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Relative annihilators
in semilattices

J.C. Varlet

An g@-distributive (respectively a-implicative) semilattice S
is a lower semilattice (with greatest lower bound denoted by
juxtaposition) in which the annihilator {z, a’ , that is

{y €5 : xy =al , is en ideal (respectively a principal ideal)
for the fixed element @ and any £ of S . These semilattices
appear as natural links between general and distributive sgmi-
lattices on the one hand, and between pseudo~complemented and
implicative semilattices on the other hand. Prime and denée
elements, as well as maximal and prime filters, are essential.
Mandelker's result, a lattice L is distributive if and oniy if
(x, y) is an ideal for any x, y € L , is extended to semi-
lattices.

0. Introduction

Implicative lattices have been extensively studied by algebraists,
topologists and logicians, unfortunately under verious names among which we
quote relatively pseudo-complemented lattices and brouwerian lattices. An
implicative lattice L 1is a set on which is defined, besides the two
lattice-operations, a third binary operation, * , whose meaning is the
following: for any a, b €L, ax<b*™ x<a#b . Since the latter
involves only one of the lattice-operations, it is quite reasonable to

consider implicative semilattices as in [2].

A semilattice S with least element O is said to be pseudo-
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complemented if, for any a € S , there exists an element a* satisfying
ax = 0 if and only if x =< a* . Clearly any implicative semilattice
bounded below is pseudo-complemented. Nevertheless, most pseudo-
complemented semilattices are not implicative and furthermore an
implicative semilattice need not have a zero. Whereas every implicative
semilattice is distributive, this property is no longer true in a pseudo-
complemented semilattice. Thus most statements are not transferable from
implicative semilattices to pseudo-complemented ones and vice versa.
Apart from the elementary arithmetical properties, the link between both
theories is weak. In order to fill up the gap, we introduce a restricted
form of implicativity, the implicativity with respect to a fixed element
a , not necessarily zero: 1in an a-implicative semilattice, x * a is
defined for all x . These semilattices have nice properties, which
generalize those of pseudo-complemented semilattices and which are valid

trivially in any implicative semilattice.

Extensive use is made of the notion of annihilator of an element a
relative to an element b , in symbols (a, b} , introduced by Mandelker in
£7]. Let us recall that the annihilator f(a, b) of a relative to b is
the family of all elements & such that axr < b . Using Zorn's Lemma, we
can enlarge to semilattices the nice characterization of distributive
lattices given by Mandelker: a lattice L (here: a semilattice) is
distributive if and only if, forany a, b €L , (a, b} is an ideal.

In Seé¢tion 1 we introduce all notions and notations we need.

Section 2 is devoted to the study of the a-dense elements of a
general semilattice S , that is, elements & for which (x, a) is
contained in (a] , the principal ideal generated by a . It is the
natural extension of the notion of dense element in a semilattice bounded
below. The properties of these elements are closely linked to those of the
filters maximal with respect to the property of not containing a , in

short: a-maximal filters.

In Section 3 we impose upon the semilattice S a slight condition: S
has a fixed element a such that (z, @) is an ideal for any x € S . - It
is a partial distributivity that wve name a-distributivity. The special
case a = 0 has already been studied by us in [5) and [6]. A character-

ization of a-distributivity in terms of a-maximal filters is provided and

https://doi.org/10.1017/5S0004972700043094 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043094

Relative annihilators 17)

the subset D{S) of all elements a € S for which S§ is a-distributive
is investigated. Prime elements are here of utmost importance. As already

mentioned, D(S) =S if and only if S is distributive.

The last section deals with ag-implicative semilattices, that is,
semilattices S in which, for any x« € S, (x, a) is a principal ideal
denoted by (a®a) . It is proved that a semilattice S is qg-distributive
if and only if its ideal lattice is (al]-implicative. The rules of
computation in an a-implicative semilattice are given and special
attention is paid to the multiplicative closure operator ¢ :

x + {(x%xa) * a , especially to the location of its invariant elements.

Finally the congruence Ga defined vy (x, y) € Ga if and only if
x*a=y *a, is briefly studied.

The reader will have no difficulty in deducing properties of pseudo-
complemented and implicative semilattices from our statements. In order to
keep clarity and to avoid any lengthening, we do not mention these

particular results: they are obvious corollaries.

