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We compare three different approaches to describe a magnetic island in a generic toroidal
plasma: (i) perturbative, from the perspective of the equilibrium magnetic field and the
related action in a variational principle formulation; (ii) again perturbative, based on the
integrability of a system with a single resonant mode and the application of a canonical
transformation onto a new island equilibrium system; and (iii) non-perturbative, making
use of a full geometric description of the island considered as a stand-alone plasma
domain. For the three approaches, we characterize some observables and discuss the
respective limits.
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1. Introduction

The tearing instability, growing near the rational surfaces, leads to helical magnetic
perturbations that can change the magnetic topology, with the formation of magnetic
islands through a reconnection process in which the field lines break and reconnect.
Especially for the description of magnetic field line trajectories, it is convenient to express
the magnetic field in terms of its vector potential. In this way, the magnetic field line
equations can be derived from a variational principle, formally identical to the action
principle in phase space with a Hamiltonian H (Cary & Littlejohn 1983; Elsasser 1986;
Hazeltine & Meiss 1992). The magnetic field line equations are the paths that extremize the
action Sγ , and are formally identical to the canonical equations of motion in phase space.
The identification of canonical and magnetic variables follows the paper by Pina & Ortiz
(1988): the symmetry coordinate (e.g. the toroidal angle ϕ in an axisymmetric magnetic
field) is identified with the time t, another space coordinate (the poloidal angle ϑ) plays the
role of the canonical position q, whereas the poloidal and toroidal magnetic fluxes, ψp and
ψt, have their equivalence in the Hamiltonian H and canonical momentum p, respectively
(when the symmetry coordinate is the toroidal one). Hidden in these identifications is the
additional equivalence between the covariant components Ai of the vector potential and
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the magnetic fields, which follows from Stokes theorem. A pedagogical presentation of
the above elements is available in the recent review paper by Escande & Momo (2024).

Following the Hamiltonian formulation of the magnetic field line equations, in this
work, we compare three different methods to characterize a magnetic island in terms of
some observables (e.g. the island width or its volume) which cannot depend on a particular
coordinate system, vector potential gauge or choice of perturbative/non-perturbative
approach. The first two methods consider the island as a single-mode perturbation of the
equilibrium Hamiltonian and provide a description of the observables, say, from outside
the island; conversely, the other method considers the island as a stand-alone plasma
subdomain with a self-consistent representation of the observables from its inside.

With the first perturbative approach, we consider an (m, n) tearing mode (where m and n
are the poloidal and the toroidal mode number, respectively) at the resonant surface where
the island opens, defined by the rational value ι = n/m of the rotational transform profile.
We apply a new formulation for the island width based on the definition of the action Sγ
of the magnetic system that returns the same result as the island width estimated from the
amplitude of the cat’s eye pendulum Hamiltonian in phase space (Escande & Momo 2024).
The width classically depends on a flux Φ related to the radial magnetic perturbation
at the rational surface (Park, Boozer & Menard 2008; White 2013). Escande & Momo
(2024) identified this flux – with a clear geometrical meaning and independently of the
coordinate system – as the flux through the ribbon enclosed by the orbits of the O-point
and the X-point of the island. In this work, we extend its validity even to non-perturbative
contexts, showing that it can be interpreted as the helical flux through the island separatrix
independently of the approach adopted.

In the second method, we exploit the integrability of the Hamiltonian of a perturbed
system that preserves the helical symmetry, defining the island domain as a new
equilibrium with its own magnetic axis corresponding to the O-point of the island.
Magnetic coordinates are defined on the island flux surfaces as canonical action-angle
coordinates, providing a definition of magnetic fluxes through the island flux surfaces,
as well as other quantities like the island volume and width (Martines et al. 2011; Momo
et al. 2011). The transition from a perturbed Hamiltonian to a new equilibrium Hamiltonian
represents the change of perspective claimed in the title of the paper, moving from the view
of an axisymmetric equilibrium with an external magnetic axis with respect to the island
(perspective from outside the island) to the island domain itself with its own action-angle
coordinates (perspective from inside the island).

In the third, non-perturbative approach, the island domain is considered independently
of the surrounding plasma. It is geometrically characterized in terms of magnetic
coordinates and metric tensor starting from a discretized field map, again providing
integral quantities like the magnetic fluxes, the island volume and width, which are, in
principle, measurable (Predebon et al. 2018).

