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BOURGAIN ALGEBRAS OF DOUGLAS ALGEBRAS 

PAMELA GORKIN, KEIJIIZUCHI AND RAYMOND MORTINI 

Introduction. Let A be a Banach algebra and let B be a linear subspace of A. Recall 
that A has the Dunford Pettis property if whenever /w —• 0 weakly in A and ipn —> 0 
weakly in A* then <pn(fn) —> 0. Bourgain showed that H°° has the Dunford Pettis property 
using the theory of ultraproducts. The Dunford Pettis property is related to the notion of 
Bourgain algebra, denoted Bb, introduced by [6] Cima and Timoney. The algebra Bb is 
the set of/ in A such that if/„ —-> 0 weakly ini? then disttj^, B) —> 0. Bourgain showed [2] 
that a closed subspace X of C(L)y where L is a compact Hausdorff space, has the Dunford 
Pettis property if Xb — C(L). Cima and Timoney proved that Bb is a closed subalgebra 
of A and that if B is an algebra then B C Bb. In this paper we study the Bourgain algebra 
associated with various algebras of functions on the unit circle T. 

Let D be the open unit disc and let H°° denote the space of bounded analytic functions 
on D. By identifying H°° with boundary functions, we may consider H°° as a closed 
subalgebra of L°°, the algebra of bounded measurable functions on the unit circle T. A 
closed subalgebra between H°° and L°° is called a Douglas algebra. We denote the space 
of continuous functions on T by C. Then [14] H°° + C is a Douglas algebra. In this paper, 
we describe the Bourgain algebras in the case where A — L°° and B is a Douglas algebra. 
The case H°° + C was studied by Cima, Janson and Yale [5]. Using Fefferman's duality 
theorem, they showed that //g° = H°° + C. We present another proof of Cima, Janson 
and Yale's result. 

Using these methods, we are also able to extend the result to Douglas algebras. We also 
prove some very nice properties of these algebras, and it is our hope that the simplicity 
of our proofs will allow them to extend to other algebras. 

We now recall the information necessary to the proof. 
A sequence {zn} in D is called interpolating for H°° if whenever {wn} is a bounded 

sequence of complex numbers then there exists a function / in H°° such that/(zn) = wn 

for all n. A Blaschke product b, where 

i , \ TT Zn\Z Zn) 

b(z) = II r~FT; r—; 

is called interpolating if the zero sequence {zn} is interpolating. A function u in H°° is 
called inner if u has modulus one a.e. on the unit circle. An interpolating Blaschke product 
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is a typical inner function. By the Chang Marshall theorem [4,12] every Douglas algebra 
B coincides with the closed subalgebra generated by H°° and the complex conjugate of 
interpolating Blaschke products b with b G B. We denote the maximal ideal space of 
B by M(B). Making the usual identifications, we have M(L°°) C M(B) C M(H°°) and 
A/(L°°) is the Shilov boundary for every Douglas algebra B. 

We shall use Hoffman's results about Gleason parts. For a point p in M(H°°) recall 
that the pseudohyperbolic distance from p to another point i/; in M(H°°) is given by 

p(^ ip) = sup{| W ) | : p(f) = 0, Il/Il ^ hf G H°°). 

For z, w in D, Schwarz's lemma shows that 

If we define ~ by ijj ~ ip if and only if p(ip, p) < 1, then ^ defines an equivalence 
relation on M{H°°) and the equivalence classes are called the Gleason parts. The Gleason 
part associated with a point <p will be denoted P(p). Hoffman [11] showed that a Gleason 
part is either a singleton, in which case we call the part trivial, or there exists a map L^ 
of the disc onto the part P(p) which is one to one and/ o L^ is an H°° function whenever 
/ is the Gelfand transform of some/ G H°°. In the latter case we call the part nontrivial. 
Since we are dealing only with uniform algebras, in what follows we shall identify/ with 

/• 
In a recent survey article Yale [16] summarizes the results in this area. We offer some 

specific answers to the questions stated in Yale's article (for Douglas algebras). We will 
also show that (H°°)b — H°° + C. The proof we give here is similar to, but simpler than, 
that given by Cima, Janson and Yale. These results will be given in the next section. 

Bourgain algebras of Douglas algebras. For an inner function u we let Z(u) — 
{^ G M(H°°) : \[J(U) = 0}. The following lemma appeared in a proof in [5]. For com­
pleteness, we state it again here. 

LEMMA 1. Suppose that \fn} is a sequence of H°° functions such that Y%L\ \fn(z)\ < 
M for all zED. Thenfn —• 0 weakly in H°°. 