1. Preliminaries

Throughout this paper the word semilattice will mean Zower
semilattice, that is a commutative idempotent semigroup or, eguivalently, a
partially ordered set in which any two elements a and b have a greatest
lovwer bound, denoted by a°b or simply ab , the partial ordering being
defined by a <b * ab = a . The greatest lower bound of the family

{ai : 1 € I} will be denoted by T_r{ai : 1 €I} or T_Tai or even
el

| ai when no confusion is allowed. The least and greatest elements of a
1

semilattice S , when they exist, will be denoted by 0 and 1
respectively. When S is a lattice, the second binary operation will be
denoted by + .

The symbols n, U, -, € and C will be used in their usual set-
theoretical meaning: intersection, union, difference, inclusion and

strict inclusion.

A filter of a semilattice S is a non-empty subset F of S such
that xy € F if and only if x € F and y € F . The principal filter
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generated by an element a of S , that is, the set {z : = € 8, z 2 a} ,
will be denoted by [a) . A filter F of S is prime if, whenever two

filters Fl and F2 are such that @ # Fl n F2 < F , then Fl or F2

belongs to F .

An ideal I of a semilattice S is a non-empty subset of S
satisfying
(i) y=x and x €I imply y €1 ;
(ii) for any =z, y € I , there exists % € I such that 2z =2z

and 2z 2y .

We shall use the symbol (a] to denote the prineipal ideal generated by
a . In an up-directed semilattice S , a filter F is prime if and only
if S - F is an ideal of S .

When ordered by inclusion, the set F(S) of all filters of an up-
directed semilattice S is a lattice in which, for any F,, F, € F(S) ,

2
Fl'F2 = Fl n F2 and Fl + F2 is the filter generated by Fl v F2 .
Similar considerations are valid also for the set T(S) of all ideals of
S .

A semilattite S is called modular if, for any %, Y, 2 in S such

that y Z 2 2 a2y , there exists &, Z x satisfying 2= 2,y . The
1 1

following condition is stronger: a semilattice S is distributive if
z>ay (x, y, 2 € S) implies the existence in S of T 5 Yy such that

2z, ¥y, 2y and =zy = 2. We proved in (6] that Stone's Separation

Theorem can be extended as follows: an up-directed semilattice is
distributive if and only if for any filter F and any ideal I such that
FnlIz=4¢@¢, there exists a prime filter containing F and disjoint from
I.

An element a of a semilattice S is irreducible if a = be implies
a=b or a=c¢ . An element a of S is prime if (a] is a prime
ideal, that is, a = be implies a=b or a = ¢ . Obviously any prime

element is irreducible and the two notions coincide if S is distributive.

Finally we shall mske use of the notion of multiplicative closure
operator. A mapping ¢ : S > S of a partially ordered set S into itself
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is called a closure operator if for any x, y €S ,
(1) z=ap 3
(ii) x =<y implies xp <yo ;
(iii) (x0)ep = 29 .

If the partially ordered set S 1is endowed with a binary operation,
called multiplication and denoted by Juxtapositicn, the closure operator ¢
is termed multiplicative if, for any *, y €5 ,

(iv) (=y)o = (x0)(ye) .

2. a-dense elements and g-maximal filters

The following definition makes sense for eny element a of a semi-
lattice S .

DEFINITION 2.1. An element x of the semilattice S is a-dense
{(a , fixed element of S ) if {x, a)< (a] , that is, for every y €S ,
xy =a implies y =a . When a =0 , the expression O-dense element is
shortened to dense element.

The set of a-dense elements of S will be denoted by Da ; when S
is bounded below, D0 (shortly D ) is the dense set of S in the usual

sense. The following facts are easily verified:

(1) D, is either the empty set or a filter;

(2) the following three conditions are equivalent: a=1, D 3a

and Da=S;

(3) if « is aq-dense and xy = a , then ¥y = a .

DEFINITION 2.2. A filter F of the semilattice S will be called
a-maximal (a , fixed element of S distinct from 1 , if the latter
exists) if F is maximal with respect to the property of not containing
a . Since a# 1, there exists b fa and [b) }a . An easy
application of Zorn's Lemma enables us to infer the existence of an

a-maximal filter. Here also O-maximal will be shortened to maximal.

