stays uninfected forever. Secondly, Bradonjić and Saniee determined [15,
Theorem 2] a second function f2(a, θ ) such that if p is fixed and satisfies p > f2(a, θ ), then
w.h.p. there is full percolation: every vertex becomes infected. The function f1(a, θ ) in the first
of these results is easily seen to be the best possible (see Proposition 1 below). However, the
bound f2(a, θ ) in the second result seems far from optimal—indeed, the simulations performed
by Bradonjić and Saniee suggest as much.

Apart from Bradonjić and Saniee’s 2014 paper, comparatively little mathematical work
appears to have been done on bootstrap percolation in random geometric graphs. In a 2016
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work, Candellero and Fountoulakis [16] studied s-threshold bootstrap percolation on hyper-
bolic random geometric graphs for constant s, and determined for their model a critical
probability pc such that if the initial infection probability p satisfies p 
 pc, then w.h.p. the
infection does not spread at all, while if p � pc, then w.h.p. the infection spreads to a strictly
positive proportion of the vertices. More recently, Koch and Lengler [33, 34] studied a local-
ized form of s-threshold bootstrap percolation on geometric inhomogeneous random graphs,
with s a fixed constant and where the set of initially infected vertices is located within some
bounded source region B (rather than the whole space); they determined a similar critical
threshold pc below which w.h.p. an infection does not spread at all, and above which w.h.p. an
infection spreads to a positive proportion of all vertices. Finally, in a very recent Ph.D. thesis,
Whittemore [39] studied bootstrap percolation in the Gilbert random geometric graph when the
infection threshold is constant, and determined amongst other things the thresholds at which
the model’s typical behaviour transitions from almost no percolation to almost percolation. As
far as we are aware, this is the (surprisingly limited) extent of rigorous mathematical study of
bootstrap percolation on random geometric graph models (though there also exist some exper-
imental and simulation results for bootstrap percolation on geometric scale-free networks; see
e.g. [22]).

1.2. The Bradonjić–Saniee model

For the reader’s convenience, we restate here the precise model we shall be studying in this
paper.

Let Td
n := (

R/n1/d
Z
)d

denote the d-dimensional torus of hypervolume n. Given a parameter
r, a Gilbert random geometric graph Gr(Td

n ) on Td
n is obtained as follows: we let its vertex set

P be the result of a Poisson point process of intensity 1 on Td
n , and join vertices u, v ∈P by an

edge if their distance (in the torus) is less than r. For compactness of notation, we use Gd
n,r to

denote Gr(Td
n ).

Let a > 1 and d ∈N be fixed. Let r be given by the relation αdrd = a log n, where αd is the
volume of the d-dimensional unit ball. Note that for this choice of parameters the expected
total number of vertices in Gd

n,r is n, while the expected degree of a vertex in Gd
n,r is a log n.

Furthermore, by classical results of Penrose [36], Gd
n,r is w.h.p. connected.

Bradonjić and Saniee [15] introduced the following model of bootstrap percolation on Gd
n,r:

let p, θ ∈ [0, 1] be fixed. At time t = 0, let each vertex of Gd
n,r be infected independently at

random with probability p. Denote by A0 this set of initially infected vertices. The infec-
tion then spreads through the graph Gd

n,r as follows: at each time step t > 0, all vertices
of Gd

n,r which have at least θa log n infected neighbours (i.e. neighbours in the infected set
At−1) become infected themselves and are added to At−1 to form the set At. We denote by
A∞ =⋃{At: t ∈Z≥0} the set of all vertices of Gd

n,r that eventually become infected under this
process.

With a, p, θ, d fixed, the main question of interest in this model is the following: what is the
typical size of A∞ for large n? In this paper we investigate this question in detail in dimensions
d = 1 and d = 2.

1.3. Contributions of this paper

Our main contribution in this paper is identifying in dimension d = 2 the threshold at which
a sufficiently large local outbreak can cascade and lead to a global infection. Say that a ball B
in T2

n is infected if all vertices of G2
n,r that lie inside B are infected.

https://doi.org/10.1017/apr.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.5


1258 V. FALGAS-RAVRY AND A. SARKAR

Theorem 1. Let a, θ, p be fixed. Then the following hold:

(i) If θ <
1+p

2 , then there exists a constant C = C(a, θ, p) such that w.h.p., if any ball B in
T2

n of radius Cr is infected (either artificially or as a result of the bootstrap percolation
process), then all but o(n) vertices of G2

n,r eventually become infected. Furthermore,
when the infection stops, all connected components of uninfected vertices in G2

n,r[P \
A∞] have Euclidean diameter O(

√
log n) in T2

n .

(ii) If θ >
1+p

2 , then for every constant C > 0, w.h.p. even if one adversarially selects a
ball B in T2

n of radius Cr and infects all the vertices it contains, only o(n) additional
vertices of G2

n,r become infected in the bootstrap percolation process starting from the
initially infected set A0 ∪ (B ∩P). Furthermore, all connected components of G2

n,r[A∞ \
(A0 ∪ B) ] have Euclidean diameter O(

√
log n) in T2

n .

Note that in our regime πr2 = a log n and the longest edge of G2
n,r thus has length

O(
√

log n). We therefore view point-sets of diameter O(
√

log n) as local configurations. What
Theorem 1 says is thus that for θ <

1+p
2 , a sufficiently large local infection will, with the help of

the initially infected vertices, spread to most of the graph, leaving only isolated local ‘islands’
of uninfected vertices, while for θ >

1+p
2 , all infectious local outbreaks remain local.

This leads us to conjecture that in the Bradonjić–Saniee model on G2
n,r with θ �= 1+p

2 , w.h.p.
either an initial infection spreads to at most o(n) new vertices (almost no percolation), or it
spreads to all but at most o(n) vertices (almost percolation).

Conjecture 1. (Almost no percolation/almost full percolation dichotomy.) Let (a, p, θ ) be fixed
with θ �= 1+p

2 and a > 1. Then in the Bradonjić–Saniee model for bootstrap percolation on
G2

n,r, w.h.p. either |A∞ \ A0| = o(n) or |P \ A∞| = o(n).

We were unfortunately unable to resolve Conjecture 1 in full, but our results imply it holds
if θ >

1+p
2 or θ < θlocal, where θlocal = θlocal(a, p) is a quantity that arises as the solution to

an explicit continuous optimization problem and whose technical definition (Definition 5) we
defer to Section 3.4. Suffice it to say here that θlocal is the threshold for the appearance of large
local, symmetrically distributed, infectious outbreaks.

Theorem 2. Let (a, p, θ ) be fixed with a > 1 and

θ < θlocal(a, p). (1)

Then w.h.p. almost percolation occurs in the Bradonjić–Saniee model, i.e. |P \ A∞| = o(n).

We note here the fact that the ‘symmetric local growth condition’ θ < θlocal(a, p) implies
the ‘global growth condition’ θ < (1 + p)/2 (see Proposition 5): θlocal ≤ (1 + p)/2 for all fixed
a > 1 and p ∈ [0, 1]. We believe that θlocal gives the threshold for almost percolation in the
Bradonjić–Saniee model for bootstrap percolation, and thus that the following strengthening
of Conjecture 1 is true.

Conjecture 2. (Symmetric local growth.) Let (a, p, θ ) be fixed with a > 1 and

θ > θlocal(a, p).

Then w.h.p. almost no percolation occurs in the Bradonjić–Saniee model, i.e. |A∞ \ A0| =
o(n).
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The content of Conjecture 2 is twofold: the conjecture asserts first of all that completely
infecting a large local ball is w.h.p. necessary for the infection to spread globally, and secondly
that the likeliest way an infection spreads to a large local ball is if there is an abnormally
high concentration of initially infected and of initially non-infected vertices distributed in a
symmetric manner around the centre of the said ball.

Theorems 1 and 2 above are stated and proved for the Bradonjić–Saniee bootstrap per-
colation model in the torus T2

n rather than the square S2
n := [0,

√
n]2 to avoid technical

complications due to boundary effects. However, as we note in Section 5, our results also hold
for their model in the square, modulo a technical modification in the statement of Theorem 1(i).
We thus expect Conjectures 1 and 2 to also hold in the square.

Given Theorem 2 and Conjecture 2 on almost percolation, it is natural to ask how much
smaller θ needs to be to ensure full percolation: which triples (a, p, θ ) guarantee that a global
infection w.h.p. infects every vertex of G2

n,r? We are unable to answer this question exactly.
However, as in Theorem 2 we are able to determine the threshold θislands for the disappearance
of certain symmetric ‘islands’ of uninfected vertices, which provide what we conjecture is
the main obstacle to full percolation. Here θislands = θislands(a, p) is an (explicit) solution to
a certain optimization problem, whose formal definition we defer to Section 3.5. (Note that
θislands will satisfy the inequality θislands ≤ 1+p

2 ; see (12).)

Theorem 3. Let (a, p, θ ) be fixed with a > 1 and θ > θislands(a, p). Then w.h.p. some vertices
remain uninfected by the end of the bootstrap percolation process in the Bradonjić–Saniee
model in the torus T2

n , i.e. |P \ A∞| > 0 and we do not have full percolation.

Conjecture 3. Let (a, p, θ ) be fixed with a > 1 and θ < min (θislands, θlocal). Then w.h.p. we
have full percolation in the Bradonjić–Saniee model in the torus T2

n , i.e. P = A∞.

Theorem 3 carries over immediately to the square setting, but Conjecture 3 does not. In
the square setting, one will need to separately compute the threshold for the disappearance
of uninfected islands close to the boundary, which will require additional calculations. (This
is a rather standard feature in results on random geometric graphs in the square; see e.g. the
proof of [6, Theorem 7].) Note that islands close to the boundary will have fewer neighbouring
vertices and will be harder to infect.

For the Bradonjić–Saniee bootstrap percolation model in general dimension d ≥ 1, we also
determine the threshold θstart(a, p) for the event A0 �= A∞ to hold w.h.p. (Proposition 1), gen-
eralizing [15, Theorem 1], and for the event that there exist ‘uninfectable’ initially uninfected
vertices with degree strictly less than θa log n, giving lower bounds on the threshold for full
percolation f2(a, θ ) given in [15, Theorem 2].

Together with the results and conjectures above, these last results give the following picture
for the expected behaviour of the Bradonjić–Saniee model in dimension 2 with (a, p, θ ) fixed
and a > 1 (see Figure 1):

• For θ > θstart, w.h.p. we have no percolation: A0 = A∞.

• For θstart > θ >
1+p

2 , w.h.p. we have almost no percolation, |A∞ \ A0| = o(n), even if we
adversarially infect a ball of area O( log n).

• For 1+p
2 > θ > θlocal, w.h.p. we have almost no percolation, but adversarially infecting a

ball of area �( log n) w.h.p. leads to almost percolation.
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FIGURE 1. Phase diagram in the (p, θ )-plane for a > 1 fixed; italics indicate conjectured behaviour.

• For θlocal > θ > θislands, w.h.p. we have almost percolation but not full percolation,
0 < |P \ A∞| ≤ o(n).

• For min (θlocal, θislands) > θ , w.h.p. we have full percolation, P = A∞.

Finally, we give a complete picture of the typical behaviour of the Bradonjić–Saniee boot-
strap percolation model on the graph G1

n,r, i.e. in the 1-dimensional case. This turns out to
be surprisingly complex, involving a (p, θ )-phase diagram with six different regions (see the
summary in Section 4); however, unlike in the 2-dimensional case, we can compute the various
thresholds more or less explicitly. We defer an exact statement of these 1-dimensional results
to Section 4.

1.4. Organization of the paper

The remainder of this paper is organized as follows. In Section 2, we prove some basic
probabilistic results for Poisson point processes that are required for later results. We also
derive thresholds for the events that some initially infected vertices eventually become infected
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(Proposition 1), and that some initially uninfected vertices have degree too low to ever become
infected (Proposition 2).

In Section 3 we prove our main results for bootstrap percolation on the 2-dimensional torus,
while in Section 4 we outline the behaviour of the Bradonjić–Saniee model on the circle. We
end the paper in Section 5 with a discussion of some of the many open problems on bootstrap
percolation for random geometric graphs.

2. Preliminaries

2.1. Notation

Given a host metric space � and a point x ∈ �, we write Br(x) for the ball in � of radius r
centred at x. We use |S| to denote the size of S if S is a finite set, and the Lebesgue measure of
S otherwise. Given x ∈R

d, we denote by ‖x‖ the standard Euclidean �2-norm of x.
We use standard graph theoretic terminology and Landau big-O notation throughout the

paper. In particular, given a graph H and a subset of its vertex set X, we denote by H[X] the
subgraph of H induced by X and by H − X the subgraph of H induced by V(H) \ X.

2.2. Probabilistic tools

The following lemma, taken from [6, Lemma 1], greatly facilitates calculations of event
probabilities, and we shall make extensive use of it throughout the paper.

Lemma 1. (Estimating probabilities for Poisson point processes.) Let A ⊂ Rd be measurable,
and let ρ ≥ 0 be a real number such that ρ|A| ∈Z. Then the probability that a Poisson process
in R

d with intensity 1 has precisely ρ|A| points in the region A is given by

exp
{
(ρ − 1 − ρ log ρ)|A| + O( log+ ρ|A|)} ,

with the convention that 0 log 0 = 0, and log+ x = max ( log x, 1).

Furthermore, by standard properties of Poisson point processes (see e.g. Kingman [32]),
note that the following are equivalent:

• taking as the vertex set of Gd
n,r the outcome P of a Poisson point process of intensity

1 on Td
n , and then infecting each vertex of P independently at random with probability

p ∈ (0, 1) to obtain A0;

• letting A0 be the outcome of a Poisson point process of intensity p on Td
n , and taking as

the vertex set of Gd
n,r the union P of A0 and of the outcome of a Poisson point process

of intensity 1 − p on Td
n .

We will thus be able to jump back and forth between these two equivalent ways of
constructing P , adopting whichever point of view makes our calculations simplest.

At several points in the paper, we will need to count the number of copies of a ‘local’ event
inside Td

n , and the next lemma gives us some simple tools to do this. Let � =Z
d ∩ [0, n1/d]d;

this may be identified with a d-dimensional grid of points inside Td
n . Given an event E defined

for point-sets in Td
n , for every x ∈ � we let E(x) denote the collection of point-sets in Td

n whose
translates by x belong to E; in other words, a configuration of initially uninfected and initially
infected points (P \ A0, A0) belongs to E(x) if and only if (P \ A0 − x, A0 − x) belongs to E.

We say that an event E is Cr-bounded if it is determined by what happens (i.e. which points
are present/initially infected) within a ball of radius Cr of the origin 0, for some constant C > 0.
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For such an event, we define E = (1E(x))x∈� to be the �-dimensional zero–one vector recording
for which x ∈ � the event E(x) occurs. Given a Cr-bounded event E, let NE := ∑

x 1E(x) denote
the number of x ∈ � for which E(x) occurs.

Lemma 2. Suppose E is a Cr-bounded event with q := P(E) = e−c log n+o( log n) for some fixed
constant c. The following hold:

(i) If c > 1, then with probability 1 − o(1) we have NE = 0.
(ii) If c < 1, then with probability 1 − o(1) we have NE = n1−c+o(1).

