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Relative annihilators

in semilattices

J.C. Varlet

An a-distributive (respectively a-implicative) semilattice S

is a lower semilattice (with greatest lower bound denoted by-

Juxtaposition) in which the annihilator (x, a> , that is

{y (. S : xy S a) , is an ideal (respectively a principal ideal)

for the fixed element a and any x of 5 . These semilattices

appear as natural links between general and distributive semi-

lattices on the one hand, and between pseudo-complemented and

implicative semilattices on the other hand. Prime and dense

elements, as well as maximal and prime fi l ters, are essential.

Mandelker's result, a lattice L is distributive if and only if

<x, y > is an ideal for any x, y € L , is extended to semi-

lattices.

0. Introduction

Implicative l a t t i c e s have been extensively studied by a lgeb ra i s t s ,

topologists and logic ians , unfortunately under various names among which we

quote re la t ive ly pseudo-complemented l a t t i c e s and brouwerian l a t t i c e s . An

implicative l a t t i c e L i s a se t on which i s defined, besides the two

la t t i ce -ope ra t ions , a th i rd binary operation, • , whose meaning i s the

following: for any a, b i L , ax<b**x<a*b. Since the l a t t e r

involves only one of the l a t t i ce -opera t ions , i t i s quite reasonable to

consider implicative semilat t ices as in [ 2 ] .

A semilat t ice S with leas t element 0 i s said to be pseudo-
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complemented if, for any a i S , there exists an element a* satisfying

ax - 0 if and only if x 5 a* . Clearly any implicative semilattice

bounded below is pseudo-complemented. Nevertheless, most pseudo-

complemented semilattices are not implicative and furthermore an

implicative semilattice need not have a zero. Whereas every implicative

semilattice is distributive, this property is no longer true in a pseudo-

complemented semilattice. Thus most statements are not transferable from

implicative semilattices to pseudo-complemented ones and vice versa.

Apart from the elementary arithmetical properties, the link between both

theories is weak. In order to fi l l up the gap, we introduce a restricted

form of implicativity, the implicativity with respect to a fixed element

a , not necessarily zero: in an a-implicative semilattice, x * a is

defined for al l x . These semilattices have nice properties, which

generalize those of pseudo-complemented semilattices and which are valid

trivially in any implicative semilattice.

Extensive use is made of the notion of annihilator of an element a

relative to an element b , in symbols (a, b> , introduced by Mandelker in

[ I ] . Let us recall that the annihilator <<z, b) of a relative to b is

the family of all elements x such that ax * b . Using Zorn's Lemma, we

can enlarge to semilattices the nice characterization of distributive

lattices given by Mandelker: a lattice L (here: a semilattice) is

distributive if and only if, for any a, b € L , <a, b > is an ideal.

In Section 1 we introduce all notions and notations we need.

Section 2 is devoted to the study of the a-dense elements of a

general semilattice S , that i s , elements x for which <x, a) is

contained in (a] , the principal ideal generated by a . It is the

natural extension of the notion of dense element in a semilattice bounded

below. The properties of these elements are closely linked to those of the

fi l ters maximal with respect to the property of not containing a , in

short: a-maximal f i l ters .

In Section 3 we impose upon the semilattice S a slight condition: S

has a fixed element a such that < x, a > is an ideal for any x € S . I t

is a partial distributivity that we name a-distributivity. The special

case a = 0 has already been studied by us in [5] and [6]. A character-

ization of a-distributivity in terms of a-maximal filters is provided and
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the subset P(S) of all elements a £ S for which S is a-distributive

is investigated. Prime elements are here of utmost importance. As already

mentioned, V(S) = S if and only if S is distributive.

Die last section deals with a-implicative semilattices, that i s ,

semilattices S in which, for any x £ S , <x, a> is a principal ideal

denoted by {x*a] . It is proved that a semilattice S is a-distributive

if and only if i ts ideal lattice is (a]-implicative. The rules of

computation in an a-implicative semilattice are given and special

attention is paid to the multiplicative closure operator <p :

x •*• (x*a) * a , especially to the location of its invariant elements.

Finally the congruence 0 defined by (x, y) £ 0 if and only if

x * a = y * a , is briefly studied.

The reader will have no difficulty in deducing properties of pseudo-

complemented and implicative semilattices from our statements. In order to

keep clarity and to avoid any lengthening, we do not mention these

particular results: they are obvious corollaries.