THEOREM 2.3. 4 filter F of the semilattice S 1is8 a-maximal if
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and only if F does not contain a and, for every z §F, (x, a) meets
F .

Proof 1°. IF: If F does not contain a but is not a-maximal,
there exists a filter G such that GO F and G ) a . Let us choose
xz € ~F . By hypothesis there is y € F such that ay <a . But axy €G

and G would contain a .

2°. ONLY IF: Let F be an a-maximal filter. If =z § F ,
P+ [z) DF and F + (x) > a . Hence there exists y € F such that
xy <a and {x,alnF#@P.

The following statement shows that the concepts of ag~dense element

and a-maximal filter are closely linked.

THEOREM 2.4. 1In a semilattice S , the subset Da ig the
intersection of the a-maximal filters.

Proof. Let {Fi : © €I} be the family of g-maximal filters of S .
We first show that, for every % €I , Fi 2 Da . Therefore let us suppose
there is x € Da but =z f Fi for some Z € I . By Theorem 2.3 one can
find y € Fi such that xy <a . Since «x € Da , this implies y < a and

Fi 3 a, a contradiction.

Now let b ©be an element of ﬂ{Fi : 1 € I} which does not belong to
D, . Then there exists ¢ such that be<a and ¢ fa . The family of
filters containing ¢ but not a is not empty; by Zorn's Lemma there

exists a filter F maximal with respect to this property. Clearly F = Fi

for some T €I , b €F, be €F , which is impossible since
Fbhazbe.

THEOREM 2.5. In a semilattice S , the following are equivalent:
(1) S has exactly one a-maximal filter;

(2) D, ie an a-maximal filter.

Moreover they imply

(3) D, is aprime filter.
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Proof. By the preceding theorem the equivalence of (1) and (2) is
clear since the family of a-maximal filters is totally unordered. Let us
now consider a semilattice S in which Da is an a-maximal filter.

Then, for every «x t Da , there exists y € Da satisfying axy = a . Since
y € Da , this implies x =a . As conversely x < a implies «x f Da N Da
is the set-complement of the principal ideal (a] and D, is a prime
filter.

REMARK 2.6. Generally conditions (2) and (3) are not equivalent. An
example is provided by a generalized boolean lattice (that is, a
distributive relatively complemented lattice bounded below but not above)
to which an element 1 is added. In such a lattice, D = [1) is a prime
filter but is far from being a maximal filter. Nevertheless we will show
in Section 4 that the previous conditions become equivalent in an

a-implicative semilattice.

When the element a 1is prime, the subset Da takes an advantageous
form.

THEOREM 2.7. In a semilattice S , an element a # 1 1is prime if
and only if D, =5~ (a] .

Proof 1°. IF: Let us suppose D,=5 - (a] for some a#1 . We
then have D, # §. If ya<a and y fa (that is, y € D, ), then
2 = a by definition of Da and a is prime.

2°. ONLY IF: Let a # 1 be a prime element of S . Clearly if
a , then ¥ Da 5 on the contrary, if &« $ a , then xy = a implies

8
A

<
y<a and x € Da .

3. a-distributive semilattices

DEFINITION 3.1. A semilattice S is a-distributive (a , fixed
element of S ) if, for any x €S , {(x, a) is an ideal.

This definition applies to lattices as well and can be reformulated

as follows: & lattice L is a-distributive if, forany x €L , xy <= a
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and x23 < a imply x(y+z) < a . Moreover x(y+z) = a follows from
xy =a and x3 =a . Clearly a lattice is g-distributive if and only if

it is so as a semilattice.

The following theorem provides us with a characterization of
a-distributivity in terms of filters. Its proof is similar to that of [é],
Theorem 2. Nevertheless, for the sake of completeness, we give it in every
detail.

THEOREM 3.2. 4 gemilattice S 1is a-distributive if and only if it
18 up-directed and any a-maximal filter is prime.

Proof 1°. IF: We have to prove that, for any x €S , I =(z, a)
is an ideal. For any Yy, 3 € I , the set of all upper bounds of {y, 2}
is a filter F since S 1is up-directed. The set
G=1{t €5 : t=xf, f €F} is also a filter. If G } a , then G is
contained in an a-maximal filter M . By hypothesis M is prime and,
since [y) n[3) = FSC M, either [y) S M or [2) SM. But y €M (or
2 €M) would imply (owing to =z €M ) xy €M and a € M , a contra-
diction. Hence G 3 a , that is, there exists f € F such that zf <a ,

and consequently Yy, z have in I the upper bound f .