Proof. Part (i) is immediate from Markov’s inequality. For the lower bound in Part (ii), note
that there exists a subset �′ of � satisfying

(a) |�′| = �
(

n
log n

)
;

(b) ∀x, y ∈ �′ with x �= y, ‖x − y‖ > 2Cr.

Indeed, one can construct such a set �′ by greedily adding vertices from � one by one
subject to (b). By (b) and Cr-boundedness, the events (E(x))x∈�

′ are independent. Thus, NE

stochastically dominates a Binomial(|�′|, q) random variable. Since the expectation of this
binomial random variable is |�′|q = �(nq/ log n) = n1−c+o(1) � 1, a standard Chernoff bound
tells us that with probability 1 − o(1), NE ≥ n1−c+o(1).

For the upper bound in Part (ii) we use Markov’s inequality: the probability that NE is
greater than (ENE) log n = O(nq log n) = n1−c+o(1) is O(1/ log n) = o(1). Thus, with probabil-
ity 1 − o(1), NE ≤ n1−c+o(1), as required. �

2.3. Elementary considerations on the Bradonjić–Saniee model

Consider the Bradonjić–Saniee bootstrap percolation model in dimension d ≥ 1 with αdrd =
a log n and a > 1 fixed. When θ < p and n is large, most vertices will immediately see more
than aθ log n < ap log n infected neighbours, so that most uninfected vertices will immediately
become infected. However, this is not the whole story. Indeed, even when θ is much smaller
than p, there is still a chance that some vertex somewhere might see far fewer than its expected
a log n neighbours (infected or not); if it in fact sees fewer than θa log n neighbours, then it can
never become infected. In the other direction, even when θ > p, there could still be a chance
that some vertex somewhere will see far more than its expected pa log n infected neighbours,
perhaps as many as θa log n, so that the infection could spread first to, and then from, that
vertex.

Roughly speaking, an analysis of the Bradonjić–Saniee model must grapple with three sep-
arate questions: whether the infection starts to spread at all, whether it continues to spread to
most of the graph, and whether it finally infects every vertex. Each of these requires a separate
analysis, even in one dimension. As a simple consequence of the probabilistic tools we have
introduced, however, we can readily answer here the question of when the infection starts at
all, strengthening and generalizing [15, Theorem 1].

Proposition 1. For a > 1 and 0 < p < θ < 1 fixed, let

fstart(a, p, θ ) := a(p − θ + θ log (θ/p)).

Then, if fstart(a, p, θ ) < 1, w.h.p. at least one initially uninfected vertex is infected in the
first round of the bootstrap percolation process. If, however, fstart(a, p, θ ) > 1, then w.h.p. no
initially uninfected vertex ever becomes infected.
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Proof. Write X for the number of vertices which initially see more than aθ log n infected
neighbours in Gd

n,r. By Wald’s identity and Lemma 1, we have for 0 < p < θ < 1 that

E(X) = n exp
{

pa log n ((θ/p) − 1 − (θ/p) log (θ/p)) + O( log+ aθ log n)
}

= exp
{

log n(1 − fstart(a, p, θ ) + o(1))
}

.

Consequently, if fstart(a, p, θ ) > 1, then by Markov’s inequality w.h.p. X = 0 and no initially
uninfected vertex of P ever becomes infected.

If on the other hand fstart(a, p, θ ) < 1, then let E denote the event that the ball of radius
r − √

d around the origin contains at least θa log n initially infected vertices and that the ball
of radius

√
d around the origin contains at least one initially uninfected vertex of P . Then by

Lemma 1 and standard properties of the Poisson point process, the probability of E is

P(E) = exp {−fstart(a, p, θ ) log n + o( log n)}
(

1 − exp{−(1 − p)αd(
√

d)d}
)

= exp {−fstart(a, p, θ ) log n + o( log n)} .

By Lemma 2(ii) w.h.p. NE = n1−fstart+o(1). In particular w.h.p. the event E(x) occurs for
some x ∈ �. This implies that there exists an initially uninfected vertex v ∈ B√

d(x) ∩P such
that Br(v) ∩ A0 ⊇ Br−√

d(x) ∩ A0 contains at least θa log n initially infected points of P . Thus v
becomes infected in the first round of the bootstrap percolation process, and w.h.p. A0 �= A1 ⊆
A∞. This concludes the proof of the proposition. �
Definition 1. For a > 1 and p ∈ (0, 1) fixed, we define θstart = θstart(a, p) to be the supremum of
the θ ≤ 1 such that fstart(a, p, θ ) < 1.

Since fstart(a, p, p) = 0, it follows that p ≤ θstart ≤ 1.

Proposition 2. For a > 1, p < 1, and 0 < θ < 1 fixed, set

f0−stop(a, θ ) := a(1 − θ + θ log θ ).

(The reason for this choice of notation will become clear later.) Then, if f0−stop(a, θ ) < 1, w.h.p.
at least one initially uninfected vertex has degree less than θa log n in Gd

n,r and consequently
never becomes infected. On the other hand, if f0−stop(a, θ ) > 1, then w.h.p. the minimum degree
of Gd

n,r is at least θa log n.

Proof. Write Y for the number of vertices which have fewer than aθ log n neighbours in
Gd

n,r. Again, using Wald’s identity and Lemma 1 we have

E(Y) = n exp
{
a log n(θ − 1 − θ log (θ )) + O( log+ aθ log n)

}
= exp

{
log n(1 − f0−stop(a, θ ) + o(1))

}
.

Thus, if f0−stop(a, θ ) > 1, then E(Y) = o(1), and by Markov’s inequality w.h.p. the minimum
degree of Gd

n,r is at least θa log n.

On the other hand, if f0−stop(a, θ ) < 1, then let E be the event that the ball of radius r + √
d

around the origin contains strictly fewer than θa log n vertices of P and that the ball of radius
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√
d around the origin contains at least one initially uninfected vertex of P . Then by Lemma 1

and standard properties of the Poisson point process, the probability of E is

P(E) = exp
{−f0−stop(a, p, θ ) log n + o( log n)

} (
1 − exp

{
−(1 − p)αd(

√
d)d
})

= exp
{−f0−stop(a, p, θ ) log n + o( log n)

}
.

By Lemma 2(ii) w.h.p. NE = n1−f0−stop+o(1). In particular, w.h.p. the event E(x) occurs for
some x ∈ �. This implies that there exists an initially uninfected vertex v ∈ B√

d(x) ∩P such
that Br(v) ⊆ Br+√

d(x) contains strictly fewer than θa log n points of P . Thus v never becomes
infected and w.h.p. A∞ �=P . This concludes the proof of the proposition. �

A few comments are in order. First, if in Proposition 2 we have f0−stop(a, θ ) = 1, then we
cannot apply Lemma 1 directly, since the error term will dominate. However, in this case,
P(Y > 0) will tend to some constant that is neither 0 nor 1. An equivalent remark applies to
Proposition 1. More precise results can be established in these special cases using the Stein–
Chen method for Poisson approximation; however, we will not pursue such questions here.
Second, when, say, fstart(a, p, θ ) < 1, not only does the infection start to spread somewhere,
it in fact starts to spread in n1−fstart(a,p,θ)+o(1) = nα+o(1) different places for some α > 0, as
established in the proof of Proposition 1 (more specifically the lower bound on NE). Third, in
Proposition 2 we have found one obstruction to full infection, but there may (and in fact will)
be others.

3. Bootstrap percolation on the torus when d = 2

In this section we prove our result for the Bradonjić–Saniee model for bootstrap percolation
in the Gilbert random geometric graph G2

n,r on the 2-dimensional torus. Throughout the section
we let Tn := T2

n denote the said 2-dimensional torus.

3.1. Almost-percolation from a large local infection: the case θ <
1+p

2

Fix a > 1, and let πr2 = a log n. In this subsection, our goal is to show that if p, θ are fixed
and satisfy the growing condition

θ <
1 + p

2
, (2)

then w.h.p. any sufficiently large local infection spreads to almost all of Tn. To state our
formal result (Theorem 4), we must introduce two tilings of [0,

√
n]2. Let K ∈N be a large

constant to be specified later.

Definition 2. (Rough tiling, fine tiling.) The rough tiling R partitions [0,
√

n]2 into interior-

disjoint Kcr × Kcr square tiles, where c =
√

n
Kr�√n/Kr� = 1 + o(1) is chosen to ensure that

divisibility conditions are satisfied. The fine tiling F is a refinement of R obtained by
subdividing each tile of R into K4 smaller cr

K × cr
K square tiles.

Let p, θ be fixed. Suppose p, θ satisfy (2). Then for any η > 0 there exist constants Cη > 1
sufficiently large and δ > 0 sufficiently small such that the following hold: let 0 denote the
origin in R

2, and let R ≥ Cηr be a real number. Then for any point x at distance between
R − δr and R + δr of 0, the asymmetric lens BR(0) ∩ Br(x) has area at least

|BR(0) ∩ Br(x)| ≥ πr2

2
(1 − η). (3)
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We can now specify our choice of K. Since a, p, θ are fixed and satisfy (2), there exists a
constant η > 0 such that

πθ <
π

2
(1 + p)(1 − 2η) − η. (4)

Fix η > 0 such that (4) is satisfied. Let Cη and δ be such that (3) is satisfied. Now set
K = �max

(
4Cη, 1000/η, 1000/δ

)�.
With K fixed (and with it our rough and fine tilings), we can now define tile colourings

which we will use as discrete proxies for the spread of an infection in Tn. We assign colours
to the tiles of R and F as follows: a tile T ∈F is coloured white if either it contains fewer
than (1 − η)p|T| initially infected points at the start of the bootstrap percolation process, or
it contains fewer than (1 − η)|T| points in total. Otherwise, we colour T red if all its points
are infected by the end of the bootstrap percolation process, and blue if this is not the case.
Furthermore, we colour a tile in R white if one of its subtiles in F is coloured white, red if all
its subtiles in F are coloured red, and blue otherwise.

We will be interested in the interface between red and non-red tiles in R. We thus equip
R with the natural square-grid graph structure by decreeing that two tiles in R are adjacent if
they meet in a side. (Here we identify [0,

√
n]2 with

(
R/

√
nZ
)2 in the natural way to ensure

that, as is the case in the torus, the tiles in the rightmost column in R are adjacent to the
corresponding tiles in the leftmost column, and similarly the tiles in the topmost row in R are
adjacent to the corresponding tiles in the bottommost column.) By a red component in R, we
mean a connected component of red tiles in the graph H thus defined on R.

We are now in a position to state the main result of this subsection.

Theorem 4. Let p, θ be fixed. Suppose p, θ satisfy (2) and let K be as defined above. Then there
exist constants N ∈N and ε > 0 such that w.h.p., if there is a connected component of at least
N red tiles in the auxiliary graph H on R, then there exists a giant connected component of
|R| − o(n1−ε) red tiles in H. Furthermore, the non-red tiles consist of a collection of o(n1−ε)
vertex-disjoint connected subgraphs of H, each of which has order at most N.

In other words, once the growing condition is satisfied, any sufficiently large infection
spreads to most of Tn, leaving only o(n1−ε) isolated islands of diameter O( log n) uninfected.

The proof of Theorem 4 relies on two main ingredients. First of all, we shall use (3) and the
fine tiling to show that, in the absence of fine white tiles, an infection will spread radially out-
wards from a sufficiently large infected disc (this is the content of Lemma 3). Next, we shall use
the Bollobás–Leader discrete isoperimetric inequality in the toroidal grid to show that any large
component of rough red tiles has a large boundary. Combining these results with some proba-
bilistic estimates showing that white tiles are few and far apart will then yield the final result.

In the first part of the proof, we shall use the following technical lemma, which follows
from [20, Lemma 8].

Proposition 3. Let � be a continuous, piecewise continuously differentiable curve in Tn. Let
�(�) be the length of the curve �. Then � meets at most 9K�(�)/r tiles of F .

Lemma 3 (Growing lemma.) With δ and Cη as defined just before (3), suppose x is a point in
Tn and R ≥ Cηr is a real number such that the following hold:

(i) all fine tiles that are wholly contained inside BR(x) \ BR−2r(x) are coloured red;

(ii) no fine tile wholly contained inside BR+2r(x) \ BR−2r(x) is coloured white.

Then all fine tiles that are wholly contained inside BR+δr(x) \ BR−2r(x) are coloured red.
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Proof. Any fine tile wholly contained inside BR+δr(x) \ BR−2r(x) either is wholly contained
inside BR(x) \ BR−2r(x) (and hence coloured red), or, by our choice of K, is wholly contained
inside BR+δr(x) \ BR−δr(x) (and hence not coloured white).

It is thus enough to show that every vertex y ∈ BR+δr(x) \ BR−δr(x) ∩P is eventually
infected by our bootstrap percolation process. Now by (3), the lens L(y) := BR(x) ∩ Br(y) has

area at least πr2

2 (1 − η). Since this lens is contained inside the annulus BR(x) \ BR−2r(x), every
fine tile wholly contained inside L(y) is coloured red by Assumption (i). Furthermore, every
other tile wholly contained inside the disc Br(y) is not coloured white by Assumption (ii). We
use this information, together with Proposition 3, to show that y sees strictly more than θπr2

infected points within distance at most r of itself—which in turn implies that y must become
infected before the end of the process, as required.

First of all, the boundary of L(y) has length at most 2πr, whence by Proposition 3 it inter-
sects at most 18πK distinct fine tiles. It follows that L(y) must wholly contain a collection of
red fine tiles of combined area at least

|L(y)| − 18πK
c2r2

K2
>

πr2

2
(1 − η) − ηr2

2
,

where the inequality follows for n large enough from our lower bound on |L(y)|, our choice
of K ≥ 1000/η, and the fact that c = 1 + o(1).

Similarly, the boundary of Br(y) has length 2πr, and thus, applying Proposition 3 as above,
Br(y) must wholly contain a collection of non-white fine tiles of combined area at least πr2 −
ηr2

2 . Given the definition of our colouring of fine tiles, it follows that Br(y) contains at least(
πr2

2
(1 − η) − ηr2

2

)
(1 − η) +

(
πr2

2
(1 + η)

)
p(1 − η) >

πr2

2
(1 + p)(1 − 2η) − ηr2

2

infected points, which by (4) is strictly more than θπr2. Thus y is eventually infected by
the bootstrap percolation process, and the lemma follows. �

Lemma 3 implies that if a red rough tile is part of the vertex boundary of a connected
component of red rough tiles in the graph H on R, then there must be a white rough tile in the
vicinity.

Corollary 1. Let T ∈R be coloured red. Then either all neighbours of T in the auxiliary graph
H on R are coloured red, or there exists a rough tile T’ at graph distance at most 3 of T in H
such that T’ is coloured white.