1. Preliminaries

Throughout this paper the word semilatt ice wi l l mean lower

eemilattioe, that i s a commutative idempotent semigroup or, equivalently, a

par t i a l ly ordered set in which any two elements a and b have a greatest

lower bound, denoted by a'b or simply ab , the pa r t i a l ordering being

defined by o 5 1 *° ab = o . The greatest lower bound of the family

{a- : i £ 1} wi l l be denoted by | \{a. : i £ l] or ~] f a. or even

] \ a. when no confusion is allowed. The least and greatest elements of a
i

semilattice S , when they exist, will be denoted by 0 and 1

respectively. When S is a latt ice, the second binary operation will be

denoted by + .

The symbols n, u, - , c and c will be used in their usual set-

theoretical meaning: intersection, union, difference, inclusion and

strict inclusion.

A filter of a semilattice S is a non-empty subset F of S such

that xy £ F i f and only i f x £ F and y £ F . The principal filter
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generated by an element a of S , that i s , the set {x : x € 5, x > a) ,

will be denoted by [a) . A filter F of 5 is prime if, whenever two

filters F., and ?„ are such that 0 t F n F' c- f , then F., or ?„

belongs to F .

An ideal I of a semilattice 5 is a non-empty subset of 5

satisfying

(i) y 5 x and x € J imply y Z I ;

( i i ) for any x, $/ € J , there exists z € -T such that 2 > x

and 2 > !/ .

We shall use the symbol (a] to denote the principal ideal generated by

a . In an up-directed semilattice 5 , a filter F is prime if and only

if S - F is an ideal of S .

When ordered by inclusion, the set F(5) of all filters of an up-

directed semilattice S is a lattice in which, for any F^ F^ € F(5) ,

F -F = F n F and F + F is the filter generated by F u F .

Similar considerations are valid also for the set T{S) of all ideals of

5 .

A semilattice S is called modular if, for any x, y, z in 5 such

that y > z > xy , there exists x1 * x satisfying z = x y . The

following condition is stronger: a semilattice S is distributive if

z > xy (x, y, z € 5) implies the existence in 5 of x , y such that

x1 > x , y 2 y and x y = z . We proved in [6] that Stone's Separation

Theorem can be extended as follows: an up-directed semilattice is

distributive if and only if for any filter F and any ideal I such that

F n I = 0 , there exists a prime filter containing F and disjoint from

J .

An element a of a semilattice S is irreducible if a = bo implies

a = b or a = a . An element a of S is prime if (a] is a prime

ideal, that i s , a > bo implies a 2 b or a > a . Obviously any prime

element is irreducible and the two notions coincide if S is distributive.

Finally we shall make use of the notion of multiplicative closure

operator. A mapping cp : S •*• S of a partially ordered set S into itself
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is called a closure operator if for any x, y € S ,

(i) a; 2 axp ;

( i i ) x 5 y implies xcp 5 y<p ;

( i i i ) (wp)<p = xtp .

If the partially ordered set 5 is endowed with a binary operation,
called multiplication and denoted by Juxtaposition, the closure operator cp
is termed multiplicative if, for any x, y € S ,

(iv) (as/)<p = (x<f)(ytf) .

2. a-dense elements and a-maximal filters

The following definition makes sense for any element a of a semi-
latt ice S .

DEFINITION 2.1. An element x of the semi lattice S is a-denae
(a , fixed element of 5 ) if <x, a>£ (a] , that i s , for every y € 5 ,
xy S a implies y 5 a . When a = 0 , the expression O-dense element is
shortened to dense element.

The set of a-dense elements of S will be denoted by D ; when S

is bounded below, DQ (shortly D ) is the dense set of S in the usual

sense. The following facts are easily verified:

(1) D is either the empty set or a f i l ter ;

(2) the following three conditions are equivalent: a = 1 , D_ 3 a

and Da = S ;

(3) if x is a-dense and xy = a , then y = a .

DEFINITION 2.2. A fi l ter F of the semilattice 5 will be called
a-maximal [a , fixed element of S distinct from 1 , if the latter
exists) if F is maximal with respect to the property of not containing
a . Since a t 1 , there exists b ^ a and [£>) \ a . An easy
application of Zorn's Lemma enables us to infer the existence of an
a-maximal f i l ter . Here also O-maximal will be shortened to maximal.