2°. ONLY IF: First, any a-distributive semilattice is up-directed
since {a, a)>=S is an ideal, whence any two elements of S have an
upper bound. Then let F be an a-maximal filter of S which is not
prime. There exist two filters G and H such that GNHCSF , G i F
and H$¢F . Sowe can find x € G-F and y € H-F . Since F is a-
maximal, by Theorem 2.3 there exist 2 and ¢ in F Dbelonging
respectively to (x, a) and (y, a)’ . Since x and y both belong to
(zt, a’ , vhich is an ideal, an element % 2 &, y can be found in the same
annihilator, whence =2ztu <a . Since =z, t and u all belong to F , F

contains a , a new contradiction.

Mandelker has shown ([7], Theorem 1) that a lattice L is
distributive if and only if it is a-distributive for all a € L . Using

Zorn's Lemma we can extend this property to a semilattice.

THEOREM 3.3. 4 semilattice S5 1is distributive if and only if it is
a-distributive for all a €S .

Proof 1°. IF: We have to prove that, for any a, b, ¢ such that
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¢ = ab , there exist elements a, bl satisfying a; zaq, bl >b and

albl = ¢ . Let us denote by Fl (respectively F2 ) the non~empty set of

upper bounds of {a, ¢} (respectively 1{b, e} ). F, and F, are

filters, as well as F_ + F, ={z€S:zzxy,x€Fl,y€F2}. If

1 2

Fl + I"2 does not contain c¢ , there is a c-maximal filter G containing
Fl + F2 . Since S 1is c-distributive, G is prime by virtue of Theorem

3.2. As P ¢# Fy = [a) n [e) € G, the element a has to belong to G .

Similarly we can show that G contains b , whence ab € G and c € G ,

which is impossible. In conclusion, Fl + F2 does contain ¢ , that is,

there exist elements d, ¢ such that d 2 a, ¢ and e 2 b, ¢ together

with de <e¢ . As we alsohave de Z ¢ (owingto dZc¢ and e =c¢ ), we

1’bl'

get ¢ =de and d, ¢ are respectively the desired elements a

2°. ONLY IF: Let y, z € {x, a’. We have to show that there is an
element t satisfying ¢t 2y, 2 and t € (zx, a) . Since a distributive
semilattice is up-directed, F = {y) n [z) is a filter, as well as
G=F+[x). If G}a, there is a prime filter P containing G bdbut
not a . Since P 1is prime and contains F , either y € P or z €P .
We have either xy € P or xz € P, which implies a € P , a

contradiction. Thus we may conclude that G 3 a and the existence of the

desired element ¢ 1is established.

It is most natural to investigate the subset of elements a of a
semilattice S for which S is a-distributive. This subset, denoted by
¥(S) , enjoys the following properties.

THEOREM 3.4. In a semilattice S, U(S) is a subsemilattice of S

tneluding all prime elements of S . If S isg complete, then so is
0(s) .

Proof. If S 1is complete and, for every 71 €I , a; € P(S) , then

the subset J = <x, I | ai> is an ideal for every x € S and
i

] a; ¢ P(S) . Indeed, y € <x, [T ai> implies y € («z, ai) for every
i i

1 €I . Hence if y, 3 € J , we can find elements ti satisfying
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ti >y, 2 and ti € (x, ai) for every 1 € I . Consequently, | | ti €J
i

with I ] ti 2y, 2. If S 1is not complete, the previous argument holds
T

for I finite.

Finally, any prime element p of S belongs to D(S) since (zx, p)
equals S or (p] according as x =p or x$p , hence (zx, p) is an

ideal in both cases.

COROLLARY 3.5. Any complete semilattice in which each element has a

representation as a meet of prime elements, 18 distributive.
Proof. The statement is a direct consequence of Theorems 3.4 and 3.3.

