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Abstract

We prove general Dwork-type congruences for constant terms attached to tuples of Laurent polynomials.
We apply this result to establishing arithmetic and p-adic analytic properties of functions originating
from polynomial solutions modulo ps of hypergeometric and Knizhnik–Zamolodchikov (KZ) equations,
solutions which come as coefficients of master polynomials and whose coefficients are integers. As an
application, we show that the simplest example of a p-adic KZ connection has an invariant line subbundle
while its complex analog has no nontrivial subbundles due to the irreducibility of its monodromy
representation.
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Keywords and phrases: hypergeometric equation, KZ equations, Dwork congruences, master
polynomials, ps-approximation polynomials.

1. Introduction

In the seminal work [Dw], Dwork laid the foundation of the theory of p-adic hyper-
geometric differential equations. His principal working example was the differential
equation

x(1 − x)I′′ + (1 − 2x)I′ − 1
4 I = 0, (1-1)

whose analytic solution at the origin

2F1

(1
2

,
1
2

; 1; x
)
=

1
π

∫ ∞
1

t−1/2(t − 1)−1/2(t − x)−1/2 dt =
∞∑

k=0

(
−1/2

k

)2
xk (1-2)

encodes periods of the Legendre family y2 = t(t − 1)(t − x). Dwork used the
approximations
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Fs(x) =
ps−1∑
k=0

(
−1/2

k

)2
xk for s = 1, 2, . . . , (1-3)

which are nothing but truncations of the infinite sum in Equation (1-2) and clearly con-
verge to it in the disk D0,1 = {x | |x|p < 1}, to show that the uniform limit Fs+1(x)/Fs(xp)
as s→ ∞ exists in a larger domain DDw and this limit, named the ‘unit root’,
corresponds to a root of the local zeta function of the x-fiber in the family. Dwork’s
work boosted the whole body of research in the area; we limit ourselves to mentioning
some recent contributions on the theme [AS, BV, LTYZ].

Dwork indicates in [Dw] that in the p-adic case, he adopts a point of view similar
to that of Igusa in [Ig] on the modulo p solutions of Equation (1-1). Namely, the cycles
of the elliptic curve y2 = t(t − 1)(t − x) for a given x can be thought of as the local at
x analytic solutions of the differential equation in Equation (1-1). At the same time,
Igusa’s modulo p solution

g(x) =
(p−1)/2∑

k=0

(
(p − 1)/2

k

)2
xk (1-4)

of Equation (1-1), though indeed coinciding with Dwork’s F1(x) modulo p, hints at a
somewhat different way for approximating the function in Equation (1-2) p-adically
through different truncations of the infinite sum in Equation (1-2). Notice the
difference of the limits of summations in Equations (1-3) and (1-4).

This recipe seemed to escape its own development until recently, when Schechtman
and Varchenko constructed in [SV2] polynomial solutions modulo p to general
Knizhnik–Zamolodchikov (KZ) equations, recovering Igusa’s polynomial as a partic-
ular case.

The principal goal of this paper is to show that the p-approximation approach
in [SV2] goes in parallel with that of Dwork in [Dw] and leads to Dwork-type
congruences for solutions of the KZ equations, at least for the cases in which the
technicality of proofs does not overshadow the beauty of outcomes.

In this paper, we study certain ps-approximation polynomials of hypergeometric
periods. We consider an integral of hypergeometric type like in Equation (1-1) without
specifying the cycle of integration. For any positive integer s, we replace the integrand
by a polynomial Φs(t, x) with integer coefficients called the master polynomial and
define the ps-approximation polynomial as the coefficient of tps−1 in the master
polynomial. This is our ps-analog of the initial integral. In the example of Equation
(1-1), the master polynomial is Φs(t, x) = t(ps−1)/2(t − 1)(ps−1)/2(t − x)(ps−1)/2 and the
ps-approximation polynomial is

Ps(x) = (−1)(ps−1)/2
(ps−1)/2∑

k=0

(
(ps − 1)/2

k

)2
xk. (1-5)
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98 A. Varchenko and W. Zudilin [3]

We prove the Dwork-type congruence,

Ps+1(x)Ps−1(xp) ≡ Ps(x)Ps(xp) (mod ps), (1-6)

in Theorem 4.2.
In Section 6, we consider the simplest example of the KZ connection. In our

example, the KZ connection is identified with the Gauss–Manin connection of the
family of elliptic curves y2 = (t − z1)(t − z2)(t − z3). We study the ps-approximation
polynomials to the elliptic period

∫
dt/y and show that the p-adic KZ connection of

our example has an invariant line subbundle. This is a new p-adic feature since the
corresponding complex KZ connection has no proper invariant subbundle due to the
irreducibility of its monodromy representation.

Notice that usually, the invariant subbundles of the KZ connection overC are related
to some additional conformal block constructions; for example see [FSV, SV2, V3].
Apparently, our subbundle is of a different p-adic nature.

The results above require proving p-adic convergence, which in turn rests upon
establishing certain special congruences. Considering a general hypergeometric series
F(x) =

∑∞
n=0 A(n)xn and its ps-truncations Fs(x) =

∑ps−1
n=0 A(n)xn, Dwork showed that

Fs+1(x)Fs−1(xp) ≡ Fs(z)Fs(xp) (mod ps) for s = 1, 2, . . . , (1-7)

in [Dw, Theorem 2]. This allowed him to conclude the existence of the p-adic limit
Fs+1(x)/Fs(xp) as s→ ∞ in [Dw, Theorem 3]. As an auxiliary component of Dwork’s
argument, another set of congruences, à la Lucas, was established for the sequence of
coefficients A(n):

A(n + mps)
A([n/p] + mps−1)

≡ A(n)
A([n/p])

(mod ps) for m, n ∈ Z�0 and s = 1, 2, . . . (1-8)

(see [Dw, Corollary 1(ii), page 36]). These two different-looking families of congru-
ences in Equations (1-7) and (1-8) are both known as Dwork congruences, and to
distinguish between the two, we name them type I and type II, respectively.

Our Igusa-inspired ps-approximations of solutions of a hypergeometric equation,
like the ps-approximation in Equation (1-5), are of dual nature. Although congruences
in Equation (1-6) look like congruences in Equation (1-7) of type I, we may view
the sequence (Ps(x))s�1 as a subsequence of a suitable polynomial sequence A(n; x)
depending on the extra parameter x and satisfying the congruences

A(n + mps; x)
A([n/p] + mps−1; xp)

≡ A(n; x)
A([n/p]; xp)

(mod ps) for m, n ∈ Z�0 and s = 1, 2, . . . .

(1-9)

Then the restriction of these type-II Dwork congruences to the subsequence (Ps(x))s�1
reads as type-I congruences for the ps-approximation polynomials in parameter x.
(We make this explicit in the remark after Theorem 4.4.)
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In summary, our principal tools for establishing the existence of p-adic convergence
are the Dwork-type congruences in Equation (1-9), of which the required type-I
congruences are particular instances.

Initially, general theorems toward Dwork’s congruences were given by Mellit
[Me] and independently by Samol and van Straten [SvS]. They were generalized in
[MV, Vl]. As these results are insufficiently general for us, we extend Dwork-type
congruences further using the elegant method from Mellit’s unpublished preprint
[Me]. Our Dwork-type congruences are displayed in Section 2, and their power is
illustrated by the congruences in Equation (1-6) from Theorem 4.2 and by several other
quite different applications in later sections. In particular, see Section 6 for applications
to the KZ equations.

In Section 7, we conjecture some stronger congruences for the polynomials Ps(x).
We finish the introduction with a remark on the differential KZ equations. The

differential KZ equations were discovered by physicists Knizhnik and Zamolodchikov
[KZ] as differential equations satisfied by conformal blocks in conformal field theory.
It was realized later that versions of KZ equations appear in different situations, for
example, as quantum differential equations for Nakajima quiver varieties [MO]. The
KZ equations are closely related to quantum integrable systems and the Bethe ansatz
method.

The KZ equations were identified with suitable Gauss–Manin connections in [SV1],
and integral representations for solutions of the KZ equations were constructed in the
form of multidimensional hypergeometric integrals depending on parameters. Integral
representations have connected the KZ equations with the theory of special functions
and the hypergeometric functions.

In [SV2], a new side of the KZ equations was observed, namely, polynomial
solutions modulo p of the KZ equations were constructed. Those are certain vectors
of polynomials with integer coefficients which solve the KZ differential equations
modulo p. Those polynomial solutions are, in some sense, p-approximations of the
multidimensional hypergeometric solutions of the KZ equations. This brings us a
general problem of studying arithmetic properties of solutions of the KZ equations
with possible applications to enumerative geometry of Nakajima varieties. The present
paper is a step in this direction.

2. On ghosts

In this paper, p is an odd prime.
2.1. Mellit’s theorem. Let Λ(t) be a Laurent polynomial in variables t = (t1, . . . , tr)
with coefficients in Zp and constant term CTt(Λ). Assume that the Newton polytope
of Λ(t) contains only one interior point {0}.

For a tuple a = (a0, a1, . . . , al−1), denote by l(a) = l its length. For two tuples a and b,
the concatenation product a ∗ b is the tuple of length l(a) + l(b) obtained by gluing a
and b together. For a = (a0, . . ., al−1) of length l, denote by a′ = (a1, . . . , al−1) the
‘derivative’ tuple of length l − 1. If a is a tuple of numbers, denote |a| = ∑l−1

i=0 ai.
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100 A. Varchenko and W. Zudilin [5]

For a tuple m = (m0, . . . , ml−1) of integers from {1, . . . , p − 1}, denote by CTt(Λm)
the constant term of the Laurent polynomial Λ(t)m0+m1 p+m2 p2+···+ml−1 pl−1

.

THEOREM 2.1 [Me]. Let a, b, c be tuples of integers from {1, . . . , p − 1}, where b, c, a′

can be empty, that is, of length 0. Then,

CTt(Λ
a∗b) CTt(Λ

a′∗c) ≡ CTt(Λ
a′∗b) CTt(Λ

a∗c) (mod pl(a)).