The three methods are compared for the calculation of several observables of two
experimental islands, (1, 1) for a circular tokamak and (1, 7) for a reversed-field pinch
(RFP) plasma. The agreement is satisfactory. In particular, the comparison of the island
width provides a first validation of the formula introduced by Escande & Momo (2024)
in a perturbative context and shows the validity of the new interpretation of the flux Φ
(hereafter�OX) as the helical flux through the island separatrix, particularly relevant when
the island is characterized in non-perturbative contexts.

The paper is structured as follows: the two perturbative approaches are introduced in
§§ 2 and 3, and the non-perturbative approach in § 4; in the following § 5, we compare the
three methods for a (1, 1) tokamak island and a (1, 7) RFP island in a toroidal device with
circular cross-section, with a brief summary closing the paper.
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Outside and inside a magnetic island 3

FIGURE 1. Helical ribbon defining the �OX flux for a (1, 1) magnetic island, with the closed
orbits corresponding to the O- and the X-point in black and red, respectively.

2. Magnetic islands in a perturbative approach

Magnetic islands are due to non-vanishing resonant magnetic perturbations in the
plasma, and a perturbative approach is therefore frequently used for their description. In
particular, a magnetic island with poloidal m and toroidal n periodicity opens around the
resonant flux surface defined by the rational value ι = n/m of the rotational transform
related to the unperturbed equilibrium configuration.

The island width is commonly computed in terms of the geometric width of a
pendulum-like cat’s eye in the context of small resonant perturbations of a regular
magnetic field, associated with a time-independent Hamiltonian (Hazeltine & Meiss 1992;
White 2013). In all cases, the width of a magnetic island is proportional to the square root
of a magnetic flux, which turns out to be the perturbation of a helical flux evaluated on the
resonant flux surface (Park et al. 2008; Predebon et al. 2016). As shown in § 3, this flux
can be interpreted as the helical flux through the separatrix.

In this section, we exploit the existence of a coordinate-independent magnetic flux
related to a magnetic island that correctly estimates its width, as proved by Escande &
Momo (2024): this flux, named �OX , is defined for each magnetic island through the
ribbon defined by the periodic orbits related to the O- and X-points shown in figure 1.
The above path is based on the variational principle formulation for magnetic field lines
and on the related action

Sγ =
∫
γ

A(x) · dx, (2.1)

where x is the spatial coordinates vector, A is the vector potential, B = ∇ × A and the
integral runs along the path γ between two points of a magnetic field line. When γ is a
closed circuit, the Stokes theorem states that the action Sγ is the magnetic flux through the
surface having this circuit as a boundary.

To relate the action Sγ to the resonant perturbation that opens an island, the formal
identification between canonical and magnetic coordinates, and the equivalence between
the covariant components Ai, i = 1, 2, 3 (where the index i corresponds e.g. to the radial,
poloidal and toroidal coordinate, respectively) of the vector potential and the magnetic
fluxes must be used in the definition of Sγ . This equivalence is only valid in the axial
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4 B. Momo and I. Predebon

gauge A1 = 0,

Sγ =
∫
γ

(A2 dx2 + A3 dx3)

= 1
2π

∫
γ

( p dϑ − H dϕ)

= 1
2π

∫
γ

(ψt dϑ − ψp dϕ), (2.2)

with x2 = ϑ and x3 = ϕ poloidal and toroidal angles; the relations p = ψt and H = ψp
define the identifications between the canonical momentum and the toroidal magnetic flux,
and between the Hamiltonian and the poloidal flux, respectively, assuming the canonical
position and time to be q = x2 = ϑ and t = x3 = ϕ.

Figure 1 visualizes the helical ribbon defined by the orbits of the O- and X-points, and
helps understand the geometrical meaning of the flux �OX through that ribbon. Using the
definition of the action for a magnetic field line, the �OX flux turns out to be SO − SX ,
where SO is the action computed along the closed orbit defined by the O-point, and SX the
action along the closed orbit defined by the X-point. In the rest of this section, we revisit
the derivation of § 5 of the review by Escande & Momo (2024) writing the island width as
a function of �OX .

Let x = (ψ0
t , ϑ, ϕ) be magnetic coordinates for the unperturbed equilibrium. If the

perturbation is not large enough to violate the requirement of a non-null Jacobian, then
the full perturbed system around the resonant surface, in the same x coordinate system, is
approximated by

ψt(x) � ψ0
t + ψm,n

t (ψ0
t ) eiu + c.c., (2.3)

ψp(x) � ψ0
p + ψm,n

p (ψ0
t ) eiu + c.c., (2.4)

where u = mϑ − nϕ is called helical angle and c.c. indicates the complex conjugation.
The unperturbed flux, ψ0

p = ψ0
p (ψ

0
t ), defines the unperturbed equilibrium and its flux

surfaces through the relation ι = dψ0
p/dψ

0
t = dϑ/dϕ. The ψm,n(ψ0

t ) = |ψm,n| eiαm,n terms
are the Fourier components of the fluxes having the resonant periodicity.