THEOREM 2.3. A filter F of the semilattioe S is a-maximal if
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and only if F does not contain a and, for every i f f , <x, a> meets

F .

Proof 1°. IF: If F does not contain a but i s not a-maximal,

there exis ts a f i l t e r G such that G z> F and G \ a . Let us choose

x € G-F . By hypothesis there is y € F such that ay < a . But ay £ G

and C would contain a .

2°. ONLY IF: Let F be an a-maximal f i l t e r . If x $ F ,

F + [x) O F and F + [x) 3 a . Hence there exists :/ € F such that

xy 5 a and <x, a > n F ^ 0 .

Hie following statement shows that the concepts of a-dense element

and a-maximal f i l t e r are closely linked.

THEOREM 2.4. In a semilattiee S 3 the subset D is the

•intersection of the a-maximal filters.

Proof. Let {F. : i € j } be the family of a-maximal f i l ters of 5 .

We f i r s t show that , for every i i. I , F^ ^ D . Therefore let us suppose

there is x € D but x fe F. for some i € J . By Theorem 2.3 one cana u

find y G F. such that xy S a . Since x € D , this implies y 2 a and

F. S a , a contradiction.

Now let fc be an element of n{f\ : t € 1} which does not belong to

D . Then there exists c such that be 2 a and c ^ a . The family of

f i l t e rs containing o but not a is not empty; by Zorn's Lemma there

exists a f i l te r F maximal with respect to this property. Clearly F = F.

for some i € J , fc€F, be € F , which is impossible since

F $ a > be .

THEOREM 2.5. In a semilatUee S , the following are equivalent:

(1) S has exactly one a-maximal filter;

(2) D is an a-maximal filter.

Moreover they imply

(3) D is a prime filter.
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Proof. By the preceding theorem the equivalence of ( l) and (2) i s

clear since the family of a-maximal f i l t e r s i s to ta l ly unordered. Let us

now consider a semilattice S in which D i s an a-maximal f i l t e r .
a

Then, for every x £ D , there exists y t D satisfying xy 5 a . Since

y € D , this implies x £ a . As conversely x S a implies x £ D , D

is the set-complement of the principal ideal (a] and D is a prime

fi l ter .

REMARK 2.6. Generally conditions (2) and (3) are not equivalent. An

example is provided by a generalized boolean lat t ice (that i s , a

distributive relatively complemented latt ice bounded below but not above)

to which an element 1 is added. In such a la t t ice , D = [1) is a prime

fil ter but is far from being a maximal f i l ter . Nevertheless we will show

in Section 4 that the previous conditions become equivalent in an

a-implicative semilattice.

When the element a is prime, the subset D takes an advantageous

form.

THEOREM 2.7. In a semilattice S , an element a * 1 is prime if

and only if D = S - (a] .

Proof 1°. IF: Let us suppose D - S - (a] for some a 4 1 . We

then have D # $ . If yz 5 a and y ^ a (that i s , y € D ) , then

z £ a by definition of D and a i s prime.

2°. ONLY IF: Let a t 1 be a prime element of S . Clearly i f

x £ a , then x \ D; on the contrary, i f x ^ a , then ay 5 a implies

y 5 a and x € D .

3. a-distributive semi lattices

DEFINITION 3.1. A semilattice 5 is a-distributive (a , fixed

element of S ) if, for any x € S , <x, a> is an ideal.

Ihis definition applies to lattices as well and can be reformulated

as follows: a latt ice L is a-distributive if, for any x € L , xy S a
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and xs - a imply x(y+z) 5 a . Moreover x(y+z) = a follows from

xy = a and xz = a . Clearly a lattice is a-distributive if and only if

i t is so as a semilattice.

The following theorem provides us with a characterization of

a-distributivity in terms of filters. Its proof is similar to that of [6],

Theorem 2. Nevertheless, for the sake of completeness, we give i t in every

detail.

THEOREM 3.2. A semilattioe S is a-distributive if and only if it
is up-direated and any a-maximal filter ie prime.

Proof 1°. IF: We have to prove tha t , for any x € S , I = <x, a)

i s an idea l . For any y, z € I , the set of a l l upper bounds of iy, z}

i s a f i l t e r F since 5 i s up-directed. The set

G = {* € S : t > xf, f € F} i s also a f i l t e r . If G $ a , then G i s

contained in an a-maximal f i l t e r M . By hypothesis M i s prime and,

since [y) n [z) = F c u , either [y) c M or [z) £ A/ . But y Z M (or

z £ M ) would imply (owing to a: € M ) xy € M and a € M , a contra-

d ic t ion . Hence G 3 a , that i s , there exists f £ F such that xf 5 a ,

and consequently y, z have in I the upper bound / .