Proof. Suppose that no rough tile T ′ at graph distance at most 3 of T in H is coloured
white. Let x denote the centre of the tile T . By assumption, every fine tile wholly contained
inside the ball of radius Kcr

2 > Cηr about x is coloured red. Furthermore, no fine tile wholly
contained inside the disc of radius

√
10Kcr/2 + (2 + δ)r about x is coloured white, and the

disc B√
10Kcr/2(x) wholly contains the four rough tiles adjacent to T in the auxiliary graph

H. We may therefore repeatedly apply Lemma 3 to show inductively that the discs of radii
Kcr

2 + jδr for j = 1, 2, . . . , �(
√

10/2 − 1/2)Kc/δ� contain only fine red tiles. The last of these
discs contains all of B√

10Kcr/2(x), and in particular contains all four of the rough tiles adjacent
to T in H. Therefore all fine tiles lying inside these four neighbours of T in H are coloured red,
so that all the neighbours of T in H are coloured red themselves. �

We shall use Corollary 1 to show that if a connected component of red tiles in H has a large
boundary, then we may find a large connected component of white tiles in a sufficiently large
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power of H. Recall that the tth power of H, denoted by Ht, is the graph on the vertex set of H in
which all pairs of distinct vertices lying at graph distance at most t in H are joined by an edge.

To make this argument formal, we need the standard notions of edge boundary and dual
cycles. Given a subset A ∈R, the edge boundary ∂e(A) is the collection of pairs (T1, T2) such
that T1 ∈ A, T2 /∈ A, and {T1, T2} is an edge of H. The dual H of the graph H is the graph whose
vertices are the corners of rough tiles in R and whose edges are the sides of rough tiles in R.
It can be shown (see e.g. [14, Lemma 1, Chapter 1]) that the edge boundary of a connected
component C in H corresponds to a union of cycles in the dual graph H.

We can now prove that to each cycle C in the edge boundary of a red component C in H,
we may associate a (large) connected component of white tiles in the seventh power H7 of H.

Lemma 4. Let C be a connected component of red tiles in H. Let C be a dual cycle of (graph)
length � in the edge boundary of C in H. Let T0 be an arbitrary red tile in C one of whose sides
corresponds to an edge of the dual cycle C. Then there exists a connected component of white
rough tiles in H8 of order at least min (1, �/100), one of whose tiles is at graph distance at
most 3 of T0 in H.

Proof. By Corollary 1, we know that for every pair ei = (Ti
1, Ti

2) in the edge boundary of
C, there exists a white rough tile Ti within graph distance at most 3 of Ti

1. Let e
1, e

2, . . . , e
�

be the edges of the dual cycle C, and let e1, e2, . . . , e� be the corresponding pairs from ∂e(C).
Assume without loss of generality that e

1 is a side of T0.
Traversing the edges e

1, e
2, . . . , e

� of C in order, we may thus obtain a sequence of rough
white tiles T1, T2, . . . , T�, where Ti and Ti+1 are at graph distance at most 8 of each other in
H. Since there are 25 rough tiles within distance at most 3 of a given white rough tile in H, it
follows that no white tile may be repeated more than 100 times in our sequence (since each tile
has four sides, each of which occurs at most once as an edge e

i in C). Thus there must be a
component of at least �/100 rough white tiles in H8, one of which (namely T1) is within graph
distance at most 3 of T0 in H. �

Thus, if a red component in H has a large dual cycle in its boundary, there must exist a large
white component in H8. On the other hand, as we now show, w.h.p. there are no large white
components in H8. Set k := �√n/Kr�. Our auxiliary graph H on the set of rough tiles R is
thus a k × k toroidal graph.

Lemma 5. There exists a constant ε = ε(a, η, K) > 0 such that the following hold:

(i) the probability that a rough tile is coloured white is at most n−ε;

(ii) w.h.p. there are O(n1−ε/
√

log n) white rough tiles in H;

(iii) w.h.p. connected components of white rough tiles in H8 have size at most 2/ε in H8.

Proof. Part (i) of the lemma follows from Lemma 1 (applied to the K4 fine subtiles of a
rough tile) and Markov’s inequality. Using Part (i), the expected number of white rough tiles
in H is at most k2n−ε = O

(
n1−ε/ log n

)
. Applying Markov’s inequality again, we obtain the

second part of the lemma.
For the third part, observe that the graph H8 has maximum degree less than 48, and that

each tile is coloured white independently of all other tiles. Now it is well known (see e.g. [11,
Problem 45]) that the number of connected subgraphs of order n containing a given vertex
v0 in a graph of maximum degree � is at most (e�)n. Consequently, the expected number of
connected subgraphs of white rough tiles of size � > 2/ε in H8 is at most
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k2(48e)�n−�ε = o(1),

whence Markov’s inequality tells us that w.h.p. no such connected subgraph exists. It follows
that w.h.p. all connected components of white rough tiles in H8 have size at most 2/ε in H8,
as claimed. �

Putting Lemmas 4 and 5 together, we have that w.h.p. there is no red component in H with a
large dual cycle in its edge boundary. We now bring in the second main ingredient of the proof
of Theorem 4, namely a discrete isoperimetric inequality in the toroidal grid due to Bollobás
and Leader [13], in order to show that in such circumstances if there is a large red component
C in H, then this component C is unique and all components in H − C are small.

The 2-dimensional case of the Bollobás–Leader edge-isoperimetric inequality for toroidal
grids [13, Theorem 8] is as follows.

Proposition 4. (Bollobás–Leader edge-isoperimetric inequality.) Let A be a subset of R with
|A| ≤ k2/2. Then

|∂e(A)| ≥ min
(

4
√|A|, 2k

)
.

Lemma 6. Let N0 ∈N be fixed. Then for every n sufficiently large, the following holds: if C is a
connected component of order at least (N0)2 in H and has the property that every dual cycle in
the edge boundary of C has length at most N0, then every connected component in H[V(H) \ C]
has order strictly less than (N0)2.

Proof. Let N0 be fixed, and let n be sufficiently large so as to ensure that 2k > N0. Let
{Ci: i ∈ I} be the collection of connected components in H[V(H) \ C]. Note that each such
component Ci sends an edge to C in H, and sends no edge to Cj for j �= i. For every i0 ∈ I,
consider the edge boundary of Ci0 . Since both Ci0 and its complement C ∪⋃i∈I\{i0} Ci induce
connected subgraphs in H, the edge boundary of Ci0 (which is a subset of the edge boundary
of C) consists of a single dual cycle C

i0
in H.

If |Ci0 | > k2/2, then by Proposition 4 applied to the complement C ∪⋃i∈I\{i0} Ci of Ci0 , we
have that this dual cycle C

i0
has length at least

|∂e(Ci0 )| ≥ min

(
4
√

k2 − |Ci0 |, 2k

)
≥ min

(
4
√|C|, 2k

)
> N0,

by our assumptions that |C| ≥ (N0)2 and 2k > N0. This contradicts the fact that every dual
cycle in the edge boundary of C has length at most N0. Thus it must be the case that |Ci0 | ≤ k2/2.

Then, applying Proposition 4 to Ci0 itself, we have that the dual cycle C
i0

has length at least

|∂e(Ci0 )| ≥ min
(

4
√|Ci0 |, 2k

)
.

Since by assumption every dual cycle in the edge boundary of C has length at most N0, and
since 2k > N0, it follows from the above that |Ci0 | ≤ (N0)2/16 < (N0)2, as required. �

We are now ready to complete the proof of Theorem 4.

Proof of Theorem 4. Let ε > 0 be the constant whose existence is guaranteed by Lemma 5,
let N0 = �200/ε�, and let N = (N0)2.

Now suppose that H contains a red component C of order |C| ≥ N. By Lemma 5(iii), we
know that w.h.p. all connected components of white rough tiles in H8 have size at most
N0/100. By Lemma 4, this in turn implies that w.h.p. all dual cycles in the edge boundary

https://doi.org/10.1017/apr.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.5


Bootstrap percolation in random geometric graphs 1269

of C have length at most N0. This enables us to apply Lemma 6 and deduce that w.h.p. all
connected components in H − C := H[V(H) \ C] have order strictly smaller than N = (N0)2.
In particular, C is w.h.p. unique, and therefore w.h.p. all other red components must have order
strictly less than N.

It remains to bound the number of components in H − C. For this we again apply Lemma 4.
For each connected component C′ in H − C, we choose a pair of adjacent tiles (T0, T ′) with
T0 ∈ C and T ′ ∈ C′. Lemma 4 then implies the existence of a rough white tile W at graph
distance at most 3 from T0 in H, and so at graph distance at most 4 from C′. Each such W
can thus be associated with at most 44 components C′. By Lemma 5(iii), w.h.p. there are at
most o(n1−ε) rough white tiles. Therefore w.h.p. there can be at most o(n1−ε) components C′
in H − C, each of which has order at most N. It follows that w.h.p.

|C| ≥ |R| − o(n1−ε),

i.e. that w.h.p. C is a giant red connected component covering all but o(n1−ε) tiles in H, as
claimed. This concludes the proof of Theorem 4. �

3.2. Outbreaks stay local: the case θ >
1+p

2

Fix a > 1, and let πr2 = a log n. In this subsection, our goal is to show that if p, θ are fixed
and satisfy the non-growing condition

θ >
1 + p

2
, (5)

then w.h.p. any outbreak in Tn := T2
n remains local. To state our formal result (Theorem 5),

we must, as in the previous subsection, introduce two tilings of [0,
√

n]2. Let K ∈N be a large
constant to be specified later.

Definition 3. (Rough tiling, fine tiling.) The rough tiling R partitions [0,
√

n2] into disjoint

cKr × cKr square tiles, where c =
√

n
Kr�√n/Kr� = 1 + o(1) is chosen to ensure that divisibility

conditions are satisfied. The fine tiling F is a refinement of R obtained by subdividing each
tile of R into K4 smaller cr

K × cr
K square tiles.

Remark 1. Note that these tilings are technically distinct from those we used in the previous
subsection. (We will pick a different value of K.)

Let p, θ be fixed. Suppose p, θ satisfy (5). Then for any η > 0 there exists a constant Cη >

1/
√

2 sufficiently large so that the area of the lune Br((Cηr, 0)) \ BCηr(0) is at most

|Br((Cηr, 0)) \ BCηr(0)| ≤ πr2

2
(1 + η). (6)

We can now specify our choice of K. Since a, p, θ are fixed and satisfy (5), there exists a
constant η > 0 such that

πθ >
π

2
(1 + p)(1 + η)2 + η. (7)

Fix η > 0 such that (7) is satisfied. Let Cη be such that (6) is satisfied. Now set K =
�max

(
2Cη, 10000/η

)�.
With K fixed (and with it our rough and fine tilings), we can now define tile colourings

which we will use as discrete proxies for the spread of an infection in Tn. We assign colours
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to the tiles of R and F as follows: a tile T ∈F is coloured black if either it contains strictly
more than (1 + η)p|T| points of A0, or it contains strictly more than (1 + η)|T| points of P .
Otherwise, we colour T red if some of its initially uninfected points become infected at some
stage in the bootstrap percolation process, and blue if this is not the case. Furthermore, we
colour a tile in R black if one of its subtiles in F is coloured black, red if one of its subtiles
in F is coloured red, and blue otherwise.

We equip R with the natural square-grid graph structure by decreeing that two tiles in R
are adjacent if they meet in a side, and as in the previous subsection, we identify [0,

√
n]2 with(

R/
√

nZ
)2 in the natural way. We thus obtain an auxiliary toroidal grid-graph H on R. We can

now state the main result of this subsection.

Theorem 5. Let p, θ be fixed. Suppose p, θ satisfy (5), and let K and our rough tiling be as
defined above. Then there exists ε > 0 such that for any constant N, even if one fully infects all
points inside N adversarially chosen tiles of R, w.h.p. the following will hold:

(i) all but o(n1−ε) tiles of R are coloured blue;

(ii) the non-blue tiles form a collection of o(n1−ε) vertex-disjoint connected subgraphs of
H2, each of which has order at most 100N2/ε2.

The key to Theorem 5 is the following lemma, showing that a non-black rough tile
surrounded by non-black tiles will be coloured blue.

Lemma 7. Suppose T is a tile in R. Suppose none of the tiles in the 3 × 3 square grid of tiles
of R centred at T is coloured black. Then T is coloured blue.

Proof. Let x denote the centre of the tile T . We shall prove the stronger claim that no
initially uninfected vertex in the ball BcKr/

√
2(x) ⊇ T ever becomes infected.

Indeed, suppose t ≥ 0 and no point in BcKr/
√

2(x) \ A0 has yet become infected. Consider
any such point v. Which infected points does v see within distance r of itself? In a worst-case
scenario, every point in the lune Lune(v) = Br(v) \ BcKr/

√
2(x) has become infected. We show

that even if this was the case, v does not become infected in the next round of the bootstrap
percolation process.

Observe first of all that the length of the boundary ∂Lune(v) of the lune Lune(v) is at most
2πr, and thus ∂Lune(v) meets at most 18πK tiles of F by Proposition 3. Similarly, the bound-
ary of the asymmetric lens Lens(v) = Br(v) ∩ BcKr/

√
2(x) has length at most 2πr and thus meets

at most 18πK tiles of F .
Since both T and the eight tiles around it are not coloured black, each fine tile wholly

contained in Lens(v) contains at most (1 + η)p c2r2

K2 points of A0, and contains no other point of
At by our assumption. Furthermore, every other fine tile having non-empty intersection with

Br(v) contains at most (1 + η) c2r2

K2 points of P in total, and thus at most that many points of At.

By (6) and our choices of η and K, we have that the area of Lune(v) is at most πr2

2 (1 + η)
(since the area of the lune is maximized if v lies on the circle of radius cKr/

√
2 about x, and

cK/
√

2 > Cη). It follows that for n large enough the number of infected points of At within
distance r of v is at most

|Br(v) ∩ At| ≤ (1 + η)|Lune(v)| + (1 + η)p(πr2 − |Lune(v)|) + 36πK(1 + η)
c2r2

K2

< πr2
(

1 + p

2

)
(1 + η)2 + ηr2 < θπr2.
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Here, the first strict inequality follows from our bound on the area of Lune(v), the facts that
η ≤ π and c < 2 for n large enough, and from our choice of K ensuring that 144(1 + π )π/K <

η. The second strict inequality follows from (7).
In particular, v sees strictly fewer than θa log n infected points from At, and does not become

infected in the next round of the bootstrap percolation process. Since v ∈ BcKr/
√

2(x) \ A0 was
arbitrary, it follows by induction on t that BcKr/

√
2(x) \ A0 = BcKr/

√
2(x) \ A∞. Since the rough

tile T is a subset of BcKr/
√

2(x) and is not coloured black, it follows that T is coloured blue as
claimed. �

Similarly to Lemma 5, we now prove the following.

Lemma 8. Let p ∈ (0, 1) be fixed. Then there exists a constant ε = ε(a, η, K) > 0 such that
w.h.p. the following hold:

(i) there are O(n1−ε/
√

log n) black rough tiles in H;

(ii) connected components of black rough tiles in H7 have diameter at most 1/ε.