We now better define the actions SO and SX , which are the line integrals along the lines
defined by the O- and X-point of the (m, n)magnetic island, respectively. In calculating SO
and SX from (2.2) using definitions (2.3) and (2.4), we assume that m and n are mutually
relatively prime; ϕ varies by 2πm along O or X and ϑ varies by 2πn, while the helical
angles along the O and X orbits (uO and uX , respectively) are constant.

We first compute the action SO:

SO = 1
2π

∫
O
(ψtdϑ − ψpdϕ)

= (nψ0
t − mψ0

p )|res + (nψm,n
t − mψm,n

p )|res eiuO + c.c., (2.5)

where all radial functions must be evaluated on the rational surface defined by ι = n/m,
even if not explicitly stated in the following notation. Introducing the helical flux function

ψh(ψ
0
t , u) = mψp − nψt, (2.6)
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SO can be written in terms of this flux through the O-point orbit as

−SO = ψh(ψ
0
t , uO)

= ψ0
h + |ψm,n

h | ei(uO+αm,n
h ) + c.c., (2.7)

where ψ0
h = ψ0

h (ψ
0
t ) is the unperturbed equilibrium flux, whereas |ψm,n

h | and αm,n
h are the

amplitude and phase of the (m, n) Fourier component.
The calculation of the SX flux follows the same steps, with uO being substituted by

uX , and remembering that uX is shifted by π with respect to uO: uO + α
m,n
h = 0,π and

uX + α
m,n
h = π, 0, depending on the sign of the magnetic shear. This yields

−SO(ψ
0
t ) = ψ0

h + 2|ψm,n
h | cos(uO + α

m,n
h )

= ψ0
h ± 2|ψm,n

h |, (2.8)

−SX(ψ
0
t ) = ψ0

h + 2|ψm,n
h | cos(uX + α

m,n
h )

= ψ0
h ∓ 2|ψm,n

h |, (2.9)

�OX ≡ SO − SX = ∓4|ψm,n
h |, (2.10)

with all radial functions evaluated on the rational surface. The minus sign in (2.10)
corresponds to a negative magnetic shear at the rational surface (dι/dψ0

t < 0), which
implies uO + α

m,n
h = 0, while the positive sign corresponds to the opposite case

(dι/dψ0
t > 0), with uO + α

m,n
h = π.

From an operative point of view, the �OX flux can be computed both from (2.10) or by
solving numerically the line integrals in (2.2) for γ = O and γ = X. In the first case, one
needs to evaluate the helical flux perturbation at the resonant surface; in the second case,
one needs to know the path of the island extrema.

The amplitude of the magnetic island can then be computed from the formula (similar
to (90) of Escande & Momo 2024)

W�OX = 4

√√√√√√√

∣∣∣∣∣∣∣∣
�OX

2m
dι

dψ0
t

∣∣∣∣∣∣∣∣
(

dr
dψ0

t

)
, (2.11)

where the factor (dψ0
t /dr)−1 brings the width in units of a length. It implies a clear

relation between the unperturbed flux ψ0
t and a radial coordinate r in meters: when r

is the radius of the circular flux surface’s cross-section of the zeroth-order equilibrium,
the factor (dψ0

t /dr)−1 considers the same amplitude at any poloidal or toroidal cuts. All
radial functions, as the magnetic shear or the (dψ0

t /dr)−1 term, must be evaluated at the
resonant surfaces.

3. Magnetic islands as new equilibrium systems

In § 2, we stated the equivalence between the magnetic action along a helical path γ and
the helical flux. From this perspective, (2.8) and (2.9) can be written in a shorter notation:

−SO = ψh|O, (3.1)

−SX = ψh|X, (3.2)
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and therefore,

�OX ≡ SO − SX = −ψh|O + ψh|X, (3.3)

where ψh|O means the helical flux evaluated along the line defined by the O-point, and
similarly ψh|X . From a geometrical point of view, SO can be interpreted as the helical flux
ψh|O through the the surface delimited by the orbit of the centre of the island (O-point),
and SX as the helical flux ψh|X through the edge of the island (the orbit defined by the
X-point). In this section, as well as in § 4, a way to compute the magnetic fluxes through
any island flux surface is shown.