REMARK 3.6. We take this opportunity to point out that, even in a
comple‘te lattice L , D(L) does not include all irreducible elements of
L . For instance, in the five-element non-modular lattice {0, a, b, e, 1}
with 0<a<b<l, 0<e<1l, a and ¢ incomparable, b and ¢
incomparable, the element a does not belong to D{L) although it is

irreducible. Actually, (b, a)= {0, a, ¢} is not an ideal.
THEQREM 3.7. In a semilattice S , if a € D(S) , then Da n [a) 1ie
the dense set of [a) .

Proof. If a =1 , the statement is trivial. Hence we may assume

a #1 1in the sequel.

Let us first prove that if & 1is a dense element of [a) , then
x € Da . Let us consider an element y such that a2y =a . From
y €{x, a) and a € {x, a) we deduce the existence of an element
z2 €{x, a) with z2a,y . Since z>a, z2=2a and xz2 =a , we
necessarily have xz = a and, oving to the demsity of z in [a) ,

2 =a . We conclude that y = a and xGDa.

Now let us denote by y an element of Da n [a) distinct from 1 .

For any % of [a) such thet yz = a , we have 2z = a , proving that y

is dense in [a)

4. g-implicative semilattices

DEFINITION 4.1. A semilattice S 1is a-implicative (a , fixed
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element of S ) if, for any x* € S , {(x, a) is a principal ideal, denoted
by (x*a] . In other words, for any x € S , we have ay < a if and only
if y=xea.
From the point of view of universal algebra, an aq-implicative algebra
%
can be regarded as an algebra S = (S; °, a, a) with a binary operation
*

* , & upary operation x * x 2 - x * a , and the distinguished element a .

An a-implicative semilattice is of course a-distributive and always
has a greatest element 1 since &« € {(a, a) is satisfied for any x € S ,
hence a * a=1; conversely, a semilattice S which is bounded above is

always l-implicative and 2 *#1 =1 for any x €S .

In case S has a least element O and S 1is O-implicative, it is
customary to say that S is pseudo-complemented and to denote x * 0 by

x*

A semilattice is implicative if it is a-implicative for every
a €8 .

If S is a-implicative, then [a) is pseudo-complemented; if we
+
denote by x the pseudo-complement of x (x 2 a) in [a) , we have

+
x =x *a . The converse of this statement is not true as is easily

verified.

In a semilattice satisfying the ascending chain condition, &ll ideals
are principal. As a consequence, if such a lattice is a-distributive, it
is also a-implicative. The following theorem throws light on the link

between a-distributivity and a-implicativity.

THEOREM 4.2. A gemilattice S 18 a-distributive if and only if
T(s} e a -implicative.

Proof 1°. 1IF: We have to show that, for any x € S , the subset
I ={x, a)’ is an ideal. Let ¥, and Yo be two elements of I :

() n (y,] € (a] and (2] n (y,] c (a] . Since T(S) is (al-
implicative, (yl] c (x] * (al = J and, similarly, (y2] cdJ . As J is
an ideal, it contains an element b such that b = Yys Yy - From (blcJ

follows (x] n (b] € (a] , hence b =a .
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2°. ONLY IF: Let I be an element of T(S) . For every x € I ,

J:z: = {x, a) is an ideal containing a , whence J ﬂ{Jx : x € I} is also

an ideal. We are going to prove that I * (q] =J . First, I nJ < (a] .
If not, there exist 7 € I and j € J such that ij ¥ a , which is
impossible given the way J has been constructed. Secondly, if X i J
there is k € X such that xk $ a for some x €I , hence I NK i (al .

The following rules of computation have been proved for implicative
semilattices ([2], [3], [4]). Clearly they are still valid in an

a-implicative semilattice.

THEOREM 4.3. If x, y, 2 are any elements of an a-implicative
semilattice, then the following hold:

v

(1) z*xaza;

(2) z<=a, z*a=1 and x*a2a are equivalent;

(3) 1*a=a;
(4) x*a=z ifandonly if z=a =1;

(5) (z%a) *a 2z, a;

(6) if =<y, then z*ra=2y *a ad (z%a) *a < yxa) *a ;
(1) ((z%a)*a) *a =z *a and (((x*a)*a)*a) * a = (z%a) * q ;
(8) (x%a)((z*a)#a) = a .

As far as we know, the following important formula is novel.