PROOF. AS in [5] if p G (H°°)* and an — exp(—/arg p(fn)) then for any positive 
integer N we have 

Ek(/»)l = Lowe/"*) = y(E<Vn) ^ IMI||X>«/n|| ^ \W\\M. 
1 1 1 1 

Before we proceed with the proof of the next theorem, we briefly review some facts 
about interpolating sequences. All of the material we use here appears (essentially) in 
[10, p. 194-206]. 

If {VM , •. •, VVi} are finitely many points in the maximal ideal space of a Douglas alge­
bra B, then it is not difficult to see that the map T:B —• Cn given by 
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T(f) = (/X îX/XV^X • • • >/(^n)) is a surjective linear map between Banach spaces. Let 
T\ denote the map from Bj ker T onto Cn induced by T. By the Open Mapping Theorem, 
T\ is bounded below. Thus there is a constant M such that M|l/'|{VJ|/}ïlloo = M\\T\(f + 
Ker J)11 = |[/ + Ker T\\. As a consequence, we have the following fact which we shall 
use in the proof of Lemma 2: Iff is a function in B such that ||/| {^y}"|| < £, then there 
exists a function g in B such that g(t/>/) = ftyj) for y = 1, . . . , n and ||g|| < Ne (where 
TV is a constant independent off). If {i/Vz} is an infinite interpolating sequence, we can 
replace C1 by £°° and the remarks above still hold. 

The interpolating sequence S = {^«} (see [10]) is discrete in its relative topology as 
a subset of M(B), its closure S in M(B) is homeomorphic to the Cech compactification of 
S and is totally disconnected. 

THEOREM 2. Let B be a Douglas algebra and let c be an interpolating Blaschke 
product. Then c G Bb if and only ifZ(c) P\ M(B) is a finite set. 

PROOF. Suppose that Z(c)HM(B) = {V>i,..., V>m}. Choose {fn}^=, in B with/„ —> 0 
weakly. Then fn(ipj) —» 0 for j = 1,2,..., m. Now use the remarks above to obtain a 
sequence {gn} in 5 such that gn(^j) = fntyj) for.7 = 1,. . . , m and ||g„|| —> 0. By [1,9] 
c(^j — gn) G 5, « = 1,2,... . Therefore 

dist(c/n, £) = dist(c(fn - g„) + cgn, B) 

= dist(cgn,B) 

£\\8n\\^0. 

Thus c £ Bf,. 
Next suppose that Z(c) DM(B) is an infinite set. Let {zn} denote the zero sequence of 

c in D. Since Z(c) is homeomorphic to the Cech compactification of {zn} [10, p. 205], 
and because every infinite set in a Hausdorff space contains an infinite discrete subset, 
we can take a sequence {Xj} G Z(c) D M(B) and a sequence {V}} of disjoint open and 
closed subsets of Z(c) such that Xj £ VjH M(B). Since Xj belongs to the closure of {zn} 
[10, p. 206], we see that Xj is contained in the closure of V} n {zn} for eachj. As in [5] 
we can find P. Beurling functions [7, Theorem VII.2.1]/* in H°° and a positive number 
M such that 

MZJ) = fy and £ [/i(z)| < M on D. 

For each 7, let Fy- = Hkeifk where / = {£ : z* E V/}. 
Now since E [A| < M on D, we see that Fj G //°° for ally. Furthermore, since the sets 

Vj are disjoint and E [//| < M on D we have E \Fj\ < M and F; = 1 on V) Pi {z}. Thus 
Fy-(A/) = 1 and, by Lemma 1, i*) —• 0 weakly in H°° (hence in B). But 

dist(cFj,B) = dist(F,,c#) 

è| |F, |Z(c)nM(£)| | 

^ IFAOI 
= 1. 

Hence c$ Bb. • 
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COROLLARY 3. Let A and B be Douglas algebras with A C B. Then Ab C Bb. 

PROOF. We shall use the Chang Marshall theorem. 
Let c be an interpolating Blaschke product with c £ Ab.By Theorem 2, Z(c) n M (A) 

is finite. Since A C B, M(B) C M(A). Thus Z(c)(~]M(B) is finite. By Theorem 2, c G Bb. 
By the Chang Marshall Theorem Ab C Bb. m 

We now give our proof of the result (i)^(iv) in [5]. 

THEOREM 4. Hf = H°° + C. 

PROOF. We first show that z E //£°. Since we know from Cima and Timoney's results 
that H%> is an algebra containing H°°, this will prove that H°° + C C i/g°. Let {/rt} be a 
sequence in //°° such that/n —> 0 weakly in //°°. Since z(/n —/n(0)) G //°°, we have 

d is ta l / / °° ) = dist(z(fn -fn(0J)+tfn(0\H°°) 

^ \fn(P)\ 

Since/„ —̂  0 weakly,/n(0) —>• 0. Thus z G //^° and we have established the containment 
of//°° + Cin//g°. 