Proof. By Lemma 1 (applied to the K4 fine subtiles of a rough tile) and Markov’s inequality,
there exists a constant ε = ε(a, η, K) > 0 such that the probability that a rough tile is coloured
black is at most n−ε for all n sufficiently large. Thus the expected number of black rough tiles

in H is at most
(√

n
Kr

)2
n−ε = O

(
n1−ε/ log n

)
. Applying Markov’s inequality again, we obtain

the first part of the lemma.
For the second part, observe that the graph H7 has maximum degree less than 47, and that

each rough tile is coloured black independently of all other tiles. In particular, the expected
number of paths of black rough tiles of length � > 1/ε in H7 is at most

(√
n

Kr

)2

47�n−(�+1)ε = O(n−ε) = o(1),

whence Markov’s inequality tells us that w.h.p. no such path exists. It follows that w.h.p. all
connected components of black rough tiles in H7 have diameter at most 1/ε, as claimed. �

We can now prove Theorem 5.

Proof of Theorem 5. Let ε = ε(η, K) > 0 be as in Lemma 8. Consider the non-blue tiles in
R. By Lemma 7, every non-blue tile must be within distance at most 2 in H of either a black
tile or of one of the at most N adversarially infected tiles.

By Lemma 8(i), this immediately implies that w.h.p. all but o(n1−ε) tiles of R are coloured
blue. This establishes Part (i) of Theorem 5.

Furthermore, by Lemma 8(ii), w.h.p. every connected component of black rough tiles has
diameter at most 1/ε in H7. It follows that every component of black or adversarially infected
rough tiles has diameter at most (N + 1)/ε in H7, and hence order at most 4N2/ε2.

Now, by Lemma 7, to every connected component of non-blue tiles in H2, one may associate
a connected component of black or adversarially infected rough tiles in H7 (since every non-
blue tile must be within distance 2 of a black or adversarially infected rough tile). Since there
are fewer than 25 rough tiles within distance at most 2 in H of a given rough tile, it follows
from our earlier bound on the order of connected components of black or adversarially infected
rough tiles in H7 that w.h.p. every connected component of non-blue tiles in H2 must have
order at most 100N2/ε2. This establishes Part (ii) and concludes the proof of the theorem. �
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3.3. Proof of Theorem 1

With our tiling results Theorems 4 and 5 in hand, we can prove the main results of this
paper.

Proof of Theorem 1(i). Suppose (a, p, θ ) is fixed with a > 1 and (p, θ ) satisfying the grow-
ing condition (2). Then there exists η = η(p, θ ) > 0 such that (4) is satisfied. We can then define
K = K(η) and the rough tiling R of Tn as in Theorem 4. Let N ∈N and ε > 0 be constants such
that the conclusions of Theorem 4 hold (note that our choice of these constants depends only
on a, p, θ ). By Lemma 5 we may also ensure with our choice of ε that the probability that a
rough tile in R is coloured white is at most n−ε, provided n is taken sufficiently large.

Now we select a constant C = C(a, p, θ ) sufficiently large so that any ball of radius Cr in
Tn wholly contains a connected component in H of at least N non-white rough tiles of R. This
requires a little calculation. Set M = � 2N

ε
�. Observe that there are at most n ways of choosing

an M × M square grid of rough tiles in R. Taking a simple union bound, the probability that
there are at least 2

ε
N white rough tiles in such an M × M grid is at most

2M2 (
n−ε

) 2
ε

N = O(n−2N).

By Markov’s inequality, it follows that w.h.p. every M × M grid of rough tiles in R contains
fewer than 2

ε
N white rough tiles. In particular, every such grid contains a column of 2

ε
N > N

non-white rough tiles.
We now take C sufficiently large so as to ensure that every ball of radius Cr wholly contains

an M × M square grid of rough tiles. This is easily done: C = 4MKc will certainly do, for
instance. It follows that if we infect any ball B of radius Cr in Tn, then, changing the colour
of the non-white rough tiles wholly contained inside B to red, this yields w.h.p. a connected
component of red rough tiles of order at least N in H. Applying Theorem 4, we obtain that
all but o(n1−ε) of the rough tiles from R are coloured red following the bootstrap percolation
process started from the initially infected set A0 ∪ (B ∩P).

By Lemma 1, w.h.p. every rough tile in R contains at most O( log n) vertices, so we deduce
from the above that all but O(n1−ε log n) = o(n) vertices of P eventually become infected.

This leaves only the ‘Furthermore’ part of Theorem 1(i) to establish. Consider a component
of non-red rough tiles in H2. Such a component is a union of disjoint components of non-red
rough tiles in H, connected by paths of length 2 in H where the middle tile T0 in the path is
red and the two other tiles are non-red and belong to distinct components. By Corollary 1, we
know that there must be a white tile at distance at most 3 from T0. Much as in the proof of
Theorem 4, it then follows that to the edge boundary in H of an H2-connected component of
non-red tiles we may associate an H8-connected component of white tiles W. By Lemma 5,
we know that w.h.p. all such components W have diameter at most 1/ε.

There are at most |W|43 red tiles T0 within graph distance 3 in H of a white tile in W, each
red tile T0 is the middle point of a path of length 2 in H between at most 4 distinct non-red
components in H, and by Theorem 4 w.h.p. all non-red components in H have order at most N.
It follows that all connected components of non-red tiles in H2 have order at most (48)1/ε434N.

Now since K > 1, to each connected component of forever-uninfected vertices in Gn,r[P \
A0] is associated a collection of non-red rough tiles forming a (subset of a) connected compo-
nent in H2. It follows that the Euclidean diameter in Tn of such a component is bounded above
by (48)1/ε434N

√
2Kcr = O(

√
log n), as claimed. This concludes the proof of Theorem 1(i). �

Proof of Theorem 1(ii). Suppose (a, p, θ ) is fixed with a > 1 and (p, θ ) satisfying the non-
growing condition (5). Then there exists η = η(p, θ ) > 0 such that (7) is satisfied. We can then
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FIGURE 2. A lens and a lune.

define K = K(η) and the rough tiling R of Tn as in Theorem 5. Let ε > 0 be such that the
conclusion of Theorem 5 holds (note that our choice of ε depends only on a, p, θ ).

Let C > 1 be fixed. Let B be an arbitrarily chosen ball of radius Cr in Tn. By Proposition 3,
B meets at most

N =
⌈

π (Cr)2

(Kcr)2
+ 9K(2πCr)/r

⌉
< 100KC2

tiles of R. Fully infect all points inside these at most N tiles and apply Theorem 5 to deduce that
even if all points in P ∩ B are infected, then w.h.p. all but o(n1−ε) tiles of R are coloured blue.

By Lemma 1 and a union bound, w.h.p. every tile of R contains at most O( log n) points of
P . Since the point-set A∞ \ (A0 ∪ B) is contained inside the union of the non-blue tiles of R,
it follows that A∞ \ (A0 ∪ B) contains at most o(n1−ε log n) = o(n) points of P .

This leaves only the ‘Furthermore’ part of Theorem 1(ii) to establish. We have shown in
Theorem 5(ii) that w.h.p. all connected components of non-blue tiles in H2 have order at
most 100N2/ε2 = O(1). Since K > 2, the tiles containing points of a connected component
in G2

n,r[A∞ \ (A0 ∪ B)] must form a connected component of non-blue tiles in H2. It immedi-
ately follows that each such connected component has Euclidean diameter O(

√
log n) in Tn.

This concludes the proof of Theorem 1(ii). �

3.4. Starting a sufficiently large local outbreak: proof of Theorem 2

With Theorem 1 in hand, we now turn our attention to the problem of determining when
(for which triples (a, p, θ )) a large local outbreak will occur w.h.p. in the Bradonjić–Saniee
model for bootstrap percolation on random geometric graphs. We are unfortunately unable to
answer this question rigorously, but we can relate it to the solution of an optimization problem
which we conjecture gives the correct threshold for ‘large’ local outbreaks.

Definition 4. For t ∈R≥0, let Rlens(t) denote the asymmetric lens Bt(0) ∩ B1/
√

π ((t, 0)). Also,
let Rlune(t) denote the lune B1/

√
π ((t, 0)) \ Bt(0) (see Figure 2 for an illustration). Given

functions f , g: R≥0 →R≥1, we define the quantities

I(f , g)(t) :=
∫

x∈Rlens(t)
(pf (‖x‖) + (1 − p)g(‖x‖)) dx +

∫
x∈Rlune(t)

pf (‖x‖)dx,

Q(f , g)(t) :=
∫

x∈R2:‖x‖≤t
p (f (‖x‖) − 1 − f (‖x‖) log [f (‖x‖)])

+ (1 − p) (g(‖x‖) − 1 − g(‖x‖) log [g(‖x‖)]) dx, (8)

and q(f , g) := limt→∞ Q(f , g)(t), where ‖ · ‖ denotes the standard Euclidean �2-norm.
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Note that for f , g ≥ 1, we have f − 1 − f log f ≤ 0 and g − 1 − g log g ≤ 0. Thus Q(f , g) is
a non-increasing function of t and either converges to a limit or goes to −∞.

The motivation for these quantities is as follows. We imagine an infection spreading
from the origin 0. Around 0, at time t = 0, we see increased densities of both infected and
uninfected points. It is natural to assume that these increased densities are radially symmetric.
If so, we may specify them by the functions f ≥ 1 and g ≥ 1, so that the intensities of (initially)
infected and uninfected points at x are given by pf (‖x‖) and (1 − p)g(‖x‖) respectively.
These functions must both decay to 1 as ‖x‖ → ∞, or else the probability of the associated
configuration C will be zero.

Now we consider the situation as the infection spreads. First we normalize so that the area of
the neighbourhood of x has area 1, instead of a log n. Next suppose that the infection has spread
to radius t, i.e., to all of Bt(0). Consider a point x on the boundary of this disc; without loss of
generality x = (t, 0). Every point inside Rlens(t) will now be infected as a result of the bootstrap
percolation process, but in the lune Rlune(t), only those points that were initially infected will
be infected. Summing these contributions and integrating, we see that I(f , g)(t) represents the
(normalized) number of infections seen by x; if this exceeds θ , x itself will be infected, and the
infection will thus propagate radially outwards from 0.

Given f and g, and a configuration C specified by f and g as above, what is the probability
pC that C actually occurs? For this, we turn to Lemma 1. Although this lemma only applies
to finite unions of disjoint regions, the function q(f , t), derived from Lemma 1, represents the
(normalized) logarithm of the sought probability pC. Maximizing q(f , t) over all admissible
functions f and g, subject to the constraint that I(f , g)(t) > θ for all t > 0, yields an optimal
pair (f , g), and if p and θ are such that the (un-normalized) associated probability pC exceeds
n−c, for some c < 1, then such a configuration is bound to occur somewhere in Tn. This is the
content of Definition 5 below.

The use of the integral in (8) needs to be justified. For this, we use a tiling argument.
Tiling the neighbourhood of (a truncated version of) an optimal configuration C, we apply
Lemma 1 to the disjoint union of finitely many tiles, to define a ‘discretized’ event E, based
on C, whose rigorously calculated probability pE is well approximated by pC, and whose exis-
tence rigorously guarantees that an infection will spread. This is achieved in Claims 1 and 2
below.

Definition 5. (Symmetric local growth threshold.) Let Qmax = Qmax(p, θ ) denote the supre-
mum of q(f,g) over all continuous functions f , g: R≥0 →R≥1 satisfying

I(f , g)(t) > θ ∀t ∈R≥0.

Furthermore, for a > 1 and p ∈ (0, 1) fixed, let θlocal = θlocal(a, p) be the supremum of all
θ ≤ 1 such that

Qmax(p, θ ) > −1/a. (9)

Observe that θlocal depends only on the values of a and p, and that it is well-defined and
greater than or equal to p, since Qmax(p, p) = 0, as can be seen by taking f and g to be constant
and equal to 1.

Proof of Theorem 2. Since θ satisfies (1), it follows from the definitions of θlocal and Qmax
that for any fixed T ∈R≥0 there exist functions f , g:R≥0 →R≥1 and a real ε > 0 such that the
following hold:
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(i) for every t ∈ [0, T], I(f , g)(t) > θ + 2ε;

(ii) Q(f , g)(T + 2) > −1/a + 2ε.

We use this information to construct for any constant C > 0 a (C + 2)r-bounded event occur-
ring w.h.p. and guaranteeing the existence of a ball of radius Cr that becomes wholly infected
over the course of our bootstrap percolation process. As we note in Proposition 5 below, this
implies that θlocal ≤ (1 + p)/2, and thus that for θ < θlocal the growing condition (2) is satisfied.
Combining this information with Theorem 1(i) then yields the desired almost percolation.

We now give the details. Pick T = (C + 2)/
√

π . Fix ε > 0 and let K > 0 be a sufficiently
large positive real number to be specified later. Partition R

2 into a fine grid of interior-disjoint√
a log n

K ×
√

a log n
K square tiles with axis-parallel sides. Let F be the finite family of tiles that

are wholly contained inside the ball of radius (C + 2)r = T
√

a log n about the origin. Note that
|F | = O(1). Let f , g be functions f , g:R≥0 →R≥1 such that Assumptions (i) and (ii) above are
satisfied.

Let Pp and P1−p be independent Poisson point processes on BT
√

a log n(0) with intensities
p and 1 − p respectively. Let E be the event that for every tile F in F , F contains

• at least Nf (F) := ∫
x∈F pf (‖x‖/√a log n)dx points of Pp, and

• at least Ng(F) := ∫
x∈F (1 − p)g(‖x‖/√a log n)dx points of P1−p.

Claim 1. For any ε > 0 fixed, there exists K1 > 0 such that picking K ≥ K1 ensures that

P(E) ≥ e−c log n+o( log n) for some fixed constant c < 1.

Proof. Set M1 to be the area of a 2-dimensional ball of radius T . Since f , g are con-
tinuous functions from the compact set [0, T] to R≥1, we have that f and g are bounded
above by some M2 > 0 on [0,T] and further that log f and log g are uniformly continuous
over [0,T]. In particular, for every ε > 0 there exists K1 > 0 sufficiently large so that for
all K ≥ K1, and all x, y ∈ [0, T], |x − y| ≤ 2/K implies that both | log [f (x)] − log [f (y)]| and
| log [g(x)] − log [g(y)]| are less than ε/M1M2.

For each tile F ∈F , set ρf (F) := Nf (F)/|F| and ρg(F) := Ng(F)/|F|. By the consequence
of uniform continuity observed above, picking K ≥ K1 ensures that

f

( ‖x‖√
a log n

)(
log

[
f

( ‖x‖√
a log n

)]
− log

[
ρf (F)

])≥ −ε/M1

for all x ∈ F. Combining this with Lemma 1 (rescaled by a factor of p), the probability that F
contains at least Nf (F) points of Pp is

exp
{(

ρf (F) − 1 − ρf (F) log
(
ρf (F)

))
p|F| + O( log log n)

}
≥ exp

{∫
x∈F

p

(
f

( ‖x‖√
a log n

)
− 1 − f

( ‖x‖√
a log n

)
log f

( ‖x‖√
a log n

))
dx
}

· exp

{
−p

ε

M1
|F| + O( log log n)

}
.

One may obtain a similar expression for the probability that F contains at least Ng(F) points
of P1−p, substituting 1 − p for p and g for f .