THEOREM 4.4. If x and y are any elements of an a-implicative

semi lattice, then
(9) ((zy)*a) * a = ((x*a)*a) ((y*a)*a) .

Proof. Let us denote by t the right-side member of (9). From
x < (x*a) * a and y =< (y*a) * a , we deduce xy < t , hence

(xy) *az=t *xa.

We now intend to prove that (xy) * a <t * a , that is, any 2
satisfying xys < a also satisfies ¢tz = a . From tzxy =a follows

tzr <y *+ a . Since tax (< t) = (y*a) *+ a , we have

1A

tax < (y*a)((y*a)*a) = a , hence t3 <z *+a . Since tz = (z*a) * a , we

finally obtain tz <a and (xy) *a =%t *a . Then
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((xy)#a) *+ a = (t*a) * @ = ¢t . The opposite inclusion being trivial, the
proof ends.

COROLLARY 4.5. In an a-implicative semilattice, the mapping

¢ : x> (x%a) » a 18 a multiplicative closure.

Proof. Formulae (5), (6) and (7) make ¢ a closure operator. The

multiplicative character of this closure is given by (9).

COROLLARY 4.6. In an a-implicative algebra S =(S; *, ‘%, a), the
mapping @ : x * (x%a) * a is an idempotent endomorphism which preserves

all congruences.
Proof. Theorem 4.4 shows that (ay)e = (x¢)(y¢) . Moreover,
E3 *
(x %Yo = ((z*a)*a) *a = (x9) *, ap=a and a9° =z . Finally, for
any O € C(S) , the congruence lattice of S , (x, y) € © implies
(zp, yo) €0 .
DEFINITION 4.7. An element x of an a-implicative semilattice S

will be called a-closed if (x%a) * a = x . The subset of a-closed
elements of S 1is denoted in the sequel by Ca . Clearly an element &

of an a-implicative semilattice S 1is a-closed if and only if there is

y €5 satisfying y *a=2x .

DEFINITION 4.8. A subset A of a partially ordered set S will be
called semiconvex if a, b € A (a <b) implies =z, y €A for any x, Y
satisfying xy =a and x +y =b . This definition generalizes the one
we introduced in [4] for lattices. Obviously a convex subset of a

partially ordered set is semiconvex.

LEMMA 4.9. In q modular semilattice S , the subset

F, = {x €5 : 29 =z} of all o¢-invariant elements of a multiplicative

closure ¢ 18 semiconvex.

Proof. Let us assume a,bGF(p, xy =a and x+y =Db . We have

ap = (w)(y(p) since ¢ 1is
multiplicative. Moreover, since x <xz¢p <b¢ =Db and y <ye <bp =b>b ,

to show that a2p =z and yoe =y . First a
clearly xp + y¢p = b . As S is modular and y¢ 2 y = x(ye) = a , there

is 3z € S satisfying 2 2z and y = z(yp) . Consequently we have
22y, 22xty =b=yp and finally y = y¢ . The inversion of the
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parts played by x and y gives x = x9p . !/
*
THEOREM 4.10. In an a-implicative algebra S =(S; , %, a), ¢,
i8 a subalgebra whose least and greatest elements are a and 1

respectively. If, moreover, S i8 modular, then ¢, i8 semiconvex.

Proof. Since the endomorphism ¢ : = * (x*a) * @ maps S onto Ca ,

the latter is a subalgebra of S . Since (a*a) * a=a and

(zxa) * a 2 a for any x € S , the least element of €, is a . Clearly

its greatest element is 1 . The last part is a direct consequence of

Corollary 4.5 and Lemma 4.9.

Our next project is to describe a-dense elements and a-maximal
filters in an a-implicative semilattice. It is an easy exercise to verify
that an element & of an a-implicative semilattice is a-dense if and

only if one of the following equivalent conditions is satisfied:
(1) (zx, a)= (a] ;
(ii) z*a=a;
(iii) (x*a) # a =1 .

THEOREM 4.11. In an a-implicative semilattice S , an element x
18 a-dense if there exists y €5 such that x is an upper bound of

{y, yral .

Proof. From x =2y and z =y % a , we deduce respectively
z*a<y+a and x*a= (y*xa) xa , hence z % a = (y*a)((yra)*a) = a .