We modify the statement and three-page Mellit’s proof of Theorem 2.1 and prove
Theorem 2.9.

2.2. Convex polytopes. Given a positive integer r, we consider convex polytopes,
which are convex hulls of finite subsets of Zr ⊂ Rr.

DEFINITION 2.2. A tuple (N0, N1, . . . , Nl−1) of convex polytopes is called admissible
if for any 0 � i � j � l − 1,

(Ni + pNi+1 + · · · + pj−iNj) ∩ pj−i+1Zr = {0}.

2.3. Definition of ghosts. Let Λ(t, z) be a Laurent polynomial in some variables
t = (t1, . . . , tr), z = (z1, . . . , zr′) with coefficients in Zp. We define the ghost terms
Rm(Λ), m � 0, as the unique sequence of Laurent polynomials in t, z satisfying the
following two properties.

(i) For each m,

Λ(t, z)pm
= R0(Λ)(tpm

, zpm
) + R1(Λ)(tpm−1

, zpm−1
) + · · · + Rm(Λ)(t, z).

(ii) For each m, the coefficients of Rm(Λ)(t, z) are divisible by pm in Zp.

Properties (i) and (ii) recursively determine the polynomials Rm(Λ)(t, z). Namely,

Rm(Λ)(t, z) = Λ(t, z)pm − Λ(tp, zp)pm−1
, R0(Λ)(t, z) = Λ(t, z).

Let F(t, z) be a Laurent polynomial in t, z. Let N(F) be the Newton polytope of
F(t, z) with respect to the t variables only. Clearly,

N(Rm(Λ)) ⊂ pmN(Λ).

2.4. Composed ghosts. Let λ = (Λ0(t, z), . . . ,Λl−1(t, z)) be a tuple of Laurent
polynomials with coefficients in Zp. We decompose the product

λ̃(t, z) := Λ0(t, z)(Λ1(t, z))p · · · (Λl−1(t, z))pl−1

into the sum of ghost terms of Λ0, . . . ,Λl−1. As the result, we obtain that λ̃ is the sum
of the products

Rm,λ(t, z) := Rm0 (Λ0)(t, z) · Rm1 (Λ1)(tp1−m1 , zp1−m1 ) · Rm2 (Λ2)(tp2−m2 , zp2−m2 ) · · ·

Rml−1 (Λl−1)(tpl−1−ml−1 , zpl−1−ml−1 ),
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where m = (m0, . . . , ml−1) runs over the set of all l-tuples of integers satisfying
0 � mi � i. Clearly,

Rm,λ(t, z) ≡ 0 (mod p|m|)

and

N(Rm,λ(t, z)) ⊂ N(Λ0(t, z)) + pN(Λ1(t, z)) + · · · + pl−1N(Λl−1(t, z)).

2.5. Indecomposable tuples. Denote by Sk the set of all k-tuples m = (m0, . . . , mk−1)
of integers such that 0 � mi � i. Put S =

⋃∞
k=1 Sk. A tuple m ∈ S is called

indecomposable if it cannot be presented as m′ ∗ m′′ for m′, m′′ ∈ S. Denote by Sind
k the

set of all indecomposable k-tuples and put Sind =
⋃∞

k=1 Sind
k .

LEMMA 2.3. If m ∈ Sind
k , then |m| � k − 1.

PROOF. If m is indecomposable, then for each i ∈ {1, . . . , k − 1}, there exists j � i such
that mj > j − i, that is, j � i > j − mj. The number of such i for a given j is mj. The total
number of such i is k − 1; therefore, the sum of mj is at least k − 1. �

LEMMA 2.4. For each m ∈ S, there exist unique indecomposable m1, . . . , mr such that
m = m1 ∗ · · · ∗ mr.

PROOF. The proof is by induction on l(m). If l(m) = 1, then m = (m0) = (0) and m is
indecomposable. Let us prove the induction step. Let

m = m1 ∗ · · · ∗ mr = n1 ∗ · · · ∗ ns

be two decompositions into indecomposable factors. We may assume that l(ns) � l(mr).
If l(ns) = l(mr), then ns = mr. In this case, we can conclude that m1 ∗ · · · ∗ mr−1 =

n1 ∗ · · · ∗ ns−1, and the statement follows from the induction hypothesis. If l(ns) >
l(mr), then the sequence ns contains the sequence mr as its last l(mr)-part. This
contradicts to the indecomposability of ns. The lemma is proved. �

2.6. Polynomials Iλ. For an l-tuple λ = (Λ0(t, z),Λ1(t, z), . . . ,Λl−1(t, z)) of Laurent
polynomials with coefficients in Zp, define

Iλ(t, z) =
∑

m∈Sind
l

Rm,λ(t, z).

We have

Iλ(x, z) ≡ 0 (mod pl−1)

by Lemma 2.3 and

N(Iλ(t, z)) ⊂ N(Λ0(t, z)) + pN(Λ1(t, z)) + · · · + pl−1N(Λl−1(t, z)).
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LEMMA 2.5. We have

λ̃(t, z) =
∑

λ=λ1∗···∗λs

Iλ1 (t, z)Iλ2 (tpl(λ1)
, zpl(λ1)

) · · · Iλs (tpl(λ1)+···+l(λs−1)
, zpl(λ1)+···+l(λs−1)

),

where the sum is over the set of all possible decompositions of the tuple λ into a product
of tuples.

PROOF. We have

λ̃(t, z) =
∑
m∈Sl

Rm,λ(t, z).

For any m ∈ Sl, let m = m1 ∗ · · · ∗ ms be its unique indecomposition into indecompos-
able factors. Let λ = λ1 ∗ · · · ∗ λs be the corresponding factorization of the sequence λ.
Then,

Rm,λ(t, z) = Rm1,λ1 (t, z)Rm2,λ2 (tpl(λ1)
, zpl(λ1)

) · · ·Rms,λs (tpl(λ1)+···+l(λs−1)
, zpl(λ1)+···+l(λs−1)

). (2-1)

This product contributes to the expansion of the product

Iλ1 (t, z)Iλ2 (tpl(λ1)
, zpl(λ1)

) · · · Iλs (tpl(λ1)+···+l(λs−1)
, zpl(λ1)+···+l(λs−1)

) (2-2)

into the sum, and conversely each summand in the expansion of Equation (2-2) comes
from Equation (2-1) for a unique indecomposable factorization m = m1 ∗ · · · ∗ ms. �

2.7. Admissible tuples of Laurent polynomials.

DEFINITION 2.6. A tuple λ = (Λ0(t, z),Λ1(t, z), . . . ,Λl−1(t, z)) of Laurent polynomi-
als is called admissible if the tuple (N(Λ0(t, z)), N(Λ1(t, z)), . . . , N(Λl−1(t, z))) of its
Newton polytopes with respect to variables t is admissible.

Denote by CTt(Λ)(z) the constant term of the Laurent polynomial Λ(t, z) with
respect to the variables t. The constant term CTt(Λ)(z) is a Laurent polynomial in z.

LEMMA 2.7. Let λ = (Λ0(t, z),Λ1(t, z), . . . ,Λl−1(t, z)) be an admissible tuple of
Laurent polynomials with coefficients in Zp and λ = λ1 ∗ · · · ∗ λs. Then,

CTt

( s∏
i=1

Iλi (tpl(λ1)+···+l(λi−1)
, zpl(λ1)+···+l(λi−1)

)
)
(z) =

s∏
i=1

CTt(Iλi (t, z))(zpl(λ1)+···+l(λi−1)
).

PROOF. We have

N(Iλ1 (t, z)) ⊂ N(Λ0(t, z)) + pN(Λ1(t, z)) + · · · + pl(λ1)−1N(Λl(λ1)−1(t, z)).

Hence,

N(Iλ1 (t, z)) ∩ pl(λ1)Zr = {0}
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and

CTt

( s∏
i=1

Iλi (tpl(λ1)+···+l(λi−1)
, zpl(λ1)+···+l(λi−1)

)
)
(z)

= CTt(Iλ1 (t, z))(z) CTt

( s∏
i=2

Iλi (tpl(λ2)+···+l(λi−1)
, zpl(λ2)+···+l(λi−1)

)
)
(zpl(λ1)

).

Thus, by induction on s, we prove the statement. �

COROLLARY 2.8. We have

CTt(λ̃)(z) =
∑

λ=λ1∗···∗λs

CTt(Iλ1 )(z) · CTt(Iλ2 )(zpl(λ1)
) · · ·CTt(Iλs )(zpl(λ1)+···+l(λs−1)

),

where the sum is over the set of all decompositions of λ into a product of tuples.

2.8. Dwork congruence for tuples of Laurent polynomials.

THEOREM 2.9. Let a, b, c be tuples of Laurent polynomials in t, z with coefficients
in Zp, where b, c, a′ can be empty. Assume that the tuples a ∗ b, a ∗ c, a′ ∗ b, a′ ∗ c of
Laurent polynomials are admissible. Then,

CTt(ã ∗ b)(z) CTt(ã′ ∗ c)(zp) ≡ CTt(ã′ ∗ b)(zp) CTt(ã ∗ c)(z) (mod pl(a)). (2-3)

PROOF. The left-hand side and right-hand side of Equation (2-3) are

∑
a∗b=x1∗···∗xq

a′∗c=y1∗···∗ys

q∏
i=1

CTt(Ixi )(zpl(x1)+···+l(xi−1)
)

s∏
i=1

CTt(Iyj )(zp1+l(y1)+···+l(yj−1)
)

and ∑
a′∗b=x1∗···∗xq

a∗c=y1∗···∗ys

q∏
i=1

CTt(Ixi )(zp1+l(x1)+···+l(xi−1)
)

s∏
i=1

CTt(Iyj )(zpl(y1)+···+l(yj−1)
), (2-4)

respectively. Since we work modulo pl(a), all the terms with
q∑

i=1

l(xi) +
s∑

j=1

l(yj) − q − s � l(a)

may be dropped off from consideration. That inequality can be reformulated as
l(a) + l(b) + l(a) + l(c) − 1 − q − s � l(a), equivalently, as

l(a) + l(b) + l(c) � q + s + 1. (2-5)

Let us prove that the remaining terms in both expressions are in a bijective
correspondence such that the corresponding terms are equal.
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Namely, take one of the remaining summands on the left-hand side:

q∏
i=1

CTt(Ixi )(zpl(x1)+···+l(xi−1)
)

s∏
i=1

CTt(Iyj )(zp1+l(y1)+···+l(yj−1)
), (2-6)

the summand corresponding to the presentation a∗b=x1 ∗ · · · ∗ xq, a′ ∗c=y1 ∗ · · · ∗ys.