Since {Pp ∩ F, F ∈F} and {P1−p ∩ F, F ∈F} together form a collection of independent
random variables, it follows that the probability that every tile F ∈F contains at least Nf (F)
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points of Pp and at least Ng(F) points of P1−p—in other words, the probability of E—is at
least

P(E) ≥ exp {(Q(f , g)(T) − ε) a log n + O( log log n)} ,

which by Assumption (ii) is at least e−(1−aε) log n+o( log n), proving our claim with the constant
c = 1 − aε. �

Given a non-negative integer i, let Ai = Ai(F) denote the collection of tiles of F that
meet the annulus B(i+1)

√
a log (n)/K(0) \ Bi

√
a log (n)/K(0). Furthermore, let Di = Di(F) denote the

union of the tiles of F that are wholly contained inside the disc Bi
√

a log (n)/K(0). Observe that
both these tile families depend on F (and thus on our choice of K).

Claim 2. For every ε > 0 fixed, there exists K2 > 0 such that picking K ≥ K2 ensures that at
least one of the following holds:

• the event E fails to occur;

• for every i ≤ KT − 1, every tile F ∈ Ai, and every vertex x ∈ F, we have that

Nx := |Br(x) ∩ Di ∩P1−p| + |Br(x) ∩Pp| > θa log n.

Proof. As in the previous claim, we note that the continuous functions f , g are bounded
above on the compact set [0,T] by some M2 > 0.

Assume the event E occurs. Fix i ≤ KT − 1, and F ∈ Ai. Let x ∈ F and set t :=
‖x‖/√a log n. Denote by S1(x) the collection of tiles of F wholly contained inside Di ∩ Br(x),
and by S2(x) the collection of tiles of F wholly contained inside Br(x). Since E occurs, we have

Nx ≥
∑

F∈S2(x)

Nf (F) +
∑

F∈S1(x)

Ng(F).

Now since f , g are bounded above by M2, the expression on the right-hand side is at least

I(f , g)(t)a log n − M2p

⎛
⎝a log n −

∑
F∈S2(x)

|F|
⎞
⎠

− M2(1 − p)

⎛
⎝|Rlens|a log n −

∑
F∈S1(x)

|F|
⎞
⎠ .

It readily follows from an application of Proposition 3 that for any ε > 0, there exists K2 > 0
such that picking K ≥ K2 ensures that the above is at least (I(f , g) − ε)a log n. Assumption (i)
then tells us that

Nx ≥ (θ + ε)a log n,

proving our claim. �
With Claims 1 and 2 in hand, the proof of Theorem 2 is now straightforward.
Consider (a, p, θ ) satisfying a > 1 and (1). As recorded in Proposition 5 below, this implies

θ < (1 + p)/2. Let C = C(a, θ, p) > 0 be a constant such that by Theorem1(i), the infection of
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a ball of radius Cr in Tn leads w.h.p. to almost percolation in our bootstrap percolation process
on Tn. This then specifies our choice of T = (C + 2)/

√
π > 0.

Let K1, K2 be the constants from Claims 1–2. Pick K ≥ max (K1, K2). As remarked in
Section 2, by standard properties of Poisson point processes we may view the vertex set in
the Bradonjić–Saniee model in the torus as being the union of a Poisson process Pp of ini-
tially infected points of intensity p with a Poisson process P1−p of initially uninfected points
of intensity 1 − p. Partitioning the torus Tn into a fine grid of interior-disjoint square tiles with
side length

√
a log n/c′K, where c′ ≥ 1 is chosen to ensure that divisibility conditions are met,

we can define a natural analogue E′ of our event E inside Tn.
Clearly if E′ occurs, then by applying Claim 2 to A0, . . . , AKT−1, we see that all vertices

inside a ball of radius Cr about the origin in Tn become infected, which then leads to almost
percolation. Since E′ is (C + 2)r-bounded and has probability q = e−c log n+o( log n) for some
fixed constant c < 1 (by Claim 1), it follows from Lemma 2(ii) that w.h.p. some translate of
E′ occurs in Tn. Thus, for a > 1 fixed, w.h.p. we have almost percolation in the (p, θ ) regime
satisfying (1), as claimed. �

We conclude this subsection by recording some trivial inequalities between θlocal and other
quantities of interest, justifying the phase diagram we give in Figure 1.

Proposition 5. For all a > 1 fixed and p ∈ [0, 1], the following inequalities hold:

p ≤ θlocal ≤ min

(
1 + p

2
, θstart

)
.

Proof. For the lower bound, observe that taking f , g to be identically 1 we have I(f , g) ≥ p
for all t ≥ 0 and q(f , g) = 0. It then follows from Definition 5 that θlocal ≥ p as claimed.

For the upper bound, observe first of all that if p, θ are fixed and θ > θstart, then w.h.p.
no percolation occurs, which by Theorem 2 implies θstart ≥ θlocal. Next, note that the proof of
Theorem 2 implies that for a, p, θ fixed with a > 1 and θ < θlocal, for any fixed C > 0, w.h.p.
there will be a ball of radius C

√
log n in Tn such that every vertex inside it eventually becomes

infected. On the other hand, Theorem 1(ii) implies that if (a, p, θ ) are fixed with a > 1 and
θ >

1+p
2 , then w.h.p. there exists a constant C > 0 such that no ball of radius C

√
log n in Tn

becomes infected in this way. This immediately yields that θlocal ≤ 1+p
2 . �

Remark 2. The results in Appendix C show that d
dp (θlocal(p)) → ∞ as p → 0 and

d
dp (θlocal(p)) → 1/2 as p → 1, so that θlocal is tangent to θstart at p = 0 and to θ = 1+p

2 at p = 1.
In particular, the tangencies at p = 0 and p = 1 of the curve θ = θlocal(p) given in Figure 1 are
correct.

3.5. Islands

Beyond the almost percolation guaranteed by Theorem 2, it is natural to ask when full
percolation occurs in the Bradonjić–Saniee model. One obstacle for full percolation is the
presence of initially uninfected vertices of degree strictly less than θa log n. Proposition 2
gives us the (implicit) θ threshold for the w.h.p. disappearance of such vertices. However there
may be other, likelier, obstacles to full percolation, namely ‘islands’ of initially uninfected ver-
tices with few initially infected vertices, surrounded by sparsely populated ‘lakes’ containing
unusually few vertices.

Much as in the previous subsection, we are unable to rigorously determine the threshold for
the w.h.p. disappearance of islands of uninfected vertices. We are, however, able to determine
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the threshold for the disappearance of symmetric islands, which is given by the solution of an
explicit continuous optimization problem and can be determined explicitly using the method
of Lagrange multipliers.

As the arguments involved are very similar to those in the previous section, we give only
a minimal level of detail. The basic idea is quite simple: we look for a radially symmetric
distribution of infected/non-infected point densities which guarantees that some island cannot
be infected from the outside. To such a distribution we associate a local O(r)-bounded event,
from which we can in turn derive a threshold for the w.h.p. disappearance of such islands—the
proof essentially follows that of Theorem 2, mutatis mutandis.

To make this more precise, let us give analogues of Definition 4 tailored to the island (rather
than local outbreak) setting.

Definition 6. Let T > 0 be fixed. For t ∈ [0, T], write Rinner(t) for the asymmetric lens BT (0) ∩
B1/

√
π ((t, 0)) and Router(t) for the (possibly empty) lune B1/

√
π ((t, 0)) \ BT (0). A symmetric

T-island distribution is a pair (f,g) of continuous functions f , g: R≥0 → [0, 1] such that for
every t ∈ [0, T], the following holds:∫

x∈Rinner(t)
pf (‖x‖)dx +

∫
x∈Router(t)

(pf (‖x‖) + (1 − p)g(‖x‖)) dx < θ . (10)

Given a symmetric T-island distribution (f , g), we define its weight q(f , g) as in (8) (just the
equation, not the limit).

Definition 7. (Symmetric islands threshold.) For every T ≥ 0, the optimal T-island weight
qmax(T) = qmax(T)(p, θ ) is the supremum of the weight q(f,g) over all symmetric T-island dis-
tributions (f,g). The symmetric islands threshold θislands = θislands(a, p) is then defined to be the
supremum of the θ ≤ 1 such that

sup
T≥0

qmax(T) > −1/a. (11)

We note that the quantity θislands can in principle be computed using Euler–Lagrange
equations—see Appendix A. However, the solution will be implicit rather than explicit. Let
us record here, however, the simple fact that

θislands ≤ 1 + p

2
. (12)

Indeed, let (a, p) and ε > 0 be fixed. Pick a constant T > 0 sufficiently large so that the
area of Rinner(T) is at least 1

2 − ε. Then it is easily checked that taking the functions f , g to be
identically 1 gives a symmetric T-island distribution (f , g) with weight q(f , g) = 0 > −1/a for
any θ >

1+p
2 + ε(1 − p). The inequality (12) follows immediately.

Proof of Theorem 3. This is a simple modification of the proof of Theorem 2: if θ > θislands,
then there exists a symmetric T-island distribution (f , g) such that q(f , g) > −1/a + 2ε. As in
the proof of Theorem 2, passing to a fine tiling of a ball of radius (T + 2)

√
a log n, one may use

(f , g) to define a tiling event E in T2
n such that (i) E is an O(r)-bounded event with probability

P(E) = e−(c+o(1)) log n, where c < 1 is a fixed constant, and (ii) if E occurs then none of the
points in a ball of radius T

√
a log n around the origin that are initially uninfected ever become

infected in our bootstrap percolation process. Applying Lemma 2(ii), we have that w.h.p. some
translate of E occurs, whence w.h.p. we do not have full percolation in this regime. We leave
the details to the reader. �
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The content of Conjecture 3 is that the last obstruction to full percolation that will vanish
as we decrease the infection threshold θ will correspond to the local distribution of initially
infected/uninfected points that are well approximated by a symmetric T-island, for some
T = T(a, p). Motivation for the conjectured circular symmetry comes from the isoperimetric
inequality in the plane as well as probabilistic considerations: for an uninfected island config-
uration to remain both uninfected and likely to occur in T2

n , one expects it is best to minimize
the length of its boundary, and to spread out unlikely low densities of points outside the island
and of initially uninfected points inside the island as uniformly as possible.

Theorem 3 gives an upper bound on the values of θ for which full percolation may occur
w.h.p. in the Bradonjić–Saniee model. While we are unable to prove a matching lower bound
and thereby prove Conjecture 3, we note here that one can nevertheless prove some rigorous
lower bounds on the threshold θpercolation(a, p) below which percolation occurs w.h.p., which
we believe refine the earlier simple bounds due to Bradonjić and Saniee [15, Theorem 2] (in
both cases, the exact value of the threshold is given implicitly rather than explicitly, which
makes a comparison difficult).

Theorems 1(ii) and 2 imply that once θ falls below θlocal, w.h.p. the only obstructions to
full percolation are components of uninfected vertices of Euclidean diameter O(

√
log n) in T2

n .
Let us consider what point configurations make the existence of such components possible.
Given a component of never-infected points of diameter C

√
log n, for some C > 0, consider a

pair of uninfected points u, v from that component with ‖u − v‖ = C
√

log n. Then the whole
component of never-infected points lies inside the lune L formed by the two discs of radius
C

√
log n centred at u and v respectively. Since u, v do not become infected, it must be the

case that the number of points in Br(u) \ L plus the number of initially uninfected points in
Br(u) ∩ L is less than θa log n, and a similar statement holds for v. This implies that either
(Br(u) ∪ Br(v)) \ L contains an abnormally low number of points from our Poisson point
process, or that (Br(u) ∪ Br(v)) ∩ L contains an abnormally low number of initially infected
points. By performing a case analysis and some Lagrangian optimization, one can upper-
bound the probability of such an event. Once this upper bound becomes o(1/n), one can
then apply Markov’s inequality to show that such unlikely point configurations w.h.p. do not
occur, and thus that we have w.h.p. entered the full percolation regime. However, we do not
believe the bounds coming from this argument are optimal (since they will not match those
from Conjecture 3) or particularly helpful, so we relegate a sketch of the aforementioned case
analysis and optimization to Appendix B.

4. Bootstrap percolation on the circle

In this section, we discuss the behaviour of the Bradonjić–Saniee model in dimension
d = 1, i.e. bootstrap percolation on a Gilbert random geometric graph on the circle. In the
regime we are considering, this means we have a Poisson process of intensity 1 on a circle of
circumference n providing us with the vertex set of a Gilbert geometric graph with parameter
r given by 2r := a log n, where a > 1 is fixed. A related model of bootstrap percolation on the
Cartesian product of a cycle with a complete graph has previously been studied by Gravner
and Sivakoff in [26].

As our main interest in this (already long) paper is the behaviour of the Bradonjić–Saniee
model in the torus, we give a very informal, high-level discussion of the behaviour of the 1-
dimensional case; our arguments can be made fully rigorous using fine tiling arguments similar
to those deployed in Section 3.
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The 1-dimensional case reveals a broadly similar picture to what we conjecture holds in
the 2-dimensional case, with two exceptions: (i) the fact that starting an infection is enough
to ensure a large local outbreak, doing away with the necessity of computing an analogue of
θlocal, and (ii) the existence of blocking sets (see below) that can stop a large local outbreak
from becoming global, since in one dimension you cannot ‘go round an obstacle’. A pleasant
feature of the 1-dimensional case, however, is that the optimization problems involved are far
simpler and can be resolved explicitly using the method of Lagrange multipliers.

We break up our discussion of the 1-dimensional model below in subsections on starting
and growing an infection, blocking sets, and islands, before summarizing the behaviour in the
various regimes thus identified in Section 4.5 with a picture. Throughout this section, (a, p, θ )
is fixed with a > 1 and 0 < p < θ < 1.

4.1. Technical remarks: uniform distribution and approximate densities

While the discussion that follows will be quite informal, let us set down here a few remarks
on how it can be formalized. Let C1 > C2 > 0 be fixed constants. Fix c = c(C1, C2) > 0. Let I
be a fixed interval of length |I| ∈ [C1r, C2r] on the circle. We say that a finite point-set P with
|P ∩ I| = x|I| is uniformly distributed on I if every subinterval J of I of length at least c

√
r

contains |J|(x + o(1)) points from P .
If P is the outcome of a Poisson process of intensity bounded away from 0 on the circle, then

it is an easy consequence of Lemma 1 that conditional on |P ∩ I| = x|I|, w.h.p. P is uniformly
distributed on I (for a suitable choice of c = c(C1, C2)). In particular, the probability of seeing
that many points in I is, up to a (1 + o(1)) factor, the probability of seeing that many uniformly
distributed points.

This remark, together with a partition of the circle into interval tiles of length C1r, for some
suitably small constant C1, allows us to reason in terms of continuous point-density functions
rather than discrete point-sets, as we do below.

To fully formalize some of our arguments, e.g. to rule out a family of obstructions by show-
ing that the likeliest event in this family is unlikely to occur, one should also approximate the
initially infected/uninfected point density inside each interval tile as a fraction j/C3, where C3
is a sufficiently large constant and

j = min (�C3#{points in the interval}/C1r�, 100C3/C1) .

