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A b s t r a c t . This paper describes a numerical method for following the evolu-
tion of the orbit of a per turbed binary (e.g. the inner binary of a hierarchical 
triple) by means of averaging. 

1. I n t r o d u c t i o n 

Interactions between primordial binaries in star clusters frequently give rise 
to long-lived hierarchical triple systems. These are a troublesome feature 
of iV-body simulations. In many cases the relative motion of the inner 
components cannot be treated as unperturbed: perturbations by the outer 
body can radically alter the probability of a physical collision (Marchai 
1990; this paper, Fig. l ) . In this paper we analytically average over the fast 
motion of the binary. Then it is necessary only to integrate numerically the 
equations for the secular evolution. 

2. Out l ine and I l lus trat ion of t h e M e t h o d 

If the method of averaging is applied to the motion of the inner binary, its 
semi-major axis, a, is constant (Marchai 1990). Therefore the orientation 
and shape of its orbit are determined by its angular momentum vector h 
and the Laplace vector e, whose magnitude is the eccentricity, e. 

Let 77i3 be the mass of the third body, and R its position vector relative 
to the barycentre of the binary. Then in the quadrupole (tidal) approx-
imation, the average rate of change of h is given by (h) = ( r 2 ) / 2 3 u i ~~ 

< r ? > / i 3 U 2 + « r ? > - < r l » / i 2 U 3 , where (r?> = a 2 ( l / 2 + 2e 2 ) , <r2

2> = a 2 ( l -
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Figure 1. Illustration of the method. The masses are as indicated. Initially e = 0, 
a = 1 and the orbital planes are orthogonal. The third body is forced to move on a 
circular orbit of radius 5. Each graph shows the variation of one element of the inner 
binary with time, calculated in two ways: (i) the averaged equations described here, 
and (ii) an "exact" integration of the equation of motion of the binary, with the exact 
perturbation by 7713. Where the two graphs can be distinguished, the latter is the one 
with high-frequency oscillations. Upper left: the inclination between the orbital planes. 
Large oscillations occur when e ~ 1, but the two integrations are generally in satisfactory 
agreement. Upper right: the longitude of the line of intersection of the orbital planes. At 
the t ime when e ~ 1 the motion of the inner binary changes sense. Lower right: the 
semi-major axis. The systematic offset could be corrected by taking into account the 
periodic oscillations in a in setting up the initial conditions. Lower left: the eccentricity. 
When e ~ l a collision between the components of the inner binary is possible. 

e 2 ) / 2 , the unit vectors u^ are parallel to e, h and h χ e (respectively), and 
fij = ZGrnzRiRj/R* if % φ j . 

Derivation of the simplest form of the method is completed by carrying 
out a similar t reatment of the Laplace vector e. In fact, however, two further 
developments are necessary before a satisfactory method is obtained: inclu-
sion of the octupole perturbation, and allowance for periodic perturbations 
when setting up the initial conditions for e and h. 
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