To show equality, we show that H™ does not contain the conjugate of any interpolating 
Blaschke product. By the Chang Marshall theorem we know that any Douglas algebra 
containing z and no conjugates of (infinite) interpolating Blaschke products must be H°°+ 
C. 

Let c be an interpolating Blaschke product and let {zn} denote the zero sequence of c. 
As in [5] we can find P. Beurling functions [7, Theorem VII.2.1]/n in H°° and a positive 
integer M such that 

fn(zm) = ènm and J2 !/*(*)I < M f o r a11 z i n D-

By Lemma l,/„ —> 0 weakly but 

dist(#„ # ° ° )= ||c/n + //°°|| 

^ l/n(Zn)| 

è 1. 

Thus c $ //g°, completing the proof. • 
Theorem 2 gives a characterization of the interpolating Blaschke products invertible 

in Bb for an arbitrary Douglas algebra B. Using some results about division in Douglas 
algebras, we can study inner functions which are invertible in Bb. We do so in Corollary 
5 below. 

For a function/ in L°°, let H°°\f] denote the closed subalgebra of L°° generated by 
H°° and/. 
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COROLLARY 5. Let B be a Douglas algebra and u an inner function. IfZ(u) D M(B) 
is infinite, then ù $ Bb. 

PROOF. There are two cases to consider: either u vanishes at a trivial point in M(B) 
or else it does not. 

CASE 1. Suppose that u vanishes at a trivial point ip in M(B). Then [17] there exists 
an interpolating Blaschke product v such that H°°[u] = H°°[v], SinceM(H°°[c]) = {(£ G 
M(H°°) : | ip(c)\ = 1} for any inner function c, we see that | ip(v)\ < 1. If we can show that 
Z(v) H M(B) is infinite, then vgBbby Theorem 2. Since H°° C B C Bb and v G H°°[û] 
we would be able to conclude that w ^ ^ . S o w e will assume that Z(v) n M{B) is finite. 

Suppose that Z(v) D M(B) — {ijj\, . . . , i/^}. Since v is interpolating, all the zeros of v 
are in nontrivial parts and hence ip is not in the same part as any ipj. Thus we can find 
h\,... ,hn in H°° such that \\hj\\ ^ 1, ^j(hj) = 0 and \tp(hj)\ is as close to 1 as we like. 
Thus, if h — h\ • • -hn, then we have a function h in H°° of norm less than or equal to 
one which vanishes on the zeros of v in M (B). Furthermore, since we chose v satisfying 
|Î/>(V)| < 1 we may assume that |t/>(v)| < \xjj(h)\.By [1,9] we know that there exists g G B 
such that h — gv. Since | v| = 1 on M(L°°) and M(L°°) is the Shilov boundary for B, we 
see that ||g|| ^ 1. Since ip G M(B) we have \il)(h)\ ^ |^(v)| < \ty(h% a contradiction. So 
Z(v) D M(B) is infinite, and we are done with Case 1. 

CASE 2. If u does not vanish at any trivial point in M(B), then [8] there exist n 
interpolating Blaschke products b\,...,bn and an L°° function g invertible in B such that 
u = b\" - bng. Since Z(u) D M(B) is infinite, for somey, Z(bj) D M{B) is infinite. By 
Theorem 2, bj $ Bb. Since bj = Ub\ • • -bj-ity+i • • • bng G w ,̂ « ^ Bb, completing the 
proof of Case 2. • 

The next result shows that Bb ^ C(M(L°°j) for any Douglas algebra B^L°°. (Recall 
that the negation of this result implies that an algebra has the Dunford Pettis property.) 

COROLLARY 6. Let Bbea Douglas algebra with B ^ L°°. Then Bb ^ L°°. 

PROOF. By the Chang Marshall theorem there is an interpolating Blaschke product 
c such that c $ B. By [13] there is an inner function u such that 

{iç G M(H°° + O : \<p(c)\ < 1} C {ip G M(H°° + C) : |<p(n)| = 0}. 

Because c $ B, the unimodular function c is not invertible in #. Thus there is a point 
(/? in M(B) such that (̂ (c) = 0. Not that since c is an interpolating Blaschke product, 
P((p) is nontrivial [11]. Now c o L^ is an analytic function bounded by one on the unit 
disc and vanishing at 0. Thus c is less than one on P(^), and hence u vanishes on P(ip). 
Since <p G M(B), P(<p) C M(5). Thus Z(u) n M(B) is infinite and Corollary 5 implies 
that u ^ Bb. Hence Bb ^ L°°. m 

COROLLARY 7. (2 )̂*, = Bb. 