2° . ONLY IF: F i r s t , any a-dis tr ibut ive semilattice i s up-directed

since <a, a) = S i s an idea l , whence any two elements of S have an

upper bound. Then l e t F be an a-maximal f i l t e r of S which i s not

prime. There exist two f i l t e r s G and H such that C n i f c f , G<|F

and H <| F . So we can find x I G-F and y € H-F . Since F i s a-

maximal, by Theorem 2.3 there exist z and t in F belonging

respectively to <x, a> and <#, a> . Since x and y both belong to

<at , a> , which i s an idea l , an element u i x, y can be found in the same

annihi la tor , whence ztu £ a . Since z, t and w a l l belong to F , F

contains a , a new contradiction.

Mandelker has shown (ill, Theorem l ) that a l a t t i c e L i s

d i s t r ibu t ive i f and only i f i t is a-dis t r ibut ive for a l l a € L . Using

Zorn's Lemma we can extend th i s property to a semilat t ice.

THEOREM 3.3. A semilattiae S is distributive if and only if it is
a-distributive for all a € S .

Proof 1°. IF: We have to prove tha t , for any a , b, a such that
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a > ab , there exist elements a , b satisfying a1 5 a , b > b and

a b = a . Let us denote by F (respectively i? J the non-empty set of

upper bounds of {a, a) (respectively tb, a) ) . F^ and F? are

f i l ters , as well as F + F = {z € 5 : z > xy, x (. F , y € F } . If

F + Fp does not contain a , there is a e-maximal f i l ter G containing

F. + F- . Since S is e-distributive, G is prime by virtue of Theorem

3.2. As 9 # F = [a) n [a) c G , the element a has to belong to G .

Similarly we can show that G contains b , whence ab € G and a € G ,
which is impossible. In conclusion, F + f does contain a , that i s ,

there exist elements d, e such that d t a, a and e ^ b, c together
with de S a . As we also have de 2 a (owing to d 2 a and e 2 a ) , we
get a = de and d, e are respectively the desired elements a , b. .

2°. ONLY IF: Let y, z £ <x, a> . We have to show that there is an
element t satisfying t 2 y, z and t f <x, a> . Since a distributive
semilattice is up-directed, F = [y) n [z) is a f i l ter , as well as
G = F + [x) . If G \ a , there is a prime f i l ter P containing G but
not a . Since P is prime and contains F , either y € P or z € P .
We have either xy £ P or xz € P , which implies a € P , a
contradiction. Thus we may conclude that G 3 a and the existence of the
desired element t is established.

It is most natural to investigate the subset of elements a of a
semilattice 5 for which S is a-distributive. This subset, denoted by
0(5) , enjoys the following properties.

THEOREM 3.4. In a eemilattice S , V(s) ie a 8ii>8emilattiae of S
including all prime elements of S . If S is complete, then so is
V{S) .

Proof. I f 5 i s complete and, for every i (. I , a . € 0(5) , then

the subse t J = (x, | | a.) i s an i d e a l for every x € 5 and

I I a. i 0(5) . Indeed, y € ( x , 1 [a.) impl ies y € <x, a.) for every
i % * i %'

i i I . Hence if y, z € J , we can find elements t^ satisfying
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t. i y , z and t. € < x, a. > for every £ € I . Consequently, 1 T t. (. J

with ( I t. Z j , a , If 5 is not complete, the previous argument holds

for I finite.

Final ly , any prime element p of S belongs to V(S) since <x, p>

equals S or (p] according as x 5 p or x ^ p , hence <x, p> is an

ideal in both cases.

COROLLARY 3.5. Any complete semilattice in which each element has a

representation as a meet of prime elements, is distributive.

Proof. The statement i s a direct consequence of Theorems 3.k and 3.3-

REMARK 3.6. We take th i s opportunity to point out t ha t , even in a

complete l a t t i c e L , V(L) does not include a l l irreducible elements of

L . For instance, in the five-element non-modular l a t t i c e {0, a, b, a, 1}

with 0 < a < i < 1 , 0 < c < 1 , a and o incomparable, b and c

incomparable, the element a does not belong to V(L) although i t i s

i r reduc ib le . Actually, <ZP, a) = {0, a, c) i s not an idea l .