LEMMA 2.10. There exist indices i � 1 and j � 0 such that

l(x1) + · · · + l(xi) = l(y1) + · · · + l(yj) + 1 � l(a). (2-7)

PROOF. If l(x1) = 1, then i = 1 and j = 0 are the required indices.
Assume that l(x1) > 1 and the required i, j do not exist. Then each number in

{2, . . . , l(a)} cannot be represented simultaneously as l(x1) + · · · + l(xi) and l(y1) + · · · +
l(yj) + 1. Therefore, the sum of the total number of i � 1, such that l(x1) + · · · + l(xi) �
l(a), and the total number of j � 1, such that l(y1) + · · · + l(yj) + 1 � l(a) is at most
l(a) − 1. The number of remaining i is at most l(b) and the number of remaining j is at
most l(c). Therefore, q + s � l(a) − 1 + l(b) + l(c), which is the same as Equation (2-5).
Hence, the corresponding summand must have been dropped off. This establishes the
existence of indices i and j required.

Now we return to the remaining summand in Equation (2-6). Choose the minimal
indices i � 1 and j � 0 such that Equation (2-7) holds. Then it is easy to see that

a′ ∗ b = y1 ∗ · · · ∗ yj ∗ xi+1 ∗ · · · ∗ xq, a ∗ c = x1 ∗ · · · ∗ xi ∗ yj+1 ∗ · · · ∗ xs, (2-8)

and the summand in Equation (2-4) corresponding to the presentations in Equation
(2-8) equals the product in Equation (2-6). This clearly gives the desired bijection. �

3. ps-Approximation of a hypergeometric integral

Let α, β, γ be rational numbers with |α|p = |β|p = |γ|p = 1. Consider a hypergeomet-
ric integral

I(C)(x) =
∫

C
tα(t − 1)β(t − x)γ dt, (3-1)

where C ⊂ C − {0, 1, x} is a contour on which the integrand takes its initial value when
t encircles C. The function I(C)(x) satisfies the hypergeometric differential equation

x(1 − x)I′′ + ((α + β + 2γ)x − (α + γ))I′ − γ(α + β + γ + 1)I = 0. (3-2)

This follows from Stokes’ theorem and the following identity of differential forms.
Denote Φ(t, x) = tα(t − 1)β(t − x)γ,

D = x(1 − x)
d2

dx2 + ((α + β + 2γ)x − (α + γ))
d
dx
− γ(α + β + γ + 1).
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Then,

dt

(
γ

t(t − 1)
t − x

Φ(t, x)
)
= DΦ(t, x) dt. (3-3)

The differential equation in Equation (3-2) turns into the standard hypergeometric
differential equation

x(1 − x)I′′ + (c − (a + b + 1)x)I′ − abI = 0

if α = a − c, β = c − b − 1, γ = −a. If c � Z�0, then for a suitable choice of C and
multiplication of the integral by a constant, the integral in Equation (3-1) can be
expanded as a power series

2F1(a, b; c; x) = 2F1

(a, b
c

∣∣∣∣∣ x) =
∞∑

k=0

(a)k(b)k

k! (c)k
xk.

Here, (a)n = Γ(a + n)/Γ(a) =
∏n−1

k=0(a + k) stands for Pochhammer’s symbol.
We consider the following ps-approximation of the integral in Equation (3-1). Given

a positive integer s, let 1 � αs, βs, γs � ps be the unique positive integers such that

αs ≡ α, βs ≡ β, γs ≡ γ (mod ps).

Define the master polynomial

Φs(t, x) = tαs (t − 1) βs (t − x)γs

and the ps-approximation polynomial Is(x) as the coefficient of tps−1 in the master
polynomial Φs(t, x). Then,

Is(x) = (−1)αs+βs+γs−ps+1
∑

k1+k2=αs+βs+γs−ps+1

(
βs

k1

)(
γs

k2

)
xk2 .

The polynomial Is(x) has integer coefficients.

THEOREM 3.1. The polynomial Is(x) is a solution of the hypergeometric differential
equation in Equation (3-2) modulo ps,

DIs(x) ∈ psZp[x].

PROOF. The theorem follows from Equation (3-3). �

In this paper, we prove Dwork-type congruences for the ps-approximation poly-
nomials Is(x) in several basic examples and leave general considerations for another
occasion.

For more general versions of the ps-approximation construction, see [SV2].
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4. Function 2F1( 1
2 , 1

2 ; 1, x)

4.1. Polynomials Ps(x). The function

2F1

(1
2

,
1
2

; 1; x
)
=

1
π

∫ ∞
1

t−1/2(t − 1)−1/2(t − x)−1/2 dt =
∞∑

k=0

(
−1/2

k

)2
xk (4-1)

satisfies the hypergeometric differential equation

x(1 − x)I′′ + (1 − 2x)I′ − 1
4 I = 0. (4-2)

Define the master polynomial

Φps (t, x) = t(ps−1)/2(t − 1)(ps−1)/2(t − x)(ps−1)/2.

The number M = (ps − 1)/2 = (p − 1)/2 + (p − 1)/2p + · · · + (p − 1)/2ps−1 is the
unique positive integer such that 1 � M � ps and M ≡ −1/2 (mod ps). Define the
ps-approximation polynomial Ps(x) as the coefficient of tps−1 in the master polynomial
Φps (t, x). Then,

Ps(x) = (−1)(ps−1)/2
(ps−1)/2∑

k=0

(
(ps − 1)/2

k

)2
xk. (4-3)

Define P0(x) = 1.
Recall the hypergeometric function 2F1(a, b; c; x). Then,

Ps(x) = (−1)(ps−1)/2
2F1

(1 − ps

2
,

1 − ps

2
; 1; x
)
. (4-4)

The polynomial Ps(x) is a solution of the hypergeometric equation in Equation (4-2)
modulo ps. This follows from Theorem 3.1 or from Equation (4-4).

4.2. Baby congruences. Let ϕs(x) = (x + 1)(ps−1)/2. Then,

ϕs+1(x)ϕs−1(xp) ≡ ϕs(x)ϕs(xp) (mod ps). (4-5)

This follows from (x + 1)ps ≡ (xp + 1)ps−1
(mod ps).

LEMMA 4.1. The master polynomials Φs(t, x) satisfy the baby congruence

Φs+1(t, x)Φs−1(tp, xp) ≡ Φs(t, x)Φs(tp, xp) (mod ps). (4-6)

PROOF. The lemma follows from Equation (4-5). �

4.3. Congruences for Ps(x).

THEOREM 4.2. The approximation polynomials Ps(x) satisfy the congruence

Ps+1(x)Ps−1(xp) ≡ Ps(x)Ps(xp) (mod ps). (4-7)

This theorem follows from a more general Theorem 4.4.

https://doi.org/10.1017/S1446788723000083 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788723000083


[12] Ghosts and congruences 107

Using Equation (4-4), we may rewrite Equation (4-7) as the congruence

2F1

(1 − ps+1

2
,

1 − ps+1

2
; 1; x
)

2F1

(1 − ps−1

2
,

1 − ps−1

2
; 1; xp

)
≡ 2F1

(1 − ps

2
,

1 − ps

2
; 1; x
)

2F1

(1 − ps

2
,

1 − ps

2
; 1; xp

)
(mod ps). (4-8)

Let α be a rational number which is a p-adic unit, α = α0 + α1 p + α2 p2 + · · · .
Denote by [α]s the sum of the first s summands. Then the congruence in Equation
(4-8) takes the form:

2F1
(
[− 1

2 ]s+1, [− 1
2 ]s+1; 1; x

)
2F1
(
[− 1

2 ]s−1, [− 1
2 ]s−1; 1; xp)

≡ 2F1
(
[− 1

2 ]s, [− 1
2 ]s; 1; x

)
2F1
(
[− 1

2 ]s, [− 1
2 ]s; 1; xp) (mod ps).

4.4. Coefficients of master polynomials. Consider

Φ̂s(t, x) := t−(ps−1)Φs(t, x) = t−(ps−1)/2((t − 1)(t − x))(ps−1)/2

= ((t − 1)(1 − x/t))(ps−1)/2 =

(ps−1)/2∑
j=−(ps−1)/2

Cs,j(x)tj,

where

Cs,j(x) = (−1)((ps−1)/2)−j
∑

m

( ps−1
2

m + j

)( ps−1
2
m

)
xm.

In particular, Cs,0(x) = Ps(x). Every coefficient Cs,j(x) is a hypergeometric function:

Cs,j(x) = (−1)((ps−1)/2)−j
( ps−1

2

j

)
2F1

(1 − ps

2
,

1 − ps

2
+ j; j + 1; x

)
for j � 0,

while a hypergeometric expression in the case j < 0 comes out from the following
simple fact.

LEMMA 4.3. We have Φ̂s(x/t, x) = Φ̂s(t, x) and hence

Cs,−j(x) = xjCs,j(x). (4-9)

We expand the congruence in Equation (4-6) into a congruence of polynomials
Cs,j(x). The constant term in t gives us∑

k

Cs+1,kp(x)Cs−1,−k(xp) ≡
∑

k

Cs,kp(x)Cs,−k(xp) (mod ps). (4-10)

The following Theorem 4.4 establishes the congruences of individual pairs of terms
in Equation (4-10).

THEOREM 4.4. For any k appearing in Equation (4-10),

Cs+1,kp(x)Cs−1,−k(xp) ≡ Cs,kp(x)Cs,−k(xp) (mod ps). (4-11)

In particular, for k = 0, we have the congruence in Equation (4-7).
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PROOF. Every index k appearing in Equation (4-10) can be written uniquely as

k = k0 + k1 p + · · · + ks−2 ps−2, −(p − 1)/2 � ki � (p − 1)/2.