PROOF. We know that Bb C ifib)b- Now let c be an interpolating product invert­
ible in (Bb)b- By Theorem 2, Z(c) H M(Bb) is a finite set. We claim that E = Z(c) H 
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[M(B) — M(Bb}] is also finite. If E is infinite, then either (a) E has a cluster point in 
M(B) — M(Bb) or (b) Ë — E C M(Bb). Suppose that (a) occurs. Since Z(c) is homeomor-
phic to the Cech compactification of Z(c) D D, there exists an open and closed subset 
U of Z(c) such that U D M{Bb) = 0 and U n M(#) is an infinite set. Let ci be the sub-
product of c with zeroes in U H D. Since £/ is closed in Z(c), we have Z(c\) = U. Since 
Z(ci) H M(^ ) = 0, ci G Bb. On the other hand, since Z(c\) H M(£) = t/ n M(#) is 
infinite, by Theorem 2 this is impossible. 

Suppose that (b) occurs. Then there is a sequence {an} in E and a sequence {Vn} of 
disjoint open and closed subsets of Z(c) [10, p. 205] such that an G Vn. Therefore for 
every bounded sequence of complex numbers {wn} there is a function h in H°° such that 

h — wn on DPI Vn. 

Since a„ is contained in the closure of D n V„, /i(a„) = wn. Thus {an} is an interpolat­
ing sequence and hence [10 p. 205] the closure of {an} is homeomorphic to the Cech 
compactification of the integers. Thus {an} — {an} C M(Bb) n Z(c) is infinite and by 
Theorem 2, this implies c $ {Bb)b. This contradiction implies that Z(c) H M(5) is finite 
and by Theorem 2, we have c £ Bb. • 

By the Chang Marshall theorem, every Douglas algebra B is generated by H°° and the 
complex conjugates of the inner functions invertible in B. If countably many conjugates 
of inner functions together with H°° generate the algebra, then we say that the algebra is 
countably generated. 

COROLLARY 8. IfB is a countably generated Douglas algebra, B ^ H°°, then Bb = 
B. 

PROOF. Let B = H°°[ïn; n — 1,2...], where each ln is an inner function. Suppose 
that c is an interpolating Blaschke product with c $ B. Since we know that B C Bb, by 
the Chang Marshall theorem it is enough to show that c $ Bb. Consider the function 

CO 1 

F = J2(-)\In\ on M(H™). 
l z 

Since M{B) = {x G M(H°°) : |/„(JC)| = 1 for every n}, we see that F = 1 on M(B) and 
F < 1 on M(H°°) - M(B). Since c g B, Z{c) n M(B) -f 0. Let {zn} denote the zero 
sequence of c in D. Since Z(c) - D = cl{zn} - {zn} [10, p. 205] and Z(c) n M(5) ^ 0, 
there is an interpolating subsequence {zn } of {zn} with F(zn) —^ 1. 

Let ci be the interpolating Blaschke product with zeroes {znj}- Then c = c\C2. Since 
Z(ci) - D = c\{znj} - {zn7}, F = 1 on Z(ci) - D so that Z(ci) - D C M(J5). Since 
Z(c\) — D is always infinite for an interpolating Blaschke product c\, by Theorem 2, 
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c\ $ Bb. Since Bb is an algebra containing H°° and c\ = cc2, we have c $ Bb. Since c 
was arbitrary Bb—B. • 

The following example shows that Bb need not equal B for Douglas algebras (other 
than H°° + C). Recall that a Blaschke product is thin if it is interpolating with zero se­
quence {zn} and 

oo 

l i m n p(Zn,Zm) = 1 

A gC level set £ is a subset of M{L°°) such that (the Gelfand transform of) any function 
/ in H°° + C whose conjugate is also in H°° + C is constant on E. Sundberg and Wolff [15] 
showed that a thin Blaschke product has at most one zero in M(H°°\E) = {(pG M(H°°) : 
supp /iy> C E}. It is well known that the algebra 

B = fl~ = {g G L°° : g\E G #°°|£} 

has 

M(£) = M(L°°) UM(7/°°|£) = M(L°°) U {v? G M(//°°) : s u p p ^ C £} 

and is a closed subalgebra of L°°. If we choose a thin Blaschke product c and a set £ such 
that M(H°°\E) contains a zero of c, then c has precisely one zero in M(B). Thus c $ B, 
but by Lemma 1, c G ^ . Hence 2?̂  properly contains B. 
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