THEOREM 3.7. In a semilattice S , if a € V(S) , then V>a n [a) is

the denae set of [a) .

Proof. If a = 1 , the statement i s t r i v i a l . Hence we may assume

a t 1 in the sequel.

Let us f i r s t prove that i f x i s a dense element of [a) , then

x € D . Let us consider an element y such that xy S a . From

y € < x, a > and a € (x, a > we deduce the existence of an element

z € <x, a) with z > a, y . Since x > a , s > a and i z 5 a , we

necessari ly have xz = a and, owing to the density of x in [a) ,

z = a . We conclude that y - a and x € D .

Now l e t us denote by y an element of 0 n [a) d is t inc t from 1 .

For. any a of [a) such that ys = a , we have a = a , proving that y

i s dense in [a) .

4. a-1mplicative semilattices

DEFINITION 4.1. A semilattice 5 is a-implicative (a , fixed
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element of S ) i f , for any x € S , ( x , a> i s a p r i n c i p a l i d e a l , denoted

by (x*a] . In o ther words, for any x € S , we have xy £ a i f and only

if y £ x * a .

From the point of view of universal algebra, an a-implicatlve algebra

can be regarded as an algebra S = (S; ', > a> with a binary operation

*a' , a unary operation x •+ x = x * a , and the distinguished element a .

An a-implicative semilattice is of course a-distributive and always

has a greatest element 1 since x (. <a, a) is satisfied for any x (. S ,

hence a * a = 1 ; conversely, a semilattice 5 which is bounded above is

always 1-implicative and x * 1 = 1 for any x € 5 .

In case 5 has a least element 0 and S is O-implicative, i t is

customary to say that S is pseudo-complemented and to denote x * 0 by

x* .

A semilattice is implioative if i t is a-implicative for every

a € 5 .

If 5 is a-implicative, then ta) is pseudo-complemented; if we

denote by x the pseudo-complement of x (x 5 a) in [a) , we have
+

x = x * a . The converse of this statement is not true as is easily

verified.

In a semilattice satisfying the ascending chain condition, all ideals

are principal. As a consequence, if such a lattice is a-distributive, i t

is also a-implicative. The following theorem throws light on the link

between a-distributivity and a-implicativity.

THEOREM 4.2. A eemilattiae S ie a-distributive if and only if

T(s) is a -implioative.

Proof 1°. IF: We have to show tha t , for any x i. S , the subset

I = <x, a > i s an ideal . Let y. and y2 tie two elements of I :

(*] r> ( J / J £ (a] and (x] n (j/2] c (a] . Since T(S) i s ( a ] -

implicative, ( y j c (x] * (a] = J and, s imilar ly , (i/2] c J . As J i s

an idea l , i t contains an element b such that b > y., y^ • From (b] c J

follows (x] n {b] <£ (a] , hence xb 5 a .
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2°. ONLY IF: Let I be an element of T(S) . For every x € I ,

J = (x, a> is an ideal containing a , whence J = fi{e7 : x (. i} is alsox x
an ideal. We are going to prove that I * (a] = e7 . First , I <~> e/ c (a] ,

If not, there exist i (. I and j Z J such that i j ^ a , which is

impossible given the way J has been constructed. Secondly, if K ̂  J ,

there is fc € X such that xk | a for some x € I , hence J n K <£ (a] •

The following rules of computation have been proved for implicative

semilattices ([2] , [3], [4]). Clearly they are s t i l l valid in an

a-implicative semilattice.

THEOREM 4.3. If x, y, z are any elements of an a-implioative

aemilattice, then Ohe following hold:

(1) x * a > a ;

(2) x S a , x * a = l and x * a 2 x are equivalent;

(3) 1 * a = a j

(M x * a = x i / and only if x = a = 1 ;

(5) (x*a) * a 2 x, a ;

(6) i f x £ y j then x * a > y * a and (x*a) * a S (#*a) * a ;

(7) ((x*a)*aj * a = x * a a«d (((x*a)*a)*a) * a = (x*a) * a ,•

(8) (x*a)((x*a)*a) = a .

As far as we know, the following important formula is novel.