Using Equation (4-9), we reformulate Equation (4-11) as

Cs+1,kp(x)Cs−1,k(xp) ≡ Cs,kp(x)Cs,k(xp) (mod p3) (4-12)

and prove it. We have

Cs+1,kp(x) = CTt

[
Φ̂1(t, x)

( s−2∏
i=0

(t−kiΦ̂1(t, x))pi+1
)
Φ̂1(t, x)ps

]
,

Cs−1,k(x) = CTt

[ s−2∏
i=0

(t−kiΦ̂1(t, x))pi
]
,

Cs,kp(x) = CTt

[
Φ̂1(t, x)

s−2∏
i=0

(t−kiΦ̂1(t, x))pi+1
]
,

Cs,k(x) = CTt

[( s−2∏
i=0

(t−kiΦ̂1(t, x))pi
)
Φ̂1(t, x)ps−1

]
.

It is easy to see that the (s + 1)-tuple of Laurent polynomials

Φ̂1(t, x), t−k0Φ̂1(t, x), . . . , t−ks−2Φ̂1(t, x), Φ̂1(t, x)

is admissible in the sense of Definition 2.6. Now the application of Theorem 2.9 gives
the congruence in Equation (4-12) and hence the congruence in Equation (4-11). �

REMARK 4.5. Denote A(n, x) := 2F1(−n,−n; 1; x) =
∑

k

(
n
k

)2
xk. Let

n = n0 + n1 p + · · · + ns−1 ps−1, [n/p] = n1 + · · · + ns−1 ps−2,

where 0 � ni < p. Then for any m ∈ Z�0,

A(n + mps, x)A([n/p], xp) ≡ A(n, x)A([n/p] + mps−1, xp) (mod ps).

The proof follows from Theorem 2.9 and the identity

A(n, x) = CTt[((t + 1)(1 + x/t))n].

4.5. Limits of Ps(x). For α ∈ Zp, there exists a unique solution ω(α) ∈ Zp of the
equation ω(α)p = ω(α) that is congruent to x modulo p. The element ω(α) is called
the Teichmüller representative of α. For α ∈ Fp, r > 0, define the disc

Dα,r = {x ∈ Zp | |x − ω(α)|p < r}.

Denote

P̄s(x) := (−1)(ps−1)/2Ps(x) = 2F1
([− 1

2
]
s,
[− 1

2
]
s; 1; x

)
;
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see Equation (4-4). Denote

D = {x ∈ Zp | |P̄1(x)|p = 1}.

THEOREM 4.6. For s � 1, the rational function P̄s+1(x)/P̄s(xp) is regular on D. The
sequence (P̄s+1(x)/P̄s(xp))s�1 uniformly converges on D. The limiting analytic function
f (x) equals the ratio F(x)/F(xp) on the disc D0,1, where F(x) := 2F1(1/2, 1/2; 1; x) is
defined by the convergent power series in Equation (4-1). We also have | f (x)|p = 1 for
x ∈ D.

PROOF. We have Zp =
⋃
α∈Fp

Dα,1 and also D =
⋃
α∈Fp, |P̄1(ω(α))|p=1 Dα,1 since P̄1(x) has

coefficients in Zp. In particular, D0,1 ⊂ D. We also have

{x ∈ Zp | |P̄1(xp)|p = 1} =
⋃

α∈Fp, |P̄1(ω(α))|p=1

Dα,1 = D

for the same reason.
We have P̄s(x) ≡ P̄1(x)P̄1(xp) · · · P̄1(xps−1

) (mod p). Indeed, the polynomial Ps(x) is
the coefficient of xps−1 in the master polynomials Φps (t, x) and

Φps (t, x) ≡ Φp(t, x)Φp(tp, xp) · · ·Φp(tps−1
, xps−1

) (mod p).

Hence, |P̄s(x)|p = |P̄s(xp)|p = 1 for s � 1, x ∈ D. Hence, the rational functions
P̄s+1(x)/P̄s(xp) are regular on D.

The congruence in Equation (4-7) implies that∣∣∣∣∣ P̄s+1(x)

P̄s(xp)
− P̄s(x)

P̄s−1(xp)

∣∣∣∣∣
p
� p−s for x ∈ D.

This shows the uniform convergence of our sequence of rational functions on the
domain D. For the limiting function f (x), we have | f (x)|p = 1 for x ∈ D.

Clearly, for any fixed index k, the coefficient
(

(ps−1)/2
k

)2
of xk in P̄s(x) converges

p-adically to the coefficient
(
−1/2

k

)2
of xk in F(x). Hence, the sequence (P̄s(x))s�1

converges to F(x) on D0,1, so that f (x) = F(x)/F(xp) on D0,1. The theorem is
proved. �

Dwork gives in [Dw] a different construction of analytic continuation of the ratio
F(x)/F(xp) from D0,1 to a larger domain. He considers the sequence of polynomials

Fs(x) =
ps−1∑
k=0

(
−1/2

k

)2
xk,

which are truncations of the hypergeometric series F(x), and shows that the sequence
of rational functions (Fs+1(x)/Fs(xp))s�1 uniformly converges on the domain DDw =

{x ∈ Zp | |g(x)|p = 1}, where the polynomial
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g(x) =
(p−1)/2∑

k=0

(
−1/2

k

)2
xk (4-13)

is attributed by Dwork to Igusa [Ig]. Clearly, his limiting function f Dw(x) equals the
ratio F(x)/F(xp) on D0,1.

It is easy to see that the two sequences of rational functions (P̄s+1(x)/P̄s(xp))s�1
and (Fs+1(x)/Fs(xp))s�1 have the same limiting functions on the same domain. Indeed,
P̄1(x) ≡ g(x) (mod p) and hence D = DDw. Also, f (x) = f Dw(x) on D0,1 and hence
on D.

Dwork shows in [Dw] interesting properties of the function f (x). For example, let
α ∈ F×p − {1} be such that ω(α) ∈ D. Dwork shows that the zeta function of the elliptic
curve defined over Fp by the equation y2 = x(x − 1)(x − α) has two zeros, which are
1/((−1)(p−1)/2 f (ω(α))) and (−1)(p−1)/2 f (ω(α))/p. Clearly, | f (ω(α))|p = 1. The number
(−1)(p−1)/2 f (ω(α)) is called the unit root of that elliptic curve.

According to our discussion, this unit root can be calculated as the value at
x = ω(α) of the limit as s→ ∞ of the ratio P̄s+1(x)/P̄s(xp) of approximation poly-
nomials multiplied by (−1)(p−1)/2.

5. Function 2F1(2/3, 1
3 ; 1; x)

5.1. Two hypergeometric integrals. The integral

I(C)(x) =
∫

C
t−1/3(t − 1)−1/3(t − x)−2/3 dt,

where C ⊂ C − {0, 1, x} is a contour on which the integrand takes its initial value when
t encircles C, satisfies the hypergeometric differential equation

x(1 − x)I′′ + (1 − 2x)I′ − 2
9 I = 0. (5-1)

For a suitable choice of C, the integral I(C)(x) presents the hypergeometric function

2F1

(2
3

,
1
3

; 1, x
)
=

∞∑
k=0

(
−1/3

k

)(
−2/3

k

)
xk.

The integral

J(D)(x) =
∫

D
t−2/3(t − 1)−2/3(t − x)−1/3 dt,

where D ⊂ C − {0, 1, x} is a contour on which the integrand takes its initial value
when t encircles D, satisfies the same hypergeometric differential equation. For a
suitable choice of D, the integral J(D)(x) presents the same hypergeometric function
2F1(2/3, 1

3 ; 1, x).
The differential form t−1/3(t − 1)−1/3(t − z)−2/3 dt is transformed to the differential

form −t−2/3(t − 1)−2/3(t − z)−1/3 dt by the change of variable t 
→ (t − z)/(t − 1).
In this section, we discuss the ps-approximations of the integrals I(C)(x) and J(D)(x).
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5.2. The case p = 3� + 1. The master polynomial for I(C)(x) is given by the formula

Φs(t, x) = t(ps−1)/3(t − 1)(ps−1)/3(t − x)2(ps−1)/3.

The ps-approximation polynomial Qs(x) is defined as the coefficient of tps−1 inΦs(t, x),

Qs(x) = (−1)(ps−1)/3
∑

k

(
2(ps − 1)/3

k

)(
(ps − 1)/3

k

)
xk.

Define Q0(x) = 1. We have

Qs(x) = 2F1

(2 − 2ps

3
,

1 − ps

3
; 1; x
)
, (5-2)

since (−1)(ps−1)/3 = 1.
The polynomial Qs(x) is a solution of the hypergeometric equation in Equation (5-1)

modulo ps. This follows from Theorem 3.1 or from Equation (5-2).
The master polynomial for J(D)(x) is given by the formula

Ψs(t, x) = t2(ps−1)/3(t − 1)2(ps−1)/3(t − x)(ps−1)/3.

The ps-approximation polynomial Rs(x) is defined as the coefficient of tps−1 inΨs(t, x),

Rs(x) =
∑

k

(
2(ps − 1)/3

k

)(
(ps − 1)/3

k

)
xk.

Define R0(x) = 1. We have

Qs(x) = 2F1

(
2

1 − ps

3
,

1 − ps

3
; 1; x
)
. (5-3)

The master polynomials satisfy the baby congruences,

Φs+1(t, x)Φs−1(tp, xp) ≡ Φs(t, x)Φs(tp, xp) (mod ps),
Ψs+1(t, x)Ψs−1(tp, xp) ≡ Ψs(t, x)Ψs(tp, xp) (mod ps),

(5-4)

by Equation (4-5).

THEOREM 5.1. For p = 3	 + 1, the approximation polynomials Rs(x) and Qs(x) satisfy
the congruences

Qs+1(x)Qs−1(xp) ≡ Qs(x)Qs(xp) (mod ps), (5-5)

Rs+1(x)Rs−1(xp) ≡ Rs(x)Rs(xp) (mod ps). (5-6)

PROOF. Denote Φ̂1(t, x) = (t − 1)	(1 − x/t)2	. Then, Qs+1(x) = CTt[Φ̂1(t, x)1+p+···+ps
].