The perturbative approach in § 2 assumes an integrable unperturbed magnetic field
configuration, i.e. the equation of motion can be solved to give non-chaotic magnetic field
lines and therefore conserved magnetic flux surfaces. In the presence of general magnetic
perturbations, the system is not integrable and flux surfaces are destroyed. Apart from an
axisymmentric system, there is only one other known integrable system, i.e. that of helical
symmetry, that defines conserved magnetic flux surfaces, analogous to the constant energy
surfaces. In both cases, the Hamiltonian is time-independent and the equivalence t = ϕ

holds.
Equations (2.3) and (2.4), adding to the unperturbed equilibrium a single Fourier

perturbation, define a helical integrable Hamiltonian. To integrate it, we make use of
the change of coordinates (ψ0

t , ϑ, ϕ) �→ (ψ0
t , u, ϕ), where u = mϑ − nϕ is the helical

variable. This change of coordinates defines a new time-independent Hamiltonian: the
helical flux ψh(ψ

0
t , u) = mψp − nψt, which can be assumed as a radial variable of any

system with a helical symmetry (Hazeltine & Meiss 1992). In fact, in the new coordinates,
the identifications with the ( p, q, t) variables are q = x2 = u, t = x3 = ϕ and therefore
p = ψt,H = ψh.

The island domain can be modelled as a helical equilibrium configuration, and a
reconstruction of such equilibria has been implemented in a code named SHEq (Martines
et al. 2011), now extended to the tokamak case too. The method is based on the
superposition of an axisymmetric equilibrium and of a first-order helical perturbation
computed according to Newcomb’s equation supplemented with edge magnetic field
measurements (Zanca & Terranova 2004); more details are in § 5. The helical flux contours
give the shape of the flux surfaces of a helical domain. An example of such surfaces is
shown in figure 2 (bottom half of panel a) for a magnetic island in an RFP plasma. The
accuracy of the flux surface reconstruction is confirmed by the corresponding discretized
field map (top half of panel a) obtained with the field line tracing code Flit, which
integrates the field lines with the same helical Fourier perturbations (Innocente et al. 2017).
The value of helical flux through the surfaces delimited by the X- and O-point orbits (their
intersection with the poloidal plane respectively plotted in the figure with an orange and
green dot) can be identified from the value of the helical flux at the extrema of its profile
on the equatorial plane (figure 2b). The values of the helical flux above the value at the
separatrix (orange dashed line in figure 2b) label the external flux surfaces with respect to
the magnetic island, so the helical flux profile computed by the SHEq code is here cut at
the separatrix to restrict the computation to the island domain. The values of ψh in the well
between the X- and the O-point correspond to the island flux surfaces; whereas the values
of ψh in the other well correspond to the circular flux surfaces around the axisymmetric
equilibrium axis. It is worth noting that the evaluation of the helical flux on the X- and
O-points enables an evaluation of the �OX flux from (3.3) and, therefore, the island width
from (2.11).

We can now define a new reference frame having its axis on the O-point of the
island. From here on, we introduce the new index ·H to explicitly identify the quantities
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(a)

(b)

FIGURE 2. (a) ϕ = 0 discretized field map of a (1, 7) island (top half of the section) and
corresponding flux surface contour (bottom half) in a circular RFP. Red and light-blue curves
in the top half-panel represent the two last flux surfaces from the Flit code (Innocente et al.
2017), the thick line in the bottom half-panel the separatrix computed by the Sheq code (Martines
et al. 2011), and coloured dots the X- (orange) and O-points (green). (b) Helical flux ψh on the
equatorial plane passing through the X- (orange) and O-points (green).

related to the helical magnetic flux surfaces ΣH from the O-point to the separatrix. A
time-independent canonical change of coordinates allows us to write the Hamiltonian of
the helical system, ψh, in its action-angle form, ψH , where both the poloidal and toroidal
fluxes across the helical flux surfaces are constants of the motion (Momo et al. 2011) and
therefore functions of ψH . Due to the time independence of the canonical transformation,
ψh and ψH define the same flux surfaces. Using the definition of the canonical action
coordinate, the identifications between canonical and magnetic coordinates, and the
perturbed fluxes in (2.3) and (2.4), the toroidal flux through ΣH is defined by

ψHt(ψH) = 1
2π

∮
p(E, q) dq = I(E) (3.4)

= 1
2π

∮
ΣH

ψt(ψh, u) du. (3.5)