THEOREM 4.4. If x and y are any elements of an a-implioative

semilattice, then

(9) [(xy)*a) *a= [{x*a)*a) [(y*a)*a) .

Proof. Let us denote by t the right-side member of (<?)• From

x £ (x*a) * a and y 5 (y*a) * a , we deduce xy 2 t , hence

(xy) * a * t * a .

We now intend to prove that {xy) * a £ t * a , that i s , any s

satisfying xyz S a also satisfies tz £ a . From t2x# £ a follows

tzx 5 j/ * a . Since tsx (£ t) £ (y*a) • a , we have

tzx £ (j/*a) ((y*a)*a) = a , hence ta £ x * a . Since tz £ (x*a) * a , we

finally obtain tz £ a and (a?/) * a = t * a . then
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{{xy)*a) * a = (t*a) * a > t . The opposite inclusion being tr ivial , the

proof ends.

COROLLARY 4 .5 . In an a-implicative semilattice, the mapping

<p : x •* (x*a) * a is a multiplicative closure.

Proof. Formulae (5) , (6) and (7) make <p a closure operator. The

multiplicative character of th is closure i s given by (9).

COROLLARY 4 . 6 . In an a-implicative algebra S = (S; •, a , a> , the

mapping <p : x •*• (x*a) * a is an idempotent endomorphism which preserves

all congruences.

Proof. Theorem k.k shows that (xj/)<p = (axp)(ycp) . Moreover,

(x )<p = [{x*a)*a) * a = (xcp) , ay = a and xtp = x . Finally, for

any 0 € C(S) , the congruence l a t t i ce of S , (x, y) € 0 implies

(axp, y<f) € 0 .

DEFINITION 4.7. An element x of an a-implicative semilatt ice S

wil l be called a-closed i f (x*a) * a = x . The subset of a-closed

elements of 5 i s denoted in the sequel by C . Clearly an element x

of an a-implicative semilattice S i s a-closed i f and only i f there i s

y € S satisfying y * a = x .

DEFINITION 4.8. A subset -4 of a pa r t i a l ly ordered set S w i l l be

called semiconvex i f a, b € A (a S b) implies x, y i A for any x , y

satisfying xy = a and x + y = b . This definition generalizes the one

we introduced in [4] for l a t t i c e s . Obviously a convex subset of a

par t ia l ly ordered set i s semiconvex.

LEMMA 4.9. In a modular semilattice S , the subset

F = {x € 5 : aw = x} of all ^-invariant elements of a multiplicative

closure (p is semiconvex.

Proof. Let us assume a, b € F , xy = a and x + y = b . We have

to show that x<p = x and j/<p = y . F i rs t a = atp = (xtp)(i/cp) since <p i s

mult ipl icat ive. Moreover, since x 5 xcp 2 by = b and y 2 y<p 5 b<p = b ,

clearly xip + i/cp = b . As 5 is modular and yy > y > x(y<f) = a , there

is 2 € S satisfying s i x and y = z(y<f) . Consequently we have

z > y , 3 > x+2/ = b t yy and finally j / = ytp . The inversion of the
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parts played by x and y gives x = xtp . / /

THEOREM 4.10. In an a-impliaative algebra S = <S; • , a , a> , C

•is a subalgebra whose least and greatest elements are a and 1

respectively. If, moreover, S is modular, then C is eemiaonvex.

Proof. Since the endomorphism <p : x •*• (x*a) * a maps S onto C ,

the la t ter is a subalgebra of S . Since (a*a) * a = a and

(x*a) * a > a for any x € 5 , the least element of C is a . Clearly

i t s greatest element is 1 . The last part is a direct consequence of

Corollary k.5 and Lemma k.9.

Our next project is to describe a-dense elements and a-maximal

f i l ters in an a-implicative semilattice. I t is an easy exercise to verify

that an element x of an a-implicative semilattice is a-dense if and

only if one of the following equivalent conditions is satisfied:

(i) <x, a>= (a] ;

( i i ) x * a = a ;

( i i i ) (x*a) * a = l .

THEOREM 4.11. In an a-implioative semilattice S , an element x

is a-dense if there exists y Z S such that x is an upper bound of

Proof. From x > y and x > y * a , we deduce respectively

x * a £ y * a and x * a 5 (y*a) * a , hence x * a £ (y*a) [(y*a)*a) = a .

Since x * a > a always holds, we get x * a = a and x is a-dense.