Doing so then allows us, when considering events supported on a bounded number of
tiles, to take union bounds over a finite number of tile density configurations and simply
apply Markov’s inequality; see e.g. the proof of [7, Lemma 5] for an example of this kind
of argument.

4.2. Growing an infection

Our first observation is that if fstart(a, p, θ ) < 1, then, for some ε, some vertex v (at posi-
tion 0, say) will see at least a(θ + ε) log n infected neighbours, rather than just aθ log n. This
follows from the continuity of the function fstart. Using the notation Ix = (−x, x), we may also
assume that both the infected and the uninfected vertices in I100r = (−100r, 100r) are uni-
formly distributed on both I100r \ Ir and Ir, so that any interval J of length c

√
log n inside

Ir contains |J|(1 − p)(1 + o(1)) initially uninfected vertices and |J|(θ + ε)(1 + o(1)) initially
infected ones, while any such interval inside I100r \ Ir contains |J|(1 − p)(1 + o(1)) initially
uninfected vertices and |J|p(1 + o(1)) initially infected ones. (The densities 1 − p, θ + ε, and
p come from the colouring theorem for Poisson processes [32], which implies in this case that
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the initially infected and uninfected points can be regarded as independent Poisson processes
of intensities p and 1 − p respectively. The uniform distribution assumption, for its part, holds
w.h.p. as discussed in Section 4.1.)

One consequence of this is that not only does v become infected (if it was not already
infected), but all vertices in the interval (−δ log n, δ log n) become infected, for some δ = δ(ε).
After the first round of new infections, the interval Iδ log n contains |Iδ log n|(1 − p + θ + ε)(1 +
o(1)) vertices, all of which are infected; Ir \ Iδ log n contains |Ir \ Iδ log n|(1 − p)(1 + o(1)) unin-
fected vertices and |Ir \ Iδ log n|(θ + ε)(1 + o(1)) infected ones; and w.h.p. I100r \ Ir contains
infected and uninfected vertices with approximate densities p and 1 − p respectively.

Now we show that w.h.p. the ‘infected interval’ Iδ log n grows until it infects every vertex
in I100r. For simplicity, we shall say that the interval Ix is infected if every vertex within it
is infected. Suppose that, after some rounds of the bootstrap process, Ix is in fact infected.
(Initially, we take x = δ log n.) We examine the neighbours of the first uninfected vertex u to
the right of Ix, with a view to showing that u gets infected next, by virtue of having many
infected neighbours in Ix. An identical argument will apply on the left.

Assume first that x ≤ r/2. Then w.h.p. u will have N1(x)(1 + o(1)) infected neighbours,
where

N1(x) = (θ + ε)(2r − 3x) + xp + 2x(1 − p + θ + ε)

= 2rθ + ε(2r − x) + x(2 − θ − p)

> 2rθ = aθ log n,

so that u does indeed become infected w.h.p.
Next assume that r/2 < x ≤ r, and write y = x − r/2. This time w.h.p. u will have N2(y)(1 +

o(1)) infected neighbours, where

N2(y) = (1 − p + θ + ε)r +
( r

2
− y

)
(θ + ε) +

( r

2
+ y

)
p

= (2 − p + 3θ + 3ε)r

2
+ y(p − θ − ε)

> 2rθ = aθ log n.

Now since N2(y) is a linear function satisfying

N2(0) = (2 − p + 3θ + 3ε)r

2
>

(1 + 3θ )r

2
> 2rθ

and

N2

( r

2

)
= (2 + 2θ + 2ε)r

2
> 2rθ,

it follows that N2(y) > 2rθ and hence that u becomes infected w.h.p.
Finally we show that the infection spreads beyond Ir, to at least the entire interval I100r.

When r < x ≤ 100r, u will have at least (r + rp)(1 + o(1)) infected neighbours (this will be
an underestimate if x < 2r), and this exceeds 2rθ when 2θ < 1 + p. Accordingly, we name
the inequality 2θ < 1 + p (which is already familiar to us from Theorem 1) the global growth
condition and display it for convenience:

Global growth condition: θ <
1 + p

2
.
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We also have the condition from Proposition 1 for the infection to start:

Starting condition: a(p − θ + θ log (θ/p)) < 1 or θ < p.

Next, we describe the spread of the infection beyond I100r. As a consequence of
Lemma 2(ii), if the starting condition is met, then the infection will actually start in nα+o(1)

sites, where α = 1 − fstart(a, p, θ ). If the global growth condition is also met, these local infec-
tions will grow on both sides from each such site, until one of them is met by a (left or right)
blocking set, which we describe below.

4.3. Blocking sets

In this subsection, we assume that both the starting and the global growth conditions are sat-
isfied. What can then stop an infection from spreading around the circle? We shall distinguish
two possible obstructions: blocking sets (where initially uninfected vertices in an interval of
length at least 2r stay uninfected) and islands (where initially uninfected vertices in an interval
of length at most 2r stay uninfected). In this subsection, we deal with the former.

A clockwise, or right, blocking set consists of two contiguous intervals, both of length r. The
left interval contains zr vertices, and the right interval contains xpr initially infected vertices,
both sets of vertices being uniformly distributed within their respective intervals (note that as
remarked in Section 4.1, uniform distribution occurs w.h.p. conditional on the sizes of the two
vertex sets). Even if all the vertices in the left interval become infected, the infection will not
spread to the right interval (or, more precisely, clockwise) as long as

(z + xp)r < aθ log n = 2rθ, (13)

i.e. as long as xp + z < 2θ . In other words, if this strict inequality is satisfied then the right
interval in a right blocking set can only be infected ‘from the right’—the vertices in the left
interval do not on their own suffice to spread the infection further to the right.

We wish to maximize the probability that such a right blocking set configuration occurs
somewhere in the circle. Using Lemma 1, we see that the probability q = q(x, z) of a blocking
set with parameters x and z is given by

q = exp{r(z − 1 − z log z) + pr(x − 1 − x log x) + o(r)}
= exp

{
a log n

2
((z − 1 − z log z) + p(x − 1 − x log x) + o(1))

}
.

Consequently, to maximize the probability that a blocking set occurs, we must maximize

f (x, z) = z − 1 − z log z + p(x − 1 − x log x)

subject to the constraint

g(x, z) = xp + z ≤ 2θ,

with p and θ fixed. Using the method of Lagrange multipliers, we see that f (x, z) is maximized
when

(x, z) =
(

2θ

1 + p
,

2θ

1 + p

)
,
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and, since the growing condition is satisfied, we note that x = z < 1 at the maximum.
Substituting, the maximum fmax of f (x, z) subject to g(x, z) ≤ 2θ is given by

fmax = 2θ − (1 + p) − 2θ log

(
2θ

1 + p

)
,

so that the maximum of q(x, z) is

qmax = exp

{
−a log n

(
1 + p

2
− θ + θ log

(
2θ

1 + p

)
+ o(1)

)}
.

We conclude that the expected number of blocking sets is nβ+o(1), where

β = 1 − a

(
1 + p

2
− θ + θ log

(
2θ

1 + p

))
.

Recall also that, as long as θ > p, the infection starts in nα+o(1) places, where

α = 1 − fstart(a, p, θ ) = 1 − a(p − θ + θ log (θ/p)).

Now assume that the starting and growing conditions are satisfied, and consider the case
0 < α < β < 1. Infections will start to spread in nα+o(1) places, and these will be blocked by
nβ+o(1) � nα+o(1) blocking sets (a right blocking set stops infections spreading clockwise,
and a left blocking set stops infections spreading anticlockwise). Accordingly, each of the
nα+o(1) growing infections will spread for distance n1−β+o(1) before being blocked in both the
clockwise and the anticlockwise direction, so that the infections will cover n1+α−β+o(1) = o(n)
of the circle. We call this the regime of ‘polynomial growth’; in this regime, the spread of
infection is largely contained.

Next, assume again that the starting and growing conditions are satisfied, but suppose
that 0 < α/2 < β < α < 1. The nα+o(1) spreading infections will encounter nβ+o(1) 
 nα+o(1)

blocking sets, and since these blocking sets will usually be isolated, with spreading infections
on each side, most of the circle will become infected. The only likely obstructions (save for the
‘islands’ to be described in the next subsection) are pairs of blocking sets (reading clockwise,
a right blocking set followed by a left blocking set) with no growing infection between them.

To be slightly more precise, suppose there is some interval I of length at least r such that (a)
every initially uninfected vertex in I stays uninfected, and (b) every vertex in the intervals of
length r to the left and to the right of I become infected. Let v denote the leftmost uninfected
vertex in I. Let zr denote the number of vertices in the interval of length r to the left of v,
and xpr the number of initially infected vertices in the interval of length r to the right of v.
Then x, z satisfy (13). Now, conditional on having zr vertices in the interval to the left of r and
xpr initially infected vertices in the interval to the right of r, we know that w.h.p. these points
are uniformly distributed on these intervals. Thus, up to a (1 + o(1)) multiplicative factor, the
probability of seeing such a point configuration is the probability of seeing a right blocking set
with parameter (x, z), and hence is at most nβ+o(1). (Formally, one must also use approximate
densities as sketched in Section 4.1 to partition the collection of all (x, z) into a finite collection
of rational pairs, as well as the continuity of the functions f and q in order to show that the

contribution from configurations with (x, z) close to
(

2θ
1+p , 2θ

1+p

)
dominates.)

There will be nβ · nβ−α+o(1) = n2β−α+o(1) such pairs, typically separated by distance
n1+α−2β+o(1), so that the entire circle except for regions of length totalling n1−2β+α+o(1) = o(n)
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will become infected. We call this the regime of ‘polynomial obstructions’: when 2β > α,
blocking sets by themselves cannot prevent the spreading infections from covering most of the
circle.

There are thus two thresholds: the first, separating the regime of polynomial growth from
that of polynomial obstructions, occurring at α = β, and the second, separating the regime of
polynomial obstructions from that of ‘logarithmic obstructions’ (caused by islands—see the
subsection below), occurring at α = 2β.

When finding these thresholds, we recall that they lie entirely inside the region θ ≥ p, since
α = 1 when θ ≤ p. For the first threshold, we have α > β exactly when

1 + p

2
− θ + θ log

(
2θ

1 + p

)
> p − θ + θ log (θ/p),

which yields the following expression for the threshold:

First threshold condition:
1 − p

2
> θ log

(
1 + p

2p

)
.

Note that this region contains the region θ ≤ p (as can be seen from the Taylor expansion of
the right-hand side), and is independent of the choice of a > 1. For the second threshold, we
have α > 2β exactly when

1 − a(p − θ + θ log (θ/p)) > 2

(
1 − a

(
1 + p

2
− θ + θ log

(
2θ

1 + p

)))
,

which yields the following expression for the threshold:

Second threshold condition: a

(
1 − θ + θ log

(
4θp

(1 + p)2

))
> 1 or θ < p.

This time, we need to include the additional condition θ < p.

4.4. Islands

Next assume that the starting, global growth, and first and second threshold conditions are
all satisfied. What can then prevent full percolation? In this subsection, we sketch how the final
obstructions for the infection to overcome are islands, i.e. intervals of length at most r in which
no new infection is recorded.

For c ∈ [0, 1], a cr- island, illustrated in Figure 3, consists of five contiguous intervals whose
lengths, from left to right, are cr, (1 − c)r, cr, (1 − c)r, and cr. Inside these intervals there are,

FIGURE 3. An island.
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from left to right, zcr vertices, y(1 − c)r vertices, xpcr initially infected vertices, y(1 − c)r
vertices, and zcr vertices, all uniformly distributed within their respective intervals. We note
that even if all the vertices in the four outermost intervals become infected, no vertices inside
the middle interval will become infected, as long as

cz + 2y(1 − c) + xpc < 2θ .

We wish to maximize the probability that such a set occurs.

Remark 3. Formally, we should consider islands where we allow for a non-uniform distribu-
tion of vertices within the five intervals. However, the number of points around such islands
must still satisfy the displayed inequality above (just consider the leftmost uninfected vertex
in the middle interval), whence, as we remarked in Section 4.1, the probability of seeing such
a point configuration is, up to a (1 + o(1)) multiplicative factor, the probability of seeing an
island as defined above.

Remark 4. Similarly to the above, formally we should also consider the case where the propor-
tions of vertices and infected vertices vary across the five intervals, i.e. where these contain z1cr
vertices, y1(1 − c)r vertices, xpcr initially infected vertices, y2(1 − c)r vertices, and z2cr ver-
tices respectively, and where we have two constraints, namely cz1 + (y1 + y2)(1 − c) + xpc <

2θ and cz2 + (y1 + y2)(1 − c) + xpc < 2θ . However, it is easily checked that the probabil-
ity of such configurations is maximized by symmetric configurations with y1 = y2 = y and
z1 = z2 = z, so that the cr-islands defined above that we consider are the only ones we need
to worry about in an asymptotic analysis. Here again the argument can be formalized using
approximate densities.

Using Lemma 1, we see that the probability q = q(x, y, z, c) of an island with parameters x,
y, z and c is given by

q = exp{2cr(z − 1 − z log z) + 2(1 − c)r(y − 1 − y log y) + pcr(x − 1 − x log x) + o(r)}
= exp

{
a log n

2
(2c(z−1−z log z) + 2(1−c)(y−1−y log y) + pc(x−1−x log x) + o(1))

}
.

Consequently, to maximize the probability that an island occurs, we must maximize

f (x, y, z, c) = 2c(z − 1 − z log z) + 2(1 − c)(y − 1 − y log y) + pc(x − 1 − x log x)

subject to the constraints

g(x, y, z, c) = cz + 2y(1 − c) + xpc ≤ 2θ

and c ∈ [0, 1] (for the island to exist and not to be a blocking set), with p and θ fixed.
Using the method of Lagrange multipliers, and noting that the growing condition is satisfied

(which excludes the solution x = y = z = 1), we see that f (x, y, z, c) is maximized when

(x, y, z, c) =
((

p

2 − p

)2

,

(
p

2 − p

)2

,
p

2 − p
,

2(θ (2 − p)2 − p2)

p(1 − p)(2 − p)

)
,
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where we also require that c ∈ [0, 1] (for the island to exist). We separate the analysis into three

cases, depending on the value of c = 2(θ(2−p)2−p2)
p(1−p)(2−p) .

Case 1: c ∈ (0, 1). The maximum fmax of f (x, y, z, c) subject to our constraints is then
given by

fmax = 8(p − 1)

(2 − p)2
− 4θ log

(
p

2 − p

)
,

so that the maximum of q(x, y, z, c) is

qmax = exp

{
−a log n

(
4(1 − p)

(2 − p)2
+ 2θ log

(
p

2 − p

)
+ o(1)

)}
.

Set

fc−stop(a, p, θ ) := a

(
4(1 − p)

(2 − p)2
+ 2θ log

(
p

2 − p

))
.