Equation (3.4) is the standard formula for the canonical action coordinate, usually
indicated with the symbol I(E) for a given energy value E, and q the canonical position
(Arnol’d 2013). In (3.5), the identifications with canonical coordinates have been used, the
constant energy value E corresponds to the constant value of ψh onΣH and the expression
(2.6) for the helical flux has been inverted to obtain ψt(ψh, u). It is worth noting that on
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the right-hand side of this equation, the perturbed quantities appear, as ψt and ψh, while
on the left-hand side, we have the quantities through the island flux surfaces, identified by
·H . As a side remark, the action coordinate in (3.4) is not related to the magnetic action in
(2.1). The angle coordinate, defined on the helical axis, is defined by (Arnol’d 2013)

uH =
∫ q

q0

∂p(I, q′)
∂I

dq′ (3.6)

=
∫ u

0

∂ψt(ψH, u′)
∂ψHt

du′, (3.7)

which turns out to be the straight-helical-like angle defined on the helical axis (the O-point
of the island) which increases by 2π one turn around every helical flux surface.

Equation (3.5) implies that both magnetic fluxes (the action ψHt and the Hamiltonian
ψH of the system) are constant of the motion, i.e. are constant on magnetic flux surfaces.
Moreover, magnetic field lines written in the action-angle coordinates are straight lines in
the (uH, ϕ) plane. The definitions of a helical angle and of a helical flux,

uH = mϑH − nϕ, (3.8)

ψH = mψHp − nψHt, (3.9)

bring to the definition of the new poloidal-like angle ϑH defined on the island O point
and, implicitly, of the poloidal flux through ΣH, ψHp = (ψH + nψHt)/m. The rotational
transform related to straight-field-lines in the plane (ϑH, ϕ) is defined by

ιH = dϑH

dϕ
= dψHp

dψHt
, (3.10)

which counts the poloidal and toroidal turns of an island magnetic field line seen by an
external observer. Moreover, the Jacobian and the metric elements of the (ψH, ϑH, ϕ)

coordinate system allow us to calculate any geometric quantity related to the island
domain, as the island volume, using the procedure that will be described in the next section
for the stand-alone coordinate system.

We remark that the helical fluxes,ψh(ψ
0
t , u) andψH(ψHt) in (2.6) and (3.9), respectively,

are the same flux, due to the fact that the coordinate transformation (ψ0
t , u, ϕ) �→

(ψH, ϑH, ϕ) is equivalent to a time-independent canonical transformation that does not
change the Hamiltonian of the system. They differ just by the value of ψh(ψ

0
t , u) on the

helical axis, which ensures that ψH, ψHt and ψHp vanish there:

ψH = ψh(ψ
0
t , u)− ψh|O, (3.11)

where ψh|O = ψh(ψ
0
t , u)|O, whereas ψH|O = 0. Equation (3.11), together with (3.1) and

(3.2) for SO and SX , permits the interpretation of �OX (which is the magnetic flux through
the ribbon given by the O- and X-point orbits, as depicted in figure 1) as the helical flux
through the separatrix surface. In fact,

−SO = ψh|O, (3.12)

−SX = ψh|X = ψh|O + ψH|X, (3.13)

simply yield
�OX = SO − SX = −ψH|X. (3.14)

Note that these considerations also apply to the next section.
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Outside and inside a magnetic island 9

4. Magnetic islands as stand-alone domains

Magnetic islands, even if embedded in a global toroidal magnetic field, can be regarded
as separated plasma domains. In a previous work (Predebon et al. 2018), we described a
method to characterize geometrically every isolated domain from discretized field maps.
These maps are usually the outcome of a field-line tracing code or an MHD code: starting
from a set of points in the usual cylindrical coordinates (R,Z, ϕ) – with R the distance
from the axis of the torus, Z the distance from the equatorial plane and ϕ the geometrical
toroidal angle – the method allows to obtain a magnetic coordinate system (ψIt, ϑI, ϕ) in
the island, with the following expression for the magnetic field B:

B = 1
2π
(∇ψIt × ∇ϑI + ιI(ψIt)∇ϕ × ∇ψIt), (4.1)

where ιI(ψIt) = dψIp/dψIt is the rotational transform inside the island, ϕ the toroidal
angle and ϑI the poloidal angle such that the field lines are straight on the (ϑI, ϕ) plane,
with dϑI/dϕ = ιI(ψIt). As ϕ is the geometric toroidal angle, these coordinates are called
symmetry flux coordinates (D’haeseleer et al. 1991). We remark that the (ψIt, ϑI, ϕ)
and (ψHt, ϑH, ϕ) systems, being flux coordinates sharing the same toroidal angle, are
mathematically equivalent. The indexes ·I and ·H denote the different procedure used to
generate the respective flux coordinate systems.