It is easy to see that the (s + 1)-tuple (Φ̂1(t, x), Φ̂1(t, x), . . . , Φ̂1(t, x)) of Laurent
polynomials is admissible in the sense of Definition 2.6. Now the application of
Theorem 2.9 gives the congruence in Equation (5-5). The congruence in Equation
(5-6) is proved in the same way applied to the formula Rs+1(x) = CTt[Ψ̂1(t, x)1+p+···+ps

],
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where Ψ̂1(t, x) = (t − 1)2	(1 − x/t)	. The congruence in Equation (5-6) also follows
from Equation (5-5) since Rs(x) = Qs(x). �

Equations (5-2) and (5-3) imply that for p = 3	 + 1, s � 1,

2F1

(2 − 2ps+1

3
,

1 − ps+1

3
; 1; x
)

2F1

(2 − 2ps−1

3
,

1 − ps−1

3
; 1; xp

)
≡ 2F1

(2 − 2ps

3
,

1 − ps

3
; 1; x
)

2F1

(2 − 2ps

3
,

1 − ps

3
; 1; xp

)
(mod ps).

Using the expansions

−1/3 = 	 + 	p + 	p2 + · · · , −2/3 = 2	 + 2	p + 2	p2 + · · · ,

(ps − 1)/3 = 	 + 	p + 	p2 + · · · + 	ps−1, (ps − 2)/3 = 2	 + 2	p + 2	p2 + · · · + 2	ps−1,

we conclude that for p = 3	 + 1 and s � 1,

2F1
(
[− 2

3 ]s+1, [− 1
3 ]s+1; 1; x

)
2F1
(
[− 2

3 ]s−1, [− 1
3 ]s−1; 1; xp)

≡ 2F1
(
[− 2

3 ]s, [− 1
3 ]s; 1; x

)
2F1
(
[− 2

3 ]s, [− 1
3 ]s; 1; xp) (mod ps). (5-7)

5.3. The case p = 3� + 2 > 2. The master polynomial for I(C)(x) is given by the
formulas

Φs(t, x) = t(2ps−1)/3(t − 1)(2ps−1)/3(t − x)(ps−2)/3, odd s,

Φs(t, x) = t(ps−1)/3(t − 1)(ps−1)/3(t − x)2(ps−1)/3, even s.

The ps-approximation polynomial Qs(x) is defined as the coefficient of tps−1 inΦs(t, x),

Qs(x) = (−1)(2ps−1)/3
∑

k

(
(2ps − 1)/3

k

)(
(ps − 2)/3

k

)
xk, odd s,

Qs(x) = (−1)(ps−1)/3
∑

k

(
2(ps − 1)/3

k

)(
(ps − 1)/3

k

)
xk, even s.

Define Q0(x) = 1. We have

Qs(x) = − 2F1

(2 − ps

3
,

1 − 2ps

3
; 1; x
)
, odd s,

Qs(x) = 2F1

(2 − 2ps

3
,

1 − ps

3
; 1; x
)
, even s.

(5-8)

Here we use the fact that for p = 3	 + 2 > 2, we have (−1)(2ps−1)/3 = −1 for odd s and
(−1)(ps−1)/3 = 1 for even s.

The polynomial Qs(x) is a solution of the hypergeometric equation in Equation (5-1)
modulo ps. This follows from Theorem 3.1 or from Equation (5-8).
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The master polynomial for J(D)(x) is given by the formulas

Ψs(t, x) = t(ps−2)/3(t − 1)(ps−2)/3(t − x)(2ps−1)/3, odd s,

Ψs(t, x) = t2(ps−1)/3(t − 1)2(ps−1)/3(t − x)(ps−1)/3, even s.

The ps-approximation polynomial Rs(x) is defined as the coefficient of tps−1 in Φs(t, x),

Rs(x) = (−1)(ps−2)/3
∑

k

(
(2ps − 1)/3

k

)(
(ps − 2)/3

k

)
xk, odd s,

Rs(x) = (−1)2(ps−1)/3
∑

k

(
2(ps − 1)/3

k

)(
(ps − 1)/3

k

)
xk, even s.

Define R0(x) = 1. We have

Rs(x) = − 2F1

(2 − ps

3
,

1 − 2ps

3
; 1; x
)
, odd s,

Rs(x) = 2F1

(2 − 2ps

3
,

1 − ps

3
; 1; x
)
, even s.

(5-9)

Here we use the fact that for p = 3	 + 2 > 2, we have (−1)(ps−2)/3 = −1 for odd s and
(−1)(2ps−1)/3 = 1 for even s.

The polynomial Rs(x) is a solution of the hypergeometric equation in Equation (5-1)
modulo ps. This follows from Theorem 3.1 or from Equation (5-9).

LEMMA 5.2. The master polynomials satisfy the baby congruences,

Φs+1(t, x)Ψs−1(tp, xp) ≡ Φs(t, x)Ψs(tp, xp) (mod ps), (5-10)

Ψs+1(t, x)Φs−1(tp, xp) ≡ Ψs(t, x)Φs(tp, xp) (mod ps). (5-11)

PROOF. We prove Equation (5-10) for an odd s. The case of an even s and the
congruence in Equation (5-11) are proved similarly. The left-hand side of Equation
(5-10) for an odd s = 2k + 1 equals

t(ps+1−1)/3(t − 1)(ps+1−1)/3(t − x)2(ps+1−1)/3t2p(ps−1−1)/3(tp − 1)2(ps−1−1)/3(tp − xp)(ps−1−1)/3,

while the right-hand side equals

t(2ps−1)/3(t − 1)(2ps−1)/3(t − x)(ps−2)/3tp(ps−2)/3(tp − 1)(ps−2)/3(tp − xp)(2ps−1)/3.

Now the congruence in Equation (5-10) for an odd s follows from Equation (4-5). �

THEOREM 5.3. For p = 3	 + 2 > 2, the approximation polynomials Rs(x) and Qs(x)
satisfy the congruences

Qs+1(x)Rs−1(xp) ≡ Qs(x)Rs(xp) (mod ps), (5-12)

Rs+1(x)Qs−1(xp) ≡ Rs(x)Qs(xp) (mod ps). (5-13)
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PROOF. We prove Equation (5-12) for an odd s. The case of an even s and the
congruence in Equation (5-13) are proved similarly. Denote

f (t, x) = (t − 1)(2p−1)/3(1 − x/t)(p−2)/3 = (t − 1)2	+1(1 − x/t)	,

g(t, x) = (t − 1)(p−2)/3(1 − x/t)(2p−1)/3 = (t − 1)	(1 − x/t)2	+1.

It is easy to see that for an odd s,

Qs+1(x) = CTt[(t − 1)(ps+1−1)/3(1 − x/t)2(ps+1−1)/3]

= CTt[ f (t, x)g(t, x)p · · · f (t, x)ps−1
g(t, x)ps

],

Rs−1(x) = CTt[(t − 1)2(ps−1−1)/3(1 − x/t)(ps−1−1)/3]

= CTt[g(t, x) f (t, x)p · · · g(t, x)ps−3
f (t, x)ps−2

],

Qs(x) = CTt[(t − 1)(2ps−1)/3(1 − x/t)(ps−2)/3]

= CTt[ f (t, x)g(t, x)p · · · g(t, x)ps−2
f (t, x)ps−1

],

Rs(x) = CTt[(t − 1)(ps−2)/3(1 − x/t)(2ps−1)/3]

= CTt[g(t, x) f (t, x)p · · · f (t, x)ps−2
g(t, x)ps−1

].

Observe that the (s + 1)-tuple of Laurent polynomials ( f (t, x), g(t, x), . . . , f (t, x), g(t, x))
is admissible in the sense of Definition 2.6. Now the application of Theorem 2.9 gives
the congruence in Equation (5-12) for an odd s. �

REMARK 5.4. In general, we may take any admissible tuple of Laurent polyno-
mials and obtain the corresponding Dwork congruences. For example, the tuples
( f , g, f , f , f , g, g, f , . . .) and ( f , f , . . .) are admissible.

Using Equations (5-8) and (5-9), we may reformulate the congruences in Equations
(5-12) and (5-13) as

2F1

(2 − ps+1

3
,

1 − 2ps+1

3
; 1; x
)

2F1

(2 − ps−1

3
,

1 − 2ps−1

3
; 1; xp

)
≡ 2F1

(2 − 2ps

3
,

1 − ps

3
; 1; x
)

2F1

(2 − 2ps

3
,

1 − ps

3
; 1; xp

)
(mod ps), odd s, (5-14)

2F1

(2 − 2ps+1

3
,

1 − ps+1

3
; 1; x
)

2F1

(2 − 2ps−1

3
,

1 − ps−1

3
; 1; xp

)
≡ 2F1

(2 − ps

3
,

1 − 2ps

3
; 1; x
)

2F1

(2 − ps

3
,

1 − 2ps

3
; 1; xp

)
(mod ps), even s. (5-15)

Recall that in these congruences, we have p = 3	 + 2.
Consider the p-adic presentations

−1/3 = 2	 + 1 + 	p + (2	 + 1)p2 + 	p3 + · · · , (5-16)

−2/3 = 	 + (2	 + 1)p + 	p2 + (2	 + 1)p3 + · · · . (5-17)
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Recall that [−1/3]s (respectively, [−2/3]s) is the sum of the first s summands in
Equation (5-16) (respectively, (5-17)). Then the congruences in Equations (5-14) and
(5-15) imply that for p = 3	 + 2, s � 1,

2F1
(
[− 2

3 ]s+1, [− 1
3 ]s+1; 1; x

)
2F1
(
[− 2

3 ]s−1, [− 1
3 ]s−1; 1; xp)

≡ 2F1
(
[− 2

3 ]s, [− 1
3 ]s; 1; x

)
2F1
(
[− 2

3 ]s, [− 1
3 ]s; 1; xp) (mod ps). (5-18)

5.4. Limits of Qs(x). Define

Q̄s(x) = 2F1
([− 2

3
]
s,
[− 1

3
]
s; 1; x

)
.