By Lemma 2(ii), we have that if fc−stop(a, p, θ ) < 1, then w.h.p. a cr-island occurs some-
where on the circle, and we do not have full percolation. On the other hand, if fc−stop(a, p, θ ) >

1, then by Lemma 2(i) w.h.p. there are no cr-islands for any c ∈ [0, 1]. (Formally, we take an
equipartition of [0,1] into a large but finite number of rational subintervals; we use these to
partition the collection of c-islands, for c ∈ [0, 1], into a finite number of families, to which we
can apply Markov’s inequality.) Thus w.h.p. we have full percolation (since the starting, grow-
ing, and first and second threshold conditions are satisfied, and since any uninfected vertex
must correspond to an island).

Case 2: c ≤ 0. When c ≤ 0, the optimum legitimate island is the 0-island (i.e. an unin-
fected vertex with degree too low to ever be infected), and we recover the necessary condition
for full percolation from Proposition 2, namely that f0−stop(a, p, θ ) > 1. (This explains the
earlier choice of notation.) Note that the analysis in this section reveals that this necessary
condition for full percolation f0−stop(a, p, θ ) > 1 is sufficient when c ≤ 0, but not when c ∈
(0, 1). This is because, when c ∈ (0, 1), the condition f0−stop(a, p, θ ) > 1 is strictly weaker
than fc−stop (a, p, θ ) > 1, since a non-degenerate cr-island is more likely to occur than the
degenerate 0-island from Proposition 2.

Case 3: c ≥ 1. When c ≥ 1, the optimum island has c = 1, and a separate calculation with
Lagrange multipliers shows that the optimum choices of x and z (y no longer features in the
island) are

(x, z) =
(

1 + 4θp − 2
√

1 + 8θp

2p2
,

√
1 + 8θp − 1

2p

)
=
((√

1 + 8θp − 1

2p

)2

,

√
1 + 8θp − 1

2p

)
.

These choices lead to a maximum of q(x, y, z, c) of

qmax = exp

{
−a log n

(
1−θ+p

2
−

√
1 + 8θp − 1

4p
+2θ log

(√
1+8θp − 1

2p

)
+o(1)

)}
,

so that, writing

f1−stop(a, p, θ ) = a

(
1 − θ + p

2
−

√
1 + 8θp − 1

4p
+ 2θ log

(√
1 + 8θp − 1

2p

))
,
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we see that when c ≥ 1, if f1−stop(a, p, θ ) < 1, then by Lemma 2(ii), w.h.p. an r-island
occurs somewhere on the circle, and we do not have full percolation. On the other hand, if
f1−stop(a, p, θ ) > 1, then by Lemma 2(i) w.h.p. there are no cr-islands for any c ∈ [0, 1] (as in
Case 1), and w.h.p. we have full percolation (since the starting, growing, and first and second
threshold conditions are satisfied).

To summarize, suppose we are given p and θ , and we wish to check whether full percolation
occurs, assuming that the starting, growing, and second threshold conditions are satisfied. First,
we calculate

c = c(p, θ ) = 2(θ (2 − p)2 − p2)

p(1 − p)(2 − p)
.

Then, depending on the value of c, the condition for full percolation is as displayed below:

Full percolation: 1 <

⎧⎪⎪⎨
⎪⎪⎩

a(1 − θ + θ log θ ), c ≤ 0,

a
(

4(1−p)
(2−p)2 + 2θ log

(
p

2−p

))
, 0 < c < 1,

a
(

1 − θ + p
2 −

√
1+8θp−1

4p + 2θ log
(√

1+8θp−1
2p

))
, c ≥ 1.

The lack of islands is necessary for full percolation, and, given that the other four conditions
are met, it is w.h.p. also sufficient. To see this, suppose that the second threshold condition is
satisfied. Then, once the infection has stopped spreading, the Gilbert graph on the uninfected
vertices splits into several components. Take one such component C, with extreme vertices u
and v. If u and v lie at distance at least 2r, then the probability that this occurs is of the same
order as the probability that there exists a pair of blocking sets with no infection between them,
which is o (1) by the second threshold condition. Thus u and v lie at distance less than 2r. If
they lie at distance less than r, then the probability that this occurs is of the same order as the
probability that they are part of an island. If they lie at distance (2 − c)r with r ≤ (2 − c)r ≤ 2r,
then we must have five intervals of lengths r, (1 − c)r, cr, (1 − c)r, and r (from left to right, with
u the rightmost endpoint of the first interval and v the leftmost endpoint of the last interval),
containing (respectively) z1r points, y1p(1 − c)r initially infected points, xpcr initially infected
points, y2p(1 − c)r initially infected points, and z2r points, where

z1 + (y1 + y2)p(1 − c) + xpc < 2θ, z2 + (y1 + y2)p(1 − c) + xpc < 2θ .

It is easily checked that the probability of such a configuration is maximized by taking
y1 = y2 = y and z1 = z2 = z. A short calculation with Lagrange multipliers then shows that
the most likely way this can happen is when c = 0 (corresponding to a blocking set) or c =
1 (corresponding to an r-island). In summary, if the second threshold condition is satisfied,
then the most likely way for a small component of uninfected vertices to arise is in the shape
of an island, and the threshold for the disappearance of islands is also the threshold for full
percolation.

4.5. Summary

Figure 4 is a phase diagram for the case a = 2, showing the different regimes discussed
above. If the starting condition is not met, there is no growth—no new infections take place.
If the starting condition is met, but the global growth condition is not met, then the growth
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FIGURE 4. Phase diagram for a = 2.

will be confined to regions of width �( log n)—we term this ‘logarithmic growth’. If these two
conditions, but not the first threshold condition, are met, we are in the region of ‘polynomial
growth’; if the first (but not the second) threshold condition is met, then we have ‘polynomial
obstructions’. Finally, if all these conditions are met, the threshold for full percolation separates
the region of ‘logarithmic obstructions’ (islands) from that of full percolation. Note that the
term ‘logarithmic obstruction’ (respectively, ‘polynomial obstruction’) refers to the size of the
obstruction, rather than to the total proportion of the circle occupied by such obstructions. It is
possible that logarithmic obstructions will dominate polynomial ones for certain values of the
parameters, but, to keep things simple, we do not pursue this question further here.

It is convenient to visualize the spread of infection as a continuous process, starting in cer-
tain random places, and then spreading in the form of expanding arcs, before possibly being
blocked by blocking sets or islands. Indeed, consider a typical ‘interface’ I at the place where
an infection is blocked. To the left of I, we have full infection, while to the right of I, only ini-
tially infected points are infected. The interface I itself consists of uninfected points alternating
with (initially infected points and) newly infected points. Now the probability that the length
dI of I exceeds x decays exponentially in x, so long interfaces are comparatively rare. Thus
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they may be conveniently visualized as single points marking the boundaries of infections, and
the frozen state of the model may be visualized as a collection of random arcs on a circle.

5. Concluding remarks

We end this paper with some remarks.

• We stated and proved our main results for the Bradonjić–Saniee model on the 2-
dimensional torus Tn := T2

n rather than the square Sn := [0,
√

n]2 to avoid having to
consider boundary effects. We note here that the boundary effects do not play any sig-
nificant role in the Bradonjić–Saniee model on Sn, apart from complicating the analysis
relative to Tn.

Indeed, since the presence of a boundary does not help the infection, the analogue of
Theorem 1(ii) immediately follows for Sn.

For the analogue of Theorem 1(i) in the square, one must modify the proof. Instead of con-
sidering the whole of Sn, one should instead focus on the subsquare Sn

′ consisting of all rough
tiles at graph distance at least 7 from a ‘boundary tile’ in the auxiliary graph H, and one must
employ the Bollobás–Leader edge-isoperimetric inequality for the square grid rather than the
toroidal grid. Since o(|R|) rough tiles lie close to the boundary of Sn, this results in some
changed constants as well as the presence of a connected component in Gn,r[P \ A∞] of diam-
eter �(

√
n) and order O(

√
n log n) all around the boundary of the square. Thus the bound on the

Euclidean diameter of components of forever-uninfected points will only hold for components
all of whose points are at a sufficiently large multiple of

√
log n away from the boundary.

• We expect that Theorem 1 also holds in dimension d ≥ 3. However, some work will be
required to adapt our arguments to the higher-dimensional setting. For instance, we note
that the proof of Proposition 3, and both the statement and the proof of Lemma 4 (involv-
ing dual cycles), use 2-dimensional ideas and would need to be handled differently in
dimension d ≥ 3.

• In contrast with the constant infection threshold work of Candellero and Fountoulakis
[16] on hyperbolic random geometric graphs and of Koch and Lengler [34] on inho-
mogeneous random graphs, the behaviour for the Bradonjić–Saniee model appears to
be rather different: for p < θ it is possible for some vertices to be infected in the first
round of the process but for the process to only spread the infection to |A∞ \ A0| = o(n)
vertices. Indeed, if 1+p

2 < θ and fstart < 1 both hold, this occurs w.h.p. as a conse-
quence of Theorem 1(ii) and Proposition 1. Both of these conditions can be satisfied
simultaneously provided we pick a > 1 sufficiently small and p < 1 sufficiently large.

Our work also leaves a number of questions open.

• Foremost among these is the problem of proving Conjecture 1. Our intuition is that one
may need to consider far more subtle tile colourings to achieve this. Explicitly, rather
than colour a fine tile T red if all its points eventually become infected, one should plau-
sibly instead fix some large integer constant Q = Q(K) and label T with (iT/Q, jT/Q) if it
contains between iT

Q |T| and iT+1
Q |T| points of A∞, and between jT

Q |T| and jT+1
Q |T| points

of P \ A∞, where iT , jT are non-negative integers. A similar ‘approximate density’ idea
was used in [7]. One would then need to show that for most fine tiles, (iT/Q, jT/Q) is
close to either (1,0) or (p, 1 − p), and would need to analyse the component structure
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of fine tiles T with (iT/Q, jT/Q) close to (1,0), deploying more refined versions of the
arguments from the proof Theorem 4 to show such tiles form either an overwhelming
majority or an overwhelming minority of tiles.

• Another intriguing problem left open by Theorem 1 is, what happens if θ = 1+p
2 ± o(1)

and we adversarially infect a ball of radius Cr? Here it is not clear to us what kind of
behaviour one should expect. Could it be, for example, that both |A∞ \ A0| and |P \ A∞|
have order �(n)? The analysis required to understand the typical behaviour in this regime
is likely to be delicate.

• Given that bootstrap percolation has been studied on Z
d, it would be natural to consider

bootstrap percolation on a supercritical Gilbert disc graph in the plane, i.e. on the host
graph Gr(R2), where πr2 is a sufficiently large constant (to ensure that Gr(R2) almost
surely contains an infinite connected component), and the infection threshold is some
constant T . For what p ≥ 0 does an initial infection probability guarantee the almost sure
emergence of an infinite connected component of eventually infected vertices?

• It would also be natural to study an analogue of the Bradonjić–Saniee model on the k-
nearest-neighbour random geometric graph model, or on models of random geometric
graphs in the torus allowing for the presence of some long-distance edges by superim-
posing e.g. a sparse Erdös–Rényi random graph or a configuration model on top of the
Gilbert random geometric graph.

• Conjectures 2 and 3 provide an obvious area where there is considerable room for
improvement on the results of the present paper. Progress on these fronts may require
a better understanding of the behaviour of the solutions to the optimization problems
used to define the thresholds θlocal and θislands (our conjectured thresholds for almost
percolation and full percolation, respectively).

One question of particular interest to us is whether, given a fixed triple (a, p, θ ), one can
identify the ‘critical radius’ for local infections or islands. To be more precise, we expect that
there may be a constant C > 0 such that spreading a local infection to radius Cr is ‘harder’
(less likely) than both spreading it to a radius (C − ε)r and spreading an infection from a
ball of radius Cr to a ball of radius (C + ε)r. Our heuristic is that while the local outbreak
is small, it requires unlikely point configurations to spread radially outwards, but that once it
gets sufficiently large, ‘global’ behaviour kicks in and the infection is carried forward by its
momentum without requiring a high density of infected points near its boundary.

A motivation for determining such a critical radius would be the possibility of explicitly
determining and computing θlocal. Similarly, we expect that there is an optimal radius for
islands resisting full percolation, and determining that optimal radius would help give a more
explicit form for θislands.

• Finally, given the motivations for studying bootstrap percolation, it would be natural to
consider variants of the Bradonjić–Saniee model where e.g. some vertices are vaccinated
or have a higher threshold for infection. See for example [19] for some recent work in
this vein.

Appendix A. Analysis of θislands via the Euler–Lagrange equations

Recall that θislands = θislands(a, p) is the threshold for the appearance of symmetric islands.
In this appendix, we bound this threshold using the Euler–Lagrange equations, applied to (10).
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FIGURE 5. A simple obstruction to full percolation. Here f and g denote the density of initially infected
and initially uninfected points in the various regions. The centre of the largest circle is 0, and u sits on
the boundary of the shaded red disc of radius τ about 0; circles of radius t about 0 and radius 1 about u
are represented in the picture.

As a warm-up, consider the following island, illustrated in Figure 5. We consider two
concentric circles of radii r/2 and 3r/2, forming a disc and an annulus of areas Ax and Az

respectively. Suppose that the inner disc contains xpAx initially infected points, and that the
annulus contains zAz points. Then, even if all the points in the annulus become infected, no
points in the inner disc become infected, as long as

G(x, z) = 3z + px < 4θ .

The probability of the configuration is

q = exp

{
a log n

4
F(x, z)

}
,

where

F(x, z) = 8(z − 1 − z log z) + p(x − 1 − x log x),

and so we must maximize F(x, z) subject to G(x, z) = 4θ . A short calculation with Lagrange
multipliers shows that z = x3/8, while x is determined by the equation

3x3/8 + px = 4θ .

Once x has been determined, the threshold is given by

4 + a
{

8(x3/8 − 1 − 3
8 x3/8 log x) + p(x − 1 − x log x)

}
= 0.

The lack of such islands is a necessary condition for full percolation. To refine this con-
dition, we will consider a radially symmetric island, with continuously varying densities of
infected and uninfected points, as in Section 3.5. Such an island generalizes the one just consid-
ered. To simplify the exposition and calculations, we will use a slightly different normalization
(scaling by r rather than

√
a log n) and notation from those in Section 3.5.
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Specifically, consider the following island, centred at 0. At distance tr from 0, the densities
of infected and uninfected points are pf (t) and (1 − p)g(t) respectively, where f and g satisfy
f (t) → 1 and g(t) → 1 as t → ∞. Rescaling by r, for u ∈ ∂Bt(0), write

A(t) = B1(u) ∩ Bt(0) and B(t) = B1(u) \ Bt(0),

exactly as before. Then the condition for an infection to stop spreading in towards 0 around the
circle ∂Bτ r(0) is that

p
∫

A(τ )∪B(τ )
f dA + (1 − p)

∫
B(τ )

g dA < πθ .

At this point we need to make some simplifying assumptions, which, while restricting the
dimensions of the island (and thus possibly rendering it suboptimal), greatly facilitate calcula-
tions. First, we will assume that τ ≤ 1. Second, we will assume that the optimal function f is
increasing for t ≥ 0, and that the optimal g is increasing for t ≥ τ (an assumption which will
be consistent with the solution we obtain). The reason for these assumptions is that, without
them, points in the interior of Bτ r(0) might see more infected neighbours than points on the
boundary ∂Bτ r(0). It is then conceivable that the infection could spread from the inside of the
island outwards, causing the entire island to succumb to infection.