Due to the high curvature of the surfaces in the proximity of the X-point, the method
developed by Predebon et al. (2018) does not allow to get an accurate description of
the geometry in that region, thus we limit our reconstruction to the surface immediately
preceding the separatrix. This is assumed to be the boundary of our domain.

There is freedom in the choice of the radial coordinate. Once a normalized radial
coordinate ρI is defined such that ρI = 0 on the magnetic axis and ρI = 1 on the last
closed magnetic surface of the domain, and the Jacobian matrix d(R,Z, ϕ)/d(ρI, ϑI, ϕ), or
equivalently d(x, y, z)/d(ρI, ϑI, ϕ), is known, we can calculate the (inverse) metric tensor
gij = ∇xi · ∇x j and the Jacobian J = √

g, which for the coordinates (ρI, ϑI, ϕ) will be
explicitly written as JI .

As the metric tensor is well defined in the whole island domain, we introduce here the
observables that we intend to compare with the other approaches. Let us consider the
width of the island itself. This can be measured with the ruler or can be calculated using
the metric tensor. At a given toroidal angle ϕ = ϕ̄, for a fixed poloidal angle ϑI = ϑ̄I , the
(curvilinear) distance covered along the ρI direction from the magnetic axis to a generic
surface with ρI ≤ 1 is

L|(ϑ̄I ,ϕ̄)
(ρI) =

∫ ρI

0
g1/2
ρIρI
(ρI

′, ϑ̄I, ϕ̄) dρI
′, (4.2)

where we have used the infinitesimal line element expression dl2 = gij dxi dx j restricted to
the radial direction. In figure 3, we show the ϕ = 0 section of a (1, 1) island in a circular
tokamak based on the RFX-mod geometry, obtained again with the field line tracing code
Flit. At this section, the ϑI = 0 and ϑI = π coordinate lines correspond to the horizontal
cut of the island, so that the island width is simply given by

WI|ϕ̄=0 = L|(0,0)(1)+ L|(π,0)(1). (4.3)

Other useful quantities for a comparison with the other approaches include the volume
enclosed by the surface with radius ρI ,

VI(ρI) =
∫

[0,ρI ]×[0,2π]×[0,2π]
JI dρI

′ dϑI dϕ, (4.4)
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FIGURE 3. ϕ = 0 discretized field map of a (1,1) island in a circular tokamak (top half of the
section) and corresponding flux-coordinate grid (bottom half) with the ρI = const. lines (in blue,
thick for ρI = 1) and the ϑI = kπ/8, k integer lines (in purple, thick for ϑI = 0,π).

as well as the poloidal (the ribbon poloidal flux, as it is called by D’haeseleer et al. (1991))
flux,

ψIp(ρI) = 1
2π

∫
[0,ρI ]×[0,2π]×[0,2π]

BϑI JI dρI
′ dϑI dϕ, (4.5)

and the toroidal flux,

ψIt(ρI) = 1
2π

∫
[0,ρI ]×[0,2π]×[0,2π]

Bϕ JI dρI
′ dϑI dϕ, (4.6)

where the poloidal and toroidal contravariant components of the field are given by BϑI =
B · ∇ϑI and Bϕ = B · ∇ϕ, respectively.

Combining (4.5) and (4.6) to define the helical fluxψIH = mψIp − nψIt, the island width
can be again inferred from (2.11) with�OX = −ψIH|X , as in (3.14), since the helical flux on
the island axis vanishes identically. In this case, the�OX flux is calculated at ρI = 1, not at
the separatrix, as a line integral following one of the tips of the island, which is the curve
that best approximates the separatrix, corresponding to the angle uI = mϑI − nϕ = ±π/2.

5. A comparison of the different approaches

In the following, we provide a comparison of some observables using the different
approaches described above. For this comparison, we consider the islands already
introduced in the previous sections, namely a (1,1) island in a circular tokamak and a
(1,7) island in the RFP, both based on RFX-mod, a circular toroidal device with major
radius R0 = 2 m and minor radius a = 0.46 m which can perform operation in either
configuration (Sonato et al. 2003).