REMARK 4.12. The previous condition can be restated as follows: for

every x € S , [x) n [x*a) c ^ .

THEOREM 4.13. In an a-implicative semilattice S , a filter F is

a-maximal if and only if, for any x £ S , F contains exactly one of the

elements x and x * a .

Proof 1°. IF: Since F contains 1 = a * a , i t does not contain

a . Let y \ F ; by hypothesis y * a € F . By the very definition of

y * a we have y{y*a) 5 a . Theorem 2.3 enables us to infer that F is

a—maximal •

https://doi.org/10.1017/S0004972700043094 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700043094


Relative annihi lators l 8 3

2°. ONLY IF: Let F be a-maximal. F cannot contain both x and

x * a since otherwise i t would contain a S x(x*a) . Now l e t us suppose

x ^ F and x • a $ F . The f i l t e r F + [x) contains a , hence there

exists y € F such that i/x 5 a . But th is means y £ x * a and

F 3 x * a , a contradiction. In conclusion, F contains exactly one of

the elements x and x * a .

THEOREM 4.14. In an a-implicative semLtattioe S 3 a prime filter

P which contains D but not a is a-maximal.a

Proof. If x £ P , then x * a ^ P since x(x*a) S a . If i { P ,

x * a i P because 0 ? [x) n [x*a) c j f l c P jo int ly with [x) £ P

implies [x*a) c P . To conclude i t suffices to set forth Theorem U.13.

COROLLARY 4.15. In an a-implicative semilattice, D is a prime

filter if and only if it is an a-maximal filter.

Proof. Owing to Theorem 2.5j we only need show that D i s

a-maximal i f i t i s prime. But th is i s straightforward by Theorem U.lU

since D \ a .

Let us denote by A(5) the subset of elements a of S for which 5

is a-implicative.

THEOREM 4.16. For any semilattice S , A(S) enjoys the following

properties :

(1) A(5) is empty if and only if S has no greatest element;

(2) A(S) c V(S) ;

(3) A(5) is a sublattice of S ; if S is complete, so is

A(5) ;

(U) A(5) includes all prime elements of S if S has a

greatest element.

Proof, ( l ) and (2) are obvious. (3) i s a direct consequence of the

formula: x * ~| \ a. = "| f fx*a.) , true for any index set I i f S i s
Hel %> i l l %

complete. In fact , if , for every i € I , a. € A(S) , then we have
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xy £ 1 f a. *=* XL) £ a. for every i € J

*==> j / 5 x * a. for every i i. I

~ i/ < TT

F i n a l l y , for any prime element p of 5 we have x * p = l i f x - p

and x * p = p i f x ^ p .

To end with we focus our a t t e n t i o n on a congruence of the

a - i m p l i c a t i v e a l g e b r a .

THEOREM 4 . 1 7 . In an a-implicative algebra S = <S; •, a , a*> , the

relation 0 defined by

(x , y) (. 0 if and only if x * a = y * a

is a fully invariant congruence of S . Moreover, if S is a lattice, 0

is also a fully invariant congruence of S' = <S; +, *, a , a > .

Proof. Theorem k.k shows that, for every z i S , (x, y) € 0

implies {xz, yz) € 0 . Clearly (x, y) € 0 implies (x*a, y*a) € 0 .

If S i s a l a t t i ce , (x, y) € 0fl implies (x+s, j/+a) € 0fl since

(x+z) * a = (x*a)(z*a) .

That 0 is fully invariant is also obvious: for every £ € E(S) ,

the endomorphism monoid of S , (x, y) (. 9 implies

x£ * a = (x*a)C = (t/*a)£ = j/£ * a , hence (x£, j/C) € 9 .

Now we enumerate some elementary properties of 9 . The easy proof

is left to the reader.

(1) For every x € S , (x, [x*a)*a] € 0^ .

(2) For every x € S , [x]d contains exactly one element of C ;

this element is (x*a) * a and constitutes the maximum element of the

class.
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(3) [a]Q = (a] is the kernel of 0 and the least element of

S/0 . W ^ L = ^ is tne antikernel of 0 and the greatest element of

s/ea .

(k) S/0 is a boolean algebra. In fac t , i f we adopt the notation of

U.I, 0 I[a) = ^ , where ^ i s the congruence on [a) defined by

(x, y) € ^ i f and only i f x = y .

(5) If there exists d i Da such that xd = yd , then (x, y) € 0 .
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