Since & * a 2 a always holds, we get x *a=a and x is a-dense.

REMARK 4.12. The previous condition can be restated as follows: for

every x €85 , [:c)n[-:c*a)gDa.

THEOREM 4.13. In an a-implicative semilattice S , a filter F 1is
a-maximal if and only if, for any « € S, F contains exactly one of the

elements x and x * a .

Proof 1°. 1IF: Since F contains 1 =a * a , it does not contain
a. Let y fF ; by hypothesis y *a € F . By the very definition of
y * a we have y(y#*a) < a . Theorem 2.3 enables us to infer that F is

a-maximal ..
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2°. ONLY IF: Let F be g-maximal. F cannot contain both x and
x * g since otherwise it would contain a > xz(x*a) . Now let us suppose
z ¢F and z*aq §fF . The filter F + [x) contains a , hence there
exists y € F such that yx = aq . But this means y =x # a and
F >xz «a , a contradiction. In conclusion, F contains exactly one of

the elements x and x % a .

THEOREM 4.14. In an a-implicative semilattice S , a prime filter
P which contains D, but not a is a-maximal.

Proof. If z €P , then x*a fP since x(z*a) Sa . If z P,
x#*a€P bvecause P # [z) n [z+«a) S D, S P Jointly with [z) ¢ P
implies [x*a) € P . To conclude it suffices to set forth Theorem 4.13.

COROLLARY 4.15. In an a-implicative semilattice, D, is a prime
filter if and only if it 18 an a-maximal filter.

Proof. Owing to Theorem 2.5, we only need show that Da is
a-maximal if it is prime. But this is straightforward by Theorem 4.1h
since D_ ba .

Let us denote by A(S) the subset of elements a of S for which S
is a~implicative.

THEOREM 4.16. For any semilattice S , A(S) enjoys the following

properties:
(1) A(S) <8 empty if and only if S has no greatest element;
(2) A(s) < 0(5) ;

(3) A(S) s a sublattice of S ; if S is complete, so is
A(S) ;

(k) A(S) <includes all prime elements of S if S has a
greatest element.
Proof. (1) and (2) are obvious. (3) is a direct consequence of the
formula: x « Ll | ai] = | | (x*ai) , true for any index set I if S is
el 1el

complete. In fact, if, for every 7 €I , a, € A(S) , then we have
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xy <] 'aiﬁ:x:yfai for every 1 €I
i€l

‘I’yix*ai for every i €1

TT (:L‘*ai)

1€l

vy

1A

Finelly, for any prime element p of S5 we have x #p =1 if x =p
and x *p =p if x$p .
To end with we focus our attention on a congruence of the

a-implicative algebra.

THEOREM 4.17. In an a-implicative algebra S = (5; -+, *a, a), the
relation Oa defined by

(:c,y)iea if aond only if z*a=y *a

18 a fully invariant congruence of S . Moreover, if S 1is a lattice, @a

*
is also a fully imvariant congruence of S' =(8; +, -+, a ar.
Proof. Theorem 4.4 shows that, for every 2 €S |, (x, y) € Ga

implies (xz, yz) € Oa . Clearly (x, y) € Oa implies (x*a, y*a) € Oa .

If S is a lattice, (x, y) € Oa implies (z+z, y+3) € Ga since
(x+tz) * a = (x*a)(zxa) .

That Oa is fully invariant is also obvious: for every & € E(S) ,
the endomorphism monoid of S , (x, y) € Oa implies

xE * a = (x*a)€ = (y*a)E = y& * a , hence (x&, y&) € Oa .

Now we enumerate some elementary properties of Oa . The easy proof
is left to the reader.

(1) For every xz €5, |z, (z*a)*a) € Ga .

(2) For every x €S , [z]ea contains exactly one element of Ca ;

this element is (x*a) * a and constitutes the maximum element of the

class.
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(3) [a]Oa = (a] 1is the kernel of ea and the least element of
S/Ga . [1]Oa = Da is the antikernel of Oa and the greatest element of

S/Oa .

(L) S/Oa is & boolean algebra. In fact, if we adopt the notation of

4.1, Oal[a) =N , where " is the congruence on [a) defined by

(z, y) €~ if and only if x = y+

(5) If there exists d € D, such that xd = yd , then (z, y) € Oa .
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