Then for any prime p > 3,

Q̄s+1(x)Q̄s−1(xp) ≡ Q̄s(x)Q̄s(xp) (mod ps)

by Equations (5-7) and (5-18).

THEOREM 5.5. For any prime p > 3 and integer s � 1, the rational function
Q̄s+1(x)/Q̄s(xp) is regular on the domain

D = {x ∈ Zp | |Q̄1(x)|p = 1}.

The sequence (Q̄s+1(x)/Q̄s(xp))s�1 uniformly converges on D. The limiting ana-
lytic function f (x) equals the ratio F(x)/F(xp) on the disc D0,1, where F(x) :=
2F1(2/3, 1/3; 1; x) is defined by the corresponding convergent power series.

PROOF. The proof is the same as the proof of Theorem 4.6. �

5.5. Remark. Although the congruences in Equations (5-7) and (5-18) look the
same for p = 3	 + 1 and p = 3	 + 2, the proofs of them are different as already
presented. The proof of Equation (5-7) for p = 3	 + 1 uses just any one of the
two master polynomials: Φs(t, x) or Ψs(t, x), while the proof of Equation (5-18) for
p = 3	 + 2 uses the interaction of the two master polynomials Φs(t, x) and Ψs(t, x). See
the baby congruences in Equations (5-4), (5-10), (5-11).

5.6. Congruences related to − 1
5 , − 2

5 , − 3
5 , − 4

5 . In this section, we formulate the
congruences related to the above rational numbers. The proof of these congruences is
similar to the corresponding proofs in Sections 4 and 5.

For p = 5	 ± 2 and any s � 1,

2F1
(
[− 4

5 ]s+1, [− 1
5 ]s+1; 1; x

)
2F1
(
[− 3

5 ]s−1, [− 2
5 ]s−1; 1; xp)

≡ 2F1
(
[− 4

5 ]s, [− 1
5 ]s; 1; x

)
2F1
(
[− 3

5 ]s, [− 2
5 ]s; 1; xp) (mod ps),

2F1
(
[− 3

5 ]s+1, [− 2
5 ]s+1; 1; x

)
2F1
(
[− 4

5 ]s−1, [− 1
5 ]s−1; 1; xp)

≡ 2F1
(
[− 3

5 ]s, [− 2
5 ]s; 1; x

)
2F1
(
[− 4

5 ]s, [− 1
5 ]s; 1; xp) (mod ps).
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For p = 5	 ± 1 and any s � 1,

2F1
(
[− 4

5 ]s+1, [− 1
5 ]s+1; 1; x

)
2F1
(
[− 4

5 ]s−1, [− 1
5 ]s−1; 1; xp)

≡ 2F1
(
[− 4

5 ]s, [− 1
5 ]s; 1; x

)
2F1
(
[− 4

5 ]s, [− 1
5 ]s; 1; xp) (mod ps),

2F1
(
[− 3

5 ]s+1, [− 2
5 ]s+1; 1; x

)
2F1
(
[− 3

5 ]s−1, [− 2
5 ]s−1; 1; xp)

≡ 2F1
(
[− 3

5 ]s, [− 2
5 ]s; 1; x

)
2F1
(
[− 3

5 ]s, [− 2
5 ]s; 1; xp) (mod ps).

Similar congruences hold for rational numbers of the form a/b, where b is a prime
and 1 − b � a � −1. These congruences are described somewhere else.

6. KZ equations

6.1. KZ equations. Let g be a simple Lie algebra with an invariant scalar product.
The Casimir element is

Ω =
∑

i

hi ⊗ hi ∈ g ⊗ g,

where (hi) ⊂ g is an orthonormal basis. Let V = ⊗n
i=1Vi be a tensor product of

g-modules, κ ∈ C× a nonzero number. The KZ equations are the system of differential
equations on a V-valued function I(z1, . . . , zn),

∂I
∂zi
=

1
κ

∑
j�i

Ωi,j

zi − zj
I, i = 1, . . . , n,

where Ωi,j : V → V is the Casimir operator acting in the i th and j th tensor factors; see
[KZ, EFK].

This system is a system of Fuchsian first-order linear differential equations.
The equations are defined on the complement in Cn to the union of all diagonal
hyperplanes.

The object of our discussion is the following particular case. We consider the
following system of differential and algebraic equations for a column 3-vector I =
(I1, I2, I3) depending on variables z = (z1, z2, z3):

∂I
∂z1
=

1
2

(
Ω12

z1 − z2
+
Ω13

z1 − z3

)
I,

∂I
∂z2
=

1
2

(
Ω21

z2 − z1
+
Ω23

z2 − z3

)
I,

∂I
∂z3
=

1
2

(
Ω31

z3 − z1
+
Ω32

z3 − z2

)
I, 0 = I1 + I2 + I3,

(6-1)

where Ωij = Ωji and

Ω12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1 1 0
1 −1 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Ω13 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1 0 1
0 0 0
1 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Ω23 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0
0 −1 1
0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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Denote

H1(z) =
1
2

(
Ω12

z1 − z2
+
Ω13

z1 − z3

)
, H2(z) =

1
2

(
Ω21

z2 − z1
+
Ω23

z2 − z3

)
,

H3(z) =
1
2

(
Ω31

z3 − z1
+
Ω32

z3 − z2

)
, ∇KZ

i =
∂

∂zi
− Hi(z), i = 1, 2, 3.

Then the KZ equations can be written as the system of equations,

∇KZ
i I = 0, i = 1, 2, 3, I1 + I2 + I3 = 0.

System in Equation (6-1) is the system of KZ equations with parameter κ = 2
associated with the Lie algebra sl2 and the subspace of singular vectors of weight 1
of the tensor power (C2)⊗3 of two-dimensional irreducible sl2-modules, up to a gauge
transformation; see this example in [V2, Section 1.1].

6.2. Solutions over C. Define the master function

Φ(t, z) = (t − z1)−1/2(t − z2)−1/2(t − z3)−1/2

and the column 3-vector

I(C)(z) = (I1(z), I2(z), I3(z)) :=
∫

C

(
Φ(t, z)
t − z1

,
Φ(t, z)
t − z2

,
Φ(t, z)
t − z3

)
dt, (6-2)

where C ⊂ C − {z1, z2, z3} is a contour on which the integrand takes its initial value
when t encircles C.

THEOREM 6.1 (See [V4]). The function I(C)(z) is a solution of the system in Equation
(6-1).

This theorem is a very particular case of the results in [SV1].

PROOF. The theorem follows from Stokes’ theorem and the two identities:

−1
2

(
Φ(t, z)
t − z1

+
Φ(t, z)
t − z2

+
Φ(t, z)
t − z3

)
=
∂Φ

∂t
(t, z), (6-3)

(
∂

∂zi
− 1

2

∑
j�i

Ωi,j

zi − zj

)(
Φ(t, z)
t − z1

,
Φ(t, z)
t − z2

,
Φ(t, z)
t − z3

)
=
∂Ψi

∂t
(t, z), (6-4)

where Ψi(t, z) is the column 3-vector (0, . . . , 0,−Φ(t, z)/t − zi, 0, . . . , 0) with the
nonzero element at the i th place. �

THEOREM 6.2 (See [V1, Equation (1.3)]). All solutions of the system in Equation (6-1)
have this form. Namely, the complex vector space of solutions of the form in Equation
(6-2) is 2-dimensional.

6.3. Solutions as vectors of first derivatives. Consider the elliptic integral

T(z) = T (C)(z) =
∫

C
Φ(t, z) dt.
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Then,

I(C)(z) = 2
(
∂T (C)

∂z1
,
∂T (C)

∂z2
,
∂T (C)

∂z3

)
.

Denote ∇T = (∂T/∂z1, ∂T/∂z2, ∂T/∂z3). Then the column gradient vector of the
function T(z) satisfies the following system of (KZ) equations:

∇KZ
i ∇T = 0, i = 1, 2, 3,

∂T
∂z1
+
∂T
∂z2
+
∂T
∂z3
= 0.

This is a system of second-order linear differential equations on the function T(z).

6.4. Solutions modulo ps. For an integer s � 1, define the master polynomial

Φs(t, z) = ((t − z1)(t − z2)(t − z3))(ps−1)/2.

Define the column 3-vector

Is(z) = (Is,1(z), Is,2(z), Is,3(z))

as the coefficient of tps−1 in the polynomial(
Φs(t, z)
t − z1

,
Φs(t, z)
t − z2

,
Φs(t, z)
t − z3

)
.

THEOREM 6.3 [V4]. The polynomial Is(z) is a solution of the system in Equation (6-1)
modulo ps.

PROOF. We have the following modifications of the identities in Equations (6-3),
(6-4):

ps − 1
2

(
Φs(t, z)
t − z1

+
Φs(t, z)
t − z2

+
Φs(t, z)
t − z3

)
=
∂Φs

∂t
(t, z),

(
∂

∂zi
+

ps − 1
2

∑
j�i

Ωi,j

zi − zj

)(
Φs(t, z)
t − z1

,
Φs(t, z)
t − z2

,
Φs(t, z)
t − z3

)
=
∂Ψi

s

∂t
(t, z),

(6-5)

where Ψi
s(t, z) is the column 3-vector (0, . . . , 0,−Φs(t, z)/(t − zi), 0, . . . , 0) with the

nonzero element at the i th place. Theorem 6.3 follows from these identities. �

6.5. ps-Approximation polynomials of T(z). Define the ps-approximation poly-
nomial Ts(z) of the elliptic integral T(z) as the coefficient of tps−1 in the master
polynomial Φs(t, z),

Ts(z) = (−1)(ps−1)/2
∑

k1+k2+k3=(ps−1)/2

(
(ps − 1)/2

k1

)(
(ps − 1)/2

k2

)(
(ps − 1)/2

k3

)
zk1

1 zk2
2 zk3

3 .

