ON THE DISTRIBUTION OF SUM OF INDEPENDENT POSITIVE BINOMIAL VARIABLES

BY
J. C. AHUJA

1. Introduction. Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent and identically distributed random variables having the positive binomial probability function

$$
\begin{equation*}
f(x ; p)=\binom{N}{x} p^{x}(1-p)^{N-x} / 1-(1-p)^{N}, \quad x \in T \tag{1}
\end{equation*}
$$

where $0<p<1$, and $T=\{1,2, \ldots, N\}$. Define their sum as $Y=X_{1}+X_{2}+\cdots+X_{n}$. The distribution of the random variable Y has been obtained by Malik [2] using the inversion formula for characteristic functions. It appears that his result needs some correction. The purpose of this note is to give an alternative derivation of the distribution of Y by applying one of the results, established by Patil [3], for the generalized power series distribution. The distribution function of Y is also found in an explicit form in terms of a linear combination of the incomplete beta functions.
2. Distribution of sum. If we take $p=\theta / 1+\theta$, the probability function (1) may be written as

$$
\begin{equation*}
f(x ; \theta)=\binom{N}{x} \theta^{x} / g(\theta), \quad x \in T \tag{2}
\end{equation*}
$$

where $g(\theta)=(1+\theta)^{N}-1$. The binomial expansion of $[g(\theta)]^{n}$ in powers of θ gives

$$
\begin{aligned}
{[g(\theta)]^{n} } & =\left[(1+\theta)^{N}-1\right]^{n} \\
& =\sum_{r=0}^{n}(-1)^{n-r}\binom{n}{r}(1+\theta)^{N r} \\
& =\sum_{r=0}^{n}(-1)^{n-r}\binom{n}{r} \sum_{y=0}^{N r}\binom{N r}{y} \theta^{y}
\end{aligned}
$$

which, after changing the order of summation, becomes

$$
\begin{equation*}
[g(\theta)]^{n}=\sum_{y=0}^{N n}\left[\sum_{r=0}^{n}(-1)^{n-r}\binom{n}{r}\binom{N r}{y}\right] \theta^{y} \tag{3}
\end{equation*}
$$

where the terms in the second summation are zero for $r<y / N$. Using the binomial coefficient identity (12.17) given by Feller [1, p. 65], it can be easily verified that

$$
\sum_{r=0}^{n}(-1)^{n-r}\binom{n}{r}\binom{N r}{y}=0
$$

for $y=0,1, \ldots, n-1$, so that (3) reduces to

$$
\begin{equation*}
[g(\theta)]^{n}=\sum_{y=n}^{N n}\left[\sum_{r=0}^{n}(-1)^{n-r}\binom{n}{r}\binom{N r}{y}\right] \theta^{y} . \tag{4}
\end{equation*}
$$

We now recall that the probability function (2) is a special case of the generalized power series distribution as defined by Patil [3] with range T and the series function $g(\theta)=(1+\theta)^{N}-1$. So the result (7) of Patil [3] and the series expansion (4) provide us the distribution of Y as

$$
\begin{equation*}
h(y)=\sum_{r=1}^{n}(-1)^{n-r}\binom{n}{r}\binom{N r}{y} \theta^{y} /\left[(1+\theta)^{N}-1\right]^{n} \tag{5}
\end{equation*}
$$

for $y=n, n+1, \ldots, N n$, since the term in the summation is zero for $r=0$. Taking $\theta=p / 1-p$ in (5), we get the distribution of Y in the form

$$
\begin{equation*}
h(y)=\sum_{r=1}^{n^{\prime}}(-1)^{n-r}\binom{n}{r}\binom{N r}{y} p^{y}(1-p)^{N n-y} /\left[1-(1-p)^{N}\right]^{n} \tag{6}
\end{equation*}
$$

for $y=n, n+1, \ldots, N n$. Further, it may be easily seen that the distribution function of Y is obtained as

$$
\begin{align*}
F(y) & =1-\sum_{x=y+1}^{N n}\left\{\sum_{r=1}^{n}(-1)^{n-r}\binom{n}{r}\binom{N r}{x} p^{x}(1-p)^{N n-x} /\left[1-(1-p)^{N}\right]^{n}\right\} \\
& =1-\left[1-(1-p)^{N}\right]^{-n} \sum_{r=1}^{n}(-1)^{n-r}\binom{n}{r}(1-p)^{N(n-r)} I_{p}(y+1, N r-y) \tag{7}
\end{align*}
$$

where $I_{p}(y+1, N r-y)$ is the incomplete beta function tabulated by Pearson [4].
It may be remarked that the distribution of Y obtained by Malik [2, p. 335] should read as

$$
\begin{equation*}
f(y)=\sum_{r=0}^{n-1} b_{r}\binom{N(n-r)}{y} p^{y} q^{N n-y} \tag{8}
\end{equation*}
$$

for $y=n, n+1, \ldots, N n$, where $p+q=1$, and $b_{r}=\binom{n}{r}(-1)^{r} /\left(1-q^{N}\right)^{n}$, which shows that (6) and (8) are identical.

References

1. W. Feller, An introduction to probability theory and its applications, Wiley, New York, 1 (third edition), 1968.
2. H. J. Malik, Distribution of the sum of truncated binomial variates. Canad. Math. Bull. 12 (1969), 334-336.
3. G. P. Patil, Minimum variance unbiased estimation and certain problems of additive number theory, Ann. Math. Statist. 34 (1963), 1050-1056.
4. K. Pearson, Tables of the incomplete beta function, Cambridge Univ. Press, London 1934.

Portland State University, Portland, Oregon