Given these assumptions, we must maximize

q(f , g) = p
∫

(f − 1 − f log f ) dA + (1 − p)
∫

(g − 1 − g log g) dA

subject to the above constraint, for fixed τ ∈ [0, 1]. The sets A(τ ) and B(τ ), as well as the
optimal solutions f and g, are illustrated in Figure 6 (for τ ≤ 1/2) and Figure 7 (for 1/2≤τ≤1).

Using the method of Lagrange multipliers, we maximize

L(f , g) = p
∫

(f − 1 − f log f ) dA + (1 − p)
∫

(g − 1 − g log g) dA

− λ

(
p
∫

A(τ )∪B(τ )
f dA + (1 − p)

∫
B(τ )

g dA

)
.

FIGURE 6. An obstruction with τ ≤ 1/2.
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FIGURE 7. An obstruction with 1/2 ≤ τ ≤ 1.

To evaluate the last two integrals, we introduce the function h(t), defined by the equation

h(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 if t ≤ 1 − τ,

1
π

cos−1
(

t2−τ 2−1
2τ

)
if 1 − τ < t ≤ 1 + τ,

0 if 1 + τ < t.

The function h(t) is the proportion of the (1-dimensional) circle of radius t, centred at 0, that
lies in the (2-dimensional) ball B1(u), where u ∈ ∂Bτ (0). Using this notation, we have

(2π )−1L(f , g) = p
∫ ∞

0
f (t) − 1 − f (t) log [f (t)] dt + (1 − p)

∫ ∞

0
g(t) − 1 − g(t) log [g(t)] dt

− λ

(
p
∫ ∞

0
f (t)h(t) dt + (1 − p)

∫ ∞

τ

g(t)h(t) dt

)

= p
∫ ∞

0
f (t) − 1 − f log [f (t)] dt + (1 − p)

∫ ∞

0
g(t) − 1 − g(t) log [g(t)] dt

− λ

(
p
∫ 1−τ

0
f (t) dt + p

∫ 1+τ

1−τ

f (t)h(t) dt + (1 − p)
∫ 1+τ

τ

g(t)h(t) dt

)

=
∫ ∞

0
F(f , g, t) dt.

The Euler–Lagrange equations reduce in this case to ∂F/∂f = 0 and ∂F/∂g = 0. These
equations have the solution

f (t) =

⎧⎪⎨
⎪⎩

exp (−λ) t ≤ 1 − τ,

exp (−λh(t)) 1 − τ ≤ t ≤ 1 + τ,

1 t ≥ 1 + τ,
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and

g(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 t ≤ τ,

exp (−λ) τ ≤ t ≤ max (τ, 1 − τ ),

exp (−λh(t)) max (τ, 1 − τ ) ≤ t ≤ 1 + τ,

1 t ≥ 1 + τ,

where λ is determined from the constraint

p
∫ ∞

0
2π f (t)h(t) dt + (1 − p)

∫ ∞

τ

2πg(t)h(t) dt = πθ .

For a given τ , this allows us to compute qmax(τ ). Finally, we optimize over τ , and set

sup
τ

aqmax(τ ) = −π

to determine the θ -value of the threshold for the disappearance of islands. Note that the warm-
up example (in which τ = 1/2) is in some sense a step-function approximation to this solution.
As p → 1, we expect that the optimal value of τ tends to zero.

Note that the analysis here provides an alternative derivation of the islands in the case d = 1.
We need only replace h(t) by its 1-dimensional version h1(t), given by

h1(t) =

⎧⎪⎨
⎪⎩

1 if τ ≤ 1 − t,

1/2 if 1 − τ < t ≤ 1 + τ,

0 if 1 + τ < t.

Appendix B. Lower bounds for the threshold for full percolation

In this appendix, we sketch out some more details of the case analysis and Lagrangian
optimization that can be used to give rigorous (but almost certainly non-optimal) lower bound
on the full percolation threshold, continuing the discussion at the end of Section 3.5 (with the
same notation).

Draw discs of radius r around u and v, resulting in one of the configurations in Figure 8,
according to whether δ := C

√
log n/r lies in the range (0,1],(1,2], or (2, ∞). Here x and zp

respectively denote the density of points and of initially infected points of the process in
the corresponding region, and similarly y and py denote the density of points and of ini-
tially infected points in the corresponding region. We know the points u and v do not become
infected as part of the bootstrap percolation process, even though all points outside the lune
L are infected. Our aim is to find the likeliest set of point densities in the appropriate regions
making this event possible. We will then calculate the probabilities of these likeliest config-
urations, and deduce that if the fixed triple (a, p, θ ) is such that all such configurations have
probability o(1/n), no island can exist w.h.p.

Assuming that the densities of infected points in the various regions are as indicated, the
most likely obstructions can be identified by optimizing x, y, z and δ for each case. Write L(δ)
for the area of the lune formed by two unit discs whose centres lie at distance δ, so that

L(δ) = π − γ − sin γ,
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FIGURE 8. Stopping an infection in the cases 0 < δ < 1, 1 < δ < 2, δ > 2.

where γ is given by

δ

2
= sin

(γ

2

)
.

Also, write M(δ) for the area of the lune formed by a disc Bδ of radius δ and a unit disc D
whose centre lies on the perimeter of Bδ , so that

M(δ) = δ2(π − β − sin β) + β

2
,

where β is given by

2δ = sec

(
β

2

)
.

Case 1: δ > 2. In this case, the island occurs with probability at most

q1 = exp (2r2f1(x, y, δ) + o(r2)) = exp

{
2a log n

π
f1(x, y, δ) + o( log n)

}
,

where

f1(x, y, δ) = (π − M(δ))(x − 1 − x log x) + pM(δ)(y − 1 − y log y),

and where we also need

g1(x, y, δ) = (π − M(δ))x + pM(δ)y < πθ

to prevent u and v from getting infected. It is easy to see that this configuration is likeliest
when δ is as large as possible and when x = y. A quick calculation with Lagrange multipliers
yields the threshold

a

{
1 + p − 2θ + 2θ log

(
2θ

1 + p

)}
= 1.

https://doi.org/10.1017/apr.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.5


1296 V. FALGAS-RAVRY AND A. SARKAR

Case 2: 1 < δ < 2. In this case, the island occurs with probability at most

q2 = exp (r2f2(x, y, z, δ) + o(r2)) = exp

{
a log n

π
f2(x, y, z, δ) + o( log n)

}
,

where

f2(x, y, z, δ) = 2(π − M(δ))(x − 1 − x log x) + 2p(M(δ) − L(δ))(y − 1 − y log y)

+ pL(δ)(z − 1 − z log z),

and where we also need

g2(x, y, z, δ) = (π − M(δ))x + p(M(δ) − L(δ))y + pL(δ)z < πθ

to prevent u and v from getting infected. A quick calculation with Lagrange multipliers yields
that at the optimum (x, y, z) = (x, x, x2), and that x and δ are obtained by solving the equations

pL′(δ)(x − 1) + 2M′(δ)(p − 1) = 0,

x(π + (p − 1)M(δ) − pL(δ)) + x2pL(δ) = πθ,

after which we set q2 = 1/n to get the bound on the threshold.

Case 3: 0 < δ < 1. In this case, the island occurs with probability at most

q3 = exp (r2f3(x, y, z, δ) + o(r2) = exp

{
a log n

π
f3(x, y, z, δ) + o( log n)

}
,

where

f3(x, y, z, δ) = 2(π − L(δ))(x − 1 − x log x) + (L(δ) − δ2L(1))(y − 1 − y log y)

+ pδ2L(1)(z − 1 − z log z),

and where we also need

g3(x, y, z, δ) = (π − L(δ))x + (L(δ) − δ2L(1))y + pδ2L(1)z < πθ

to prevent u and v from getting infected. A quick calculation with Lagrange multipliers yields
that at the optimum (x, y, z) = (x, x2, x2), and that x and δ are obtained by solving the equations

L′(δ)(x − 1) + 2(p − 1)(x + 1)δL(1) = 0,

x(π − L(δ)) + x2(L(δ) + δ2L(1)(p − 1)) = πθ,

after which we set q3 = 1/n to get the bound on the threshold.

Behaviour as p → 0 and p → 1
When p → 0, a routine analysis shows that the optimum δ tends to infinity (so that the

threshold in Case 1 serves as the lower bound). The threshold is thus tangent to the line

a(1 − 2θ + 2θ log (2θ )) = 1,

which in turn shows that θislands(a, 0) > 0 for a > 1, as illustrated in Figure 1.
When p → 1, a routine analysis shows that the optimum δ tends to zero (so that the threshold

in Case 3 serves as the lower bound). The threshold is thus tangent to the line

a(1 − θ + θ log θ ) = 1,

which matches the upper bound from Appendix A.
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Appendix C. Tangency results

Tangency at p = 0
In this subsection, we show that the starting threshold and the local growth threshold θlocal

are tangent at p = 0. The idea is simple. When p and θ = θstart(p) are small, we consider the
effect of lowering the infection threshold from θ to θ̃ = θ − δ, with δ = o(θ ). Around a point
u that was newly (i.e., not initially) infected under the higher threshold θ , we now see a small
disc D = Bεr(u) of newly infected points for some small constant ε > 0 (depending on δ). Next,
consider a point v ∈ ∂D. Once again, v now sees increased infection in D, but also an infection
rate of p, instead of θ , in the large lune L = Br(v) \ Br(x). However, since θ and p are both very
small, the vast increase in the infection rate in D more than compensates for the greater area
of the lune L, in which the infection rate is only a little lower than that in Br(u). Consequently,
the infection grows outward from u.

Going into more detail, note that θstart = (−a log p)−1(1 + o(1)) as p → 0. A more careful
analysis now yields the following result.

Proposition 6. Let C > π−2, and write θ = θstart(p). Then, for sufficiently small p, depending
on a and C, we have

θ − Cθ2 ≤ θlocal(p) ≤ θ = (−a log p)−1(1 + o(1)).

In particular, the starting threshold and local growth threshold are tangent at p = 0.

Proof. Write θ̃ = θ − Cθ2 = θ − δ. Suppose that an infection, started at u, has spread to the
disc D = Bεr(u). For a point v ∈ ∂D, the area of the lune L = Br(v) \ Br(u) is (2ε + O(ε3))r2.
Therefore, ignoring second-order terms, the condition for v to be infected (and the infection to
spread) under the bootstrap percolation model with threshold θ̃ is

πε2 + (π (1 − ε2) − 2ε)θ + 2εp ≥ θ̃π = (θ − δ)π .

Noting that θ � p (since p log p → 0 as p → 0), we may replace this by

F(θ, ε, δ) = π (1 − θ )ε2 − 2εθ + δπ ≥ 0.

This holds for all ε ≥ 0 as long as

(1 − θ )Cθ2 = (1 − θ )δ ≥ π−2θ2.

For sufficiently small p, this last inequality is guaranteed by the hypothesis C > π−2,
proving the first inequality in the theorem. The remaining inequalities follow from the
definitions. �

An analysis of the argument reveals that, with δ = π−2θ2, a small disc B1 = Bε1r(u) is
immediately infected, where ε1 = θ/2π . After that, growth is progressively more difficult, in
that the function F decreases, until the critical radius ε2 = 2ε1 = θ/π , at which point F = 0.
After that, F increases, and growth proceeds more and more easily.

Tangency at p = 1
Next we show that the local growth threshold θlocal is tangent to the limiting growth thresh-

old θ = 1+p
2 at p = 1. Again, the idea is simple. Let us take p = 1 − δ, so that, along the limiting

growth threshold, θ = 1 − δ/2. Since we are well away from the starting threshold, the initial
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infection rate of p will result in large circular regions BKr(u) (where K = �(1/δ)) in which
the initial infection density is θ = 1 − δ/2, not p = 1 − δ, so that every point in B(K−1)r(u) will
immediately become infected.

Let us now reduce the infection threshold θ from 1 − δ/2 to 1 − δ/2 − Cδ2, and assume
that the infection has spread to a disc D = BLr(u), where L ≥ K − 1. Consider a point v ∈ ∂D.
The point v will see an infection density of 1 in A = Br(v) ∩ D, and a density of at least p in
B = Br(v) \ D. Because of the curvature of D, the area of A is slightly less than that of B, so
that the average infection density in Br(v) will be 1 − δ/2 − Cδ2 instead of 1+p

2 = 1 − δ/2.
However, we have lowered the threshold to 1 − δ/2 − Cδ2 for precisely this reason, so that v
becomes infected, and the infection continues to spread.

Making these estimates rigorous is just a matter of bounding the Poisson distribution, as in
the following proof.

Proposition 7. Let C > (6
√

2π )−1. Then, if δ = 1 − p is sufficiently small (depending on a and
C), we have

1 + p

2
− C

√
aδ2 = 1 + p

2
− C(1 − p)2 ≤ θlocal(p) ≤ 1 + p

2
.

In particular, the local growth threshold and limiting growth threshold are tangent at p = 1.

Proof. Let C and δ be as in the statement of the proposition, and let θ = 1+p
2 − C

√
aδ2.

Consider a disc D = BKr(u) of radius Kr, where K = K(δ) is large but to be determined. With
an initial infection parameter of p, we expect to see

pπK2r2 = paK2 log n

infected points in D. If we see instead

θπK2r2 = θaK2 log n = paK2 log n(1 + δ/2)(1 + o(1))

infections, uniformly distributed across D, then every point in D′ = B(K−1)r(x) will immedi-
ately become infected. Setting ρ = 1 + δ/2, the probability q of this occurring is given by

q = (1 + o(1))epaK2 log n(ρ−1−ρ log ρ) = e−(1+o(1))paδ2K2 log n/8 = n−(1+o(1))paδ2K2/8,

by Lemma 1. Thus we should expect to see some fully infected discs of radius Kr, where

K = 1

δ

√
8

a
(1 + o(1)). (14)

Next we show that if K is sufficiently large, the infection will continue to spread indefinitely.
For K ≥ 1/2, write M(K) for the area of the lune formed by a disc BK of radius K and a unit
disc whose centre lies on the perimeter of BK . Exact formulas are given in Appendix B, but
asymptotically

M(K) = π

2
− 1

3K
+ O

(
1

K2

)
.

Now, if the infection has already spread to all of BLr(u), where L ≥ K − 1, then the condition
for it to grow further (and indefinitely) is that

M(L) + (π − M(L))p ≥ πθ .
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Recall that p = 1 − δ and θ = 1 − δ/2 − C
√

aδ2. Using the above approximation for M(K),
and ignoring second-order terms (so that we may replace L ≥ K − 1 by L ≥ K, for instance),
we can write the condition for the infection to spread as(

1

2
− 1

3πK

)
+
(

1

2
+ 1

3πK

)
(1 − δ) ≥ 1 − δ

2
− C

√
aδ2,

or

K ≥ 1

3πC
√

aδ
. (15)

Combining (14) and (15) with the hypothesis C > (6
√

2π )−1 yields the result. �
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