The reconstruction of the magnetic island topology is based on the calculation of
the helical perturbations to the zeroth-order equilibrium. According to the procedure
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developed by Zanca & Terranova (2004), this is done solving a Newcomb-like equation,
i.e. the linearized force-balance equation with the linearized Ampere’s law ensuring a
divergence-free magnetic field, using the external magnetic measurements as boundary
conditions. Due to the set of measurements available in RFX-mod (48 toroidal arrays of
four poloidally equispaced probes for both the radial and toroidal field components), a rich
spectrum of Fourier components can be reconstructed for the magnetic perturbations. In
this work, we focus on the dominant resonant Fourier component generating the (m, n)
island, as specified in (2.3) and (2.4). The mode is (m, n) = (1, 1) for the tokamak case,
pulse 38 818 at t = 362 ms and (m, n) = (1, 7) for the RFP case, which is the averaged
discharge described by Momo et al. (2020). The resulting islands have been characterized
geometrically by Predebon et al. (2018), where the discretized field maps have been
produced by the field line tracing code Flit (Innocente et al. 2017) which is indeed based
on Newcomb’s perturbed fluxes as input.

As already mentioned, the comparison with the stand-alone approach of § 4 is possible
only within the surface ρI = 1, which for both the RFP and tokamak islands is the last
surface of the Poincaré section before the separatrix. For the other approaches, the radial
domain extends from the O-point of the island to the separatrix.

In figure 4 and table 1, we summarize the results of the comparison. In the figure, the
toroidal flux, the rotational transform and the volume profiles are plotted as a function of
the poloidal flux for the approaches of § 3 (red lines) and § 4 (black). In particular, the
poloidal and toroidal fluxes and the rotational transform defining the island flux surfaces
are computed from (3.5) and (3.10) in the approach of § 3, and from (4.5) and (4.6) in
the approach of § 4. The volume is computed in both cases from (4.4), using the related
coordinate system and Jacobian. The comparison can be considered satisfactory. The small
difference in the reconstruction of the rotational transform profile (approximately 0.4 % at
the surface ρI = 1 for the tokamak, 0.5 % for the RFP) explains the pointwise differences
in the fluxes that appear in the following table.

For the two islands, in the table, we review the most relevant quantities calculated at
the X-point and at the last surface at the Poincaré map (ρI = 1). For the perturbative
method of § 3 applied to the ρI = 1 surface, we assume ψHp|ρI=1 = ψIp|ρI=1 and derive
the other quantities based on this reference value. The island volume, and the toroidal and
poloidal fluxes through the island are reported in the first block of the table. In the second
block, the �OX flux is computed from (2.10) for the approach of § 2, as the helical flux
through the separatrix using (3.14) for the approach of § 3, and as the path integral along
the (best approximation of the) X-point identified by the angle uI = mϑI − nϕ = ±π/2
in the geometric approach of § 4 (proving also that �OX = −SX when the fluxes vanish
on the O-point). Then, for the three methods, the related island width is calculated with
(2.11). To complete the table, we also report the island width as resulting from (4.3) and
as measured with a ruler from the Poincaré maps at ϕ = 0,Wr|ϕ̄=0.

The method which best estimates Wr|ϕ̄=0 is that of § 4, which is not surprising as the
island geometry is directly derived from the Poincaré map itself: the WI|ϕ̄=0 width from
(4.3) perfectly matches Wr|ϕ̄=0. From the�OX flux calculated as path integral along one of
the tips of the island, we provide the width W�OX from (2.11), which yields a value within
1 % and 5 % error with respect to Wr|ϕ̄=0, for tokamak and RFP, respectively.

However, the perturbative methods of §§ 2 and 3 overestimate the total island width,
within 6 % and 10 % error with respect to Wr|ϕ̄=0, for tokamak and RFP case, respectively.
We recall that the formula of (2.11) for W�OX comes from the formal analogy between the
typical textbook deformation of the flux surfaces around the resonance due to the opening
of a magnetic island and the phase diagram of a pendulum, valid for small perturbations.
This explains the error introduced by the application of this formula to the specific cases
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 4. (a,b) Toroidal flux, (c,d) ι and (e, f ) volume as a function of the poloidal flux for
(a,c,e) a (1,1) tokamak island and (b,d, f ) a (1,7) RFP island, for the approaches of § 3 (red lines)
and § 4 (black).