(6-6)

We put T0(x) = 1.
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The polynomial Ts(z1, z2, z3) is symmetric with respect to permutations of z1, z2, z3
and

Ts(1, z2, 0) = Ps(z2),

where Ps(x) is defined in Equation (4-3). The gradient vector

∇Ts := (∂Ts/∂z1, ∂Ts/∂z2, ∂Ts/∂z3)

of the ps-approximation polynomial Ts(z) is a solution modulo ps of the system in
Equation (6-1) since

∇Ts =
1 − ps

2
(Is,1(z), Is,2(z), Is,3(z)).

LEMMA 6.4. For s � 1, the master polynomials satisfy the baby congruences,

Φs+1(t, z)Φs−1(tp, zp
1 , zp

2 , zp
3 ) ≡ Φs(t, z)Φs(tp, zp

1 , zp
2 , zp

3 ) (mod ps).

THEOREM 6.5. For s � 1,

Ts+1(z1, z2, z3) Ts−1(zp
1 , zp

2 , zp
3 ) ≡ Ts(z1, z2, z3) Ts(z

p
1 , zp

2 , zp
3) (mod ps). (6-7)

PROOF. Let h(t, z) = t1−p((t − z1)(t − z2)(t − z3))(p−1)/2. Then,

Ts(z) = CTt[h(t, z)h(t, z)p · · · h(t, z)ps−1
].

The tuple of Laurent polynomials (h(t, z), h(t, z), . . .) is admissible in the sense of
Definition 2.6. Now the application of Theorem 2.9 gives the congruence in Equation
(6-7). �

6.6. Limits of Ts(z). Denote T̄s(z) := (−1)(ps−1)/2Ts(z); see Equation (6-6),

D = {(z1, z2, z3) ∈ Z3
p ‖T̄1(z1, z2, z3)|p = 1}. (6-8)

Notice that Z3
p =
⋃
α,β,γ∈Fp

Dα,1 × Dβ,1 × Dγ,1. Since T̄1(z) has coefficients in Zp,

D =
⋃o

Dα,1 × Dβ,1 × Dγ,1,

where the summation
⋃o is over all α, β, γ ∈ Fp such that |T(ω(α),ω(β),ω(γ))|p = 1.

For the same reason,

D = {(z1, z2, z3) ∈ Z3
p | |T̄1(zp

1 , zp
2 , zp

3 )|p = 1}.

Denote

E = {(1, z2, 0) ∈ Z3
p | |z2|p < 1}.

LEMMA 6.6. We have E ⊂ D1,1 × D0,1 × D0,1 ⊂ D.

PROOF. The first inclusion is clear. The second inclusion follows from the equality
T̄s(1, 0, 0) = 1. �
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THEOREM 6.7. For s � 1, the rational function T̄s+1(z)/T̄s(zp) is regular on D. The
sequence (T̄s+1(z)/T̄s(zp))s�1 uniformly converges on D. The limiting analytic function
f (z), restricted to E, equals the ratio F(z2)/F(zp

2), where F(z2) := 2F1(1/2, 1/2; 1; z2)
is defined by the convergent power series in Equation (4-1). We also have | f (z)|p = 1
for every z ∈ D.

PROOF. Similarly to the proof of Theorem 4.6, we have T̄s(z) ≡ T̄1(z)T̄1(zp) · · · T̄1(xps−1
)

(mod p). Hence, |T̄s(z)|p = |T̄s(zp)|p = 1 for s � 1, z ∈ D. Hence, the rational functions
T̄s+1(z)/T̄s(zp) are regular on D.

The congruence in Equation (6-7) implies that∣∣∣∣∣ T̄s+1(z)

T̄s(zp)
− T̄s(z)

T̄s−1(zp)

∣∣∣∣∣
p
� p−s for z ∈ D.

This shows the uniform convergence of (T̄s+1(z)/T̄s(zp))s�1 on D. For the limiting
function f (z), we have | f (z)|p = 1 for z ∈ D.

We have T̄s(1, z2, 0) = P̄s(z2) =
∑

k

(
(ps−1)/2

k

)2
zk

2. Clearly, for any fixed index k, the

coefficient
(

(ps−1)/2
k

)2
of zk

2 in T̄s(1, z2, 0) converges p-adically to the coefficient
(
−1/2

k

)2
of zk

2 in F(z2). Hence, the sequence (T̄s(1, z2, 0))s�1 converges to F(z2) on E, so that
f (1, z2, 0) = F(z2)/F(zp) on E. The theorem is proved. �

REMARK 6.8. The analytic function f (z) of Theorem 6.10 exhibits behavior very
different from the behavior of the corresponding ratio T (C)(z)/T (C)(zp) of complex
elliptic integrals.

By Theorem 6.10, the function f (z) restricted to the one-dimensional discs
{(z1, 0, 1) ∈ Z3

p | |z1|p < 1}, {(1, z2, 0) ∈ Z3
p | |z2|p < 1}, {(0, 1, z3) ∈ Z3

p | |z3|p < 1} equals
F(z1)/F(zp

1), F(z2)/F(zp
2 ), F(z3)/F(zp

3), respectively.
In the complex case, for the ratio T (C1)(z)/T (C1)(zp) to be equal to F(z1)/F(zp

1 )
on {(z1, 0, 1) ∈ C3 | |z1| < 1}, the contour C1 must be the cycle on the elliptic curve
y2 = (t − z1)t(t − 1) vanishing at z1 = 0. Similarly, for T (C2)(z)/T (C2)(zp) to be equal
to F(z2)/F(zp

2 ) on {(1, z2, 0) ∈ C3 | |z2| < 1}, the contour C2 must be the cycle on
the elliptic curve y2 = (t − 1)(t − z2)t vanishing at z2 = 0, and for T (C3)(z)/T (C3)(zp)
to be equal to F(z3)/F(zp

3 ) on {(0, 1, z3) ∈ C3 | |z3| < 1}, the contour C3 must be the
cycle on the elliptic curve y2 = t(t − 1)(t − z3) vanishing at z3 = 0. However, these three
local complex analytic functions are not restrictions of a single univalued complex
analytic function due to the irreducibility of the monodromy representation of the
Gauss–Manin connection associated with the family of elliptic curves y2 = (t − z1)
(t − z2)(t − z3).

For i, j ∈ {1, 2, 3} and s � 1, denote

fs(z) = Ts(z)/Ts−1(zp), η(i)
s (z) =

∂Ts

∂zi
(z)/Ts(z), η

(ij)
s (z) =

∂2Ts

∂zi∂zj
(z)/Ts(z).
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THEOREM 6.9. For s � 1, the rational functions η(i)
s (z) and η(ij)

s (z) are regular on D.
The sequences of rational functions (η(i)

s (z))s�1 and (η(ij)
s (z))�1 converge uniformly on

D to analytic functions. If η(j) and η(ij) denote the corresponding limits, then

η(1) + η(2) + η(3) = 0, (6-9)

η(j1) + η(j2) + η(j3) = 0, j = 1, 2, 3, (6-10)

∂

∂zj
η(i) = η(ji) − η(i)η(j). (6-11)

PROOF. Denote δi = zi(∂/∂zi). By Theorem 6.7, the sequence ( fs) uniformly converges
to the analytic function f on D. Therefore, the sequence of the derivatives ((∂/∂zi) fs)
uniformly converges on D to (∂/∂zi) f . Hence, the sequence ((δi fs)/ fs) uniformly
converges on D to the function (δi f )/ f . At the same time,

δi fs
fs

(z) =
δiTs

Ts
(z) − p

δiTs−1

Ts−1
(zp)

and, more generally,

δi fs−k

fs−k
(zpk

) =
δiTs−k

Ts−k
(zpk

) − p
δiTs−k−1

Ts−k−1
(zpk+1

) for k = 0, 1, . . . , s.

Summing the relations up with suitable weights to get telescoping, we obtain, for any
r � s,

r−1∑
k=0

pk δi fs−k

fs−k
(zpk

) =
δiTs

Ts
(z) − pr δiTs−r

Ts−r
(zpr

).

Choosing r = [s/2] and taking the limit as s→ ∞ on both sides,

∞∑
k=0

pk δi f
f

(zpk
) = lim

s→∞

δiTs

Ts
(z).

The series on the left uniformly converges on D. Hence, there exists the limit on the
right-hand side. This means that

η(i)(x) = lim
s→∞

∂
∂zi

Ts

Ts
(z) =

1
zi

∞∑
k=0

pk δi f
f

(zpk
).

One can further differentiate the resulting equality with respect to any of the variables
z1, z2, z3 to get, by induction, formulas for η(ij) and more generally for η(ijk...). Note that
Equation (6-11) comes out from differentiating logarithmic derivatives.

Equations (6-9) and (6-10) follow from Equation (6-5). The theorem is proved. �
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THEOREM 6.10. We have the following system of equations on D:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
η(11)

η(12)

η(13)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 1
2

(
Ω12

z1 − z2
+
Ω13

z1 − z3

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
η(1)

η(2)

η(3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
η(21)

η(22)

η(23)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 1
2

(
Ω21

z2 − z1
+
Ω23

z2 − z3

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
η(1)

η(2)

η(3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
η(31)

η(32)

η(33)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 1
2

(
Ω31

z3 − z1
+
Ω33

z3 − z2

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
η(1)

η(2)

η(3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , η(1) + η(2) + η(3) = 0.

(6-12)

PROOF. The theorem follows from Theorems 6.3 and 6.10. �

THEOREM 6.11. The column vector

�η(z) := (η(1)(z), η(2)(z), η(3)(z))

is nonzero at every point z ∈ D.

PROOF. On the one hand, if �η(a) = 0 for some a ∈ D, then all derivatives of �η(z) at
a are equal to zero. This follows from the first three equations in Equation (6-12)
written as

∂

∂zi
�η = (Hi − η(i))�η, i = 1, 2, 3. (6-13)

Hence, �η(z) equals zero identically on D. On the other hand, η(2)(1, 0, 0) =
F′(0)/F(0) = 1/4 by Theorem 6.7. This contradiction implies the theorem. �

6.7. Subbundle L → D. Denote W = {(I1, I2, I3) ∈ Q3
p | I1 + I2 + I3 = 0}. The

differential operators ∇KZ
i , i = 1, 2, 3, define a connection on the trivial bundle

W ×D→ D, called the KZ connection. The KZ connection is flat,

[∇KZ
i ,∇KZ

j ] = 0 for all i, j.

The flat sections of the KZ connection are solutions of the system in Equation (6-1) of
KZ equations.

For any a ∈ D, let La ⊂ W be the one-dimensional vector subspace generated by
�η(a). Then,

L :=
⋃
a∈D
La → D

is an analytic line subbundle of the trivial bundle W ×D→ D.

THEOREM 6.12. The subbundle L → D is invariant with respect to the KZ con-
nection. In other words, if s(z) is any section of L → D, then the sections ∇is(z),
i = 1, 2, 3, also are sections of L → D.

PROOF. The theorem follows from Equation (6-13). �

REMARK 6.13. For any a ∈ D, we may find locally a scalar analytic function u(z) such
that u(z) · �η(z) is a solution of the KZ equations in Equation (6-1). Such a function
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is a solution of the system of equations ∂u/∂zi = −η(i)u, i = 1, 2, 3. This system is
compatible since ∂η(j)/∂zi = η

(ij) − η(i)η(j) = ∂η(i)/∂zj.

REMARK 6.14. The corresponding complex KZ connection does not have invariant
line subbundles due to irreducibility of the monodromy of the KZ connection, which
in our case is the Gauss–Manin connection of the family y2 = (t − z1)(t − z2)(t − z3).
Thus, the existence of the KZ invariant line subbundle L → D is a pure p-adic feature.

REMARK 6.15. The invariant subbundles of the KZ connection over C usually are
related to some additional conformal block constructions; see [FSV, SV2, V3].
Apparently, the subbundle L → D is of a different p-adic nature; see [V4].

REMARK 6.16. Following Dwork, we may expect that locally at any point a ∈ D, the
solutions of the KZ equations of the form u(z) · �η(z), where u(z) is a scalar function,
are given at a by power series in zi − ai, i = 1, 2, 3, bounded in their polydiscs of
convergence, while any other local solution at a is given by a power series unbounded
in its polydisc of convergence; see [Dw] and [V4, Theorem A.4].

6.8. Other definitions of subbundle L → D.

6.8.1. Line subbundleM→ D. Define a polynomial Us(z) as the coefficient of tps−1

in the master polynomial Φs(t + z3, z) = ((t − (z1 − z3))(t − (z2 − z3))t)(ps−1)/2. It is easy
to see that U1(z) = T1(z) (mod p). Similarly to Theorem 6.5, we conclude that

Us+1(z1, z2, z3) Us−1(zp
1 , zp

2 , zp
3 ) ≡ Us(z1, z2, z3) Us(z

p
1 , zp

2 , zp
3) (mod ps).

Hence, the sequence (Us+1(z)/Us(zp))s�1 uniformly converges to an analytic function
on the domain D defined in Equation (6-8). The vector-valued polynomial ∇Us(z) =
(∂Us/∂z1, ∂Us/∂z2, ∂Us/∂z3) is a solution modulo ps of the KZ equations in Equation
(6-1); see [V4, Theorem 9.1], and see the proof of Theorem 6.3. Consider the function

�μ = (μ(1), μ(2), μ(3)) := lim
s→∞

∇Us

Us

defined on the same domain D. Similarly to the proofs of Theorems 6.9–6.12, we
conclude that the function �μ(z) is nonzero on D and its values span an analytic line
subbundle

M :=
⋃
a∈D
Ma → D

of the trivial bundle W ×D→ D; here, Ma ⊂ W is the one-dimensional subspace
generated by �μ(a). The line subbundle M → D is invariant with respect to the KZ
connection.

THEOREM 6.17. The line bundlesM → D and L → D coincide.

PROOF. The proof rests on the following two lemmas.
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LEMMA 6.18. The line bundlesM → D and L → D coincide if there is a ∈ D such
thatMa = La. �

PROOF. Let Ma = La for some a ∈ D. Then, Mz = Ls in some neighborhood of a,
since locally the subbundles are generated by the values of the solutions with the same
initial condition at z = a. Hence,Mz = Lz on D. �

LEMMA 6.19. For i = 1, 2, 3, the functions ∂Ts/∂zi(z)/Ts(z) and ∂Us/∂zi(z)/Us(z) are
equal on the line z1 = 1, z3 = 0.

Hence,M = L over the points of that line and, therefore,Mz = Lz for z ∈ D.

6.8.2. Line subbundle N → D̂. Let ω(x) = F′(x)/F(x), where F(x) is defined as
2F1(1/2, 1/2; 1; x). We have ω(x) = lims→∞(P′s(x)/Ps(x)) on D0,1. Introduce new
variables

u1 = z1 − z3, u2 =
z2 − z3

z1 − z3
, u3 = z1 + z2 + z3,

and a vector-valued function

�ω(u) =
1
u1

(−1/2 − ω(u2)u2, ω(u2), 1/2 + ω(u2)(u2 − 1)).

Define

D̂0 = {(z1, z2, z3) ∈ Q3
p | zi � zj for all i � j}.

For any σ = (i, j, k) ∈ S3, define

D̂σ1 =

{
(z1, z2, z3) ∈ D̂0

∣∣∣∣∣ zj − zk

zi − zk
∈ Zp,

∣∣∣∣∣g(zj − zk

zi − zk

)∣∣∣∣∣
p
= 1
}
,

D̂σ2 =

{
(z1, z2, z3) ∈ D̂0

∣∣∣∣∣ zi − zk

zj − zk
∈ D̂σ1
}
, D̂σ = D̂σ1 ∪ D̂

σ
2 , D̂ =

∑
σ∈S3

D̂σ,

where g(λ) is the Igusa polynomial in Equation (4-13).
Using Dwork’s results in [Dw], it is shown in [V4, Appendix] that the values of

the analytic continuation of the function �ω(u) generate a line bundleN → D̂ invariant
with respect to the KZ connection.

THEOREM 6.20. The line bundlesM→ D and N → D̂ coincide on D ∩ D̂.

Thus, we identify the line bundles L → D,M→ D, and N → D̂ over D ∩ D̂.

PROOF. We have

Us(z) = (z1 − z3)(ps−1)/2Ps

(z2 − z3

z1 − z3

)
,
∂Us

∂z2
= (z1 − z3)(ps−1)/2−1P′s

(z2 − z3

z1 − z3

)
∂Us

∂z1
=

ps − 1
2

const (z1 − z3)(ps−1)/2−1Ps

(z2 − z3

z1 − z3

)
− const (z1 − z3)(ps−1)/2−1 z2 − z3

z1 − z3
P′s
(z2 − z3

z1 − z3

)
.
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Hence,

1
Us(z)

(
∂Us

∂z1
,
∂Us

∂z2
,
∂Us

∂z3

)
=

1
u1

( ps − 1
2
− u2

P′s(u2)
Ps(u2)

,
P′s(u2)
Ps(u2)

, − ps − 1
2
+ (u2 − 1)

P′s(u2)
Ps(u2)

)
.

Clearly, the limit of this vector equals �ω(u) as s→ ∞. The theorem is proved. �

7. Concluding remarks

7.1. Conjectural stronger congruences for Ps(x). By Theorem 4.2, we have for
polynomials P̄s(x) := (−1)(ps−1)/2Ps(x),

P̄4(x)P̄2(xp) − P̄3(x)P̄3(xp) ≡ 0 (mod p3).

In particular, for the coefficient of xN0+N1 p+N2 p2+N3 p3
in P̄4(x)P̄2(xp) − P̄3(x)P̄3(xp),

∑
k1+l1=N1
k2+l2=N2

((
(p4 − 1)/2

N0 + k1 p + k2 p2 + N3 p3

)2(
(p2 − 1)/2

l1 + l2 p

)2

−
(

(p3 − 1)/2
N0 + k1 p + k2 p2

)2(
(p3 − 1)/2

l1 + l2 p + N3 p2

)2 )
≡ 0 (mod p3).

Computer experiments show that this sum can be split into subsums with at most four
terms so that each subsum is divisible by p3. More precisely, let 0 � a, b, c, c′, d, d′ �
p − 1 be integers. Define

A(a, b; c, c′; d, d′) =
(

(p4 − 1)/2
a + cp + dp2 + bp3

)2(
(p2 − 1)/2
c′ + d′p

)2
−
(

(p3 − 1)/2
a + cp + dp2

)2(
(p3 − 1)/2

c′ + d′p + bp2

)2

and

B(a, b; c, c′; d, d′) = Sym A(a, b; c, c′; d, d′)
:= A(a, b; c, c′; d, d′) + A(a, b; c′, c; d, d′) + A(a, b; c, c′; d′, d) + A(a, b; c′, c; d′, d).

(7-1)

We expect that the integer B(a, b; c, c′; d, d′) is divisible by p3.
More generally, define

k = (k(1), . . . , k(s)), k(i) = (k(i)
1 , k(i)

2 ),

A(a, b; k) =

(
(ps+2 − 1)/2

a +
∑s

i=1 k(i)
1 pi + bps+1

)2(
(ps − 1)/2∑s

i=1 k(i)
2 pi−1

)2
−
(

(ps+1 − 1)/2

a +
∑s

i=1 k(i)
1 pi

)2(
(ps+1 − 1)/2∑s

i=1 k(i)
2 pi−1 + bps

)2
.

Set

B(a, b; k) = Sym A(a, b; k),
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where Sym denotes the symmetrization with respect to the index j in k(i)
j in each group

k(i) = (k(i)
1 , k(i)

2 ). Thus, the symmetrization has 2s summands; the case s = 2 of this
symmetrization is displayed in Equation (7-1).

CONJECTURE 7.1. The integer B(a, b; k) is divisible by ps+1.

This conjecture is supported by computer experiments and is checked for s = 1
using [Gr].

7.2. Papers [BV, Vl]. After reading this paper, Masha Vlasenko was able to invent a
new proof of our congruences in Theorems 4.2 and 5.1 (private communication). Her
proof was based on the results of [BV, Vl].
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