Island Surface VH [m3]† ψHt [Tm2]† ψHp [Tm2]† VI [m3]‡ ψIt [Tm2]‡ ψIp [Tm2]‡

tok (1, 1) ρI = 1 0.806 3.49 × 10−2 3.38 × 10−2 0.813 3.50 × 10−2 3.40 × 10−2

separ. 1.237 4.50 × 10−2 4.39 × 10−2 — — —
RFP (1, 7) ρI = 1 0.673 6.61 × 10−2 4.83 × 10−1 0.676 6.63 × 10−2 4.83 × 10−1

separ. 0.925 8.58 × 10−2 6.25 × 10−1 — — —

�OX [Tm2]† W�OX [cm]† �OX [Tm2]‡ W�OX [cm]‡ �OX [Tm2]◦ W�OX [cm]◦

tok (1, 1) ρI = 1 1.12 × 10−3 9.96 1.02 × 10−3 9.49 — —
separ. 1.34 × 10−3 10.86 — — 1.35 × 10−3 10.93

RFP (1, 7) ρI = 1 2.05 × 10−2 12.01 1.90 × 10−2 11.57 — —
separ. 2.40 × 10−2 13.01 — — 2.40 × 10−2 13.12

WI |ϕ̄=0 [cm]‡ Wr|ϕ̄=0 [cm]

tok (1, 1) ρI = 1 9.45 9.45
separ. — 10.07

RFP (1, 7) ρI = 1 10.99 10.97
separ. — 11.86

TABLE 1. For a (1,1) tokamak island and a (1,7) RFP island, ·† quantities refer to the perturbative
method of § 3, ·‡ quantities to the non-perturbative method of § 4, ·◦ quantities to the perturbative
method of § 2; in the second row, W�OX is calculated from �OX by means of (2.11) for the three
different methods: �OX

† = mψHp − nψHt,�OX
‡ = mψIp − nψIt,�OX

◦ as defined in (2.10).
WI |ϕ̄=0 is the width as defined in (4.3). Wr|ϕ̄=0 is the width measured with the ruler at ϕ = 0.
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shown here, where the perturbation cannot be considered small. Large perturbations cause
a displacement of the O-point and X-point from the rational surface where the radial
derivatives are calculated. However, the correction to �OX when calculated as the helical
flux through the island separatrix (method of § 3), with respect to its estimate based on
the axisymmetric equilibrium (method of § 2), slightly improves the evaluation of the
width.

6. Summary

We have considered three different approaches for a geometric characterization of
magnetic islands: (i) perturbative; (ii) perturbative but leading to the definition of a
new single-helicity equilibrium; and (iii) non-perturbative based on the availability of a
discretized field map.

In the first perturbative method, the island is described in a Hamiltonian context using
the definition of action Sγ of a magnetic system. The novelty of this approach, first
introduced by Escande & Momo (2024), is the definition of a coordinate-independent
flux with a clear geometrical meaning – here named �OX – related to the island width
through (2.11). This formula, coming from the analogy between a textbook magnetic
island and the cat’s eye shape of the phase diagram of a pendulum, is very similar to
the classical formulae for the island width (Hazeltine & Meiss 1992; Park et al. 2008), but
with a new meaning of the flux that appears in all other formulations. The second method,
developed by Martines et al. (2011) and Momo et al. (2011) for the RFP equilibrium and
here extended to the tokamak configuration, starts from a perturbative approach that sums
the zeroth-order equilibrium and the single resonant perturbation generating the island,
then leads to the definition of a new single-helicity equilibrium using definitions specific
to Hamiltonian mechanics. The third, non-perturbative method, is based on the availability
of a discretized field map and defines the island domain through its geometrical definitions,
as first developed by Predebon et al. (2018).

A detailed comparison has been carried out among the three methods applying them
to two experimental islands of RFX-mod, both tokamak and RFP. We have provided
an estimate of some observables showing that they are, in general, in good agreement
with each other. As a novelty, moreover, we have extended the use of the expression
(2.11) for the island width in a broader context than the perturbative approach in which
it was first developed, thanks to a more comprehensive geometric interpretation of the
�OX flux. In particular, the �OX flux, originally defined as the flux through the ribbon
defined by the O- and X-point orbits, is identified as the helical flux through the island
separatrix.

As a final remark, the (third) non-perturbative method, strictly based on the geometry
of the flux surfaces, is the one which provides the most accurate description of the
island observables for a large part of the island domain, failing, however, to describe
the separatrix due to the high curvature of the flux surfaces in the neighbourhood of
the X-point. This approach applies to any isolated region of the plasma, without any
assumptions on the symmetry of the system and the possible interactions with other
perturbations with different helicities. However, the two perturbative methods provide a
geometric characterization which is in reasonable agreement with the non-perturbative
method, at least in the cases with a strong helical symmetry. Easier to apply, based as they
are on a single-mode perturbation from a linear Newcomb-like analysis, these methods
can satisfactorily highlight the most relevant features of an island without the need to
build discretized field maps and/or use MHD codes, providing a viable method for a fast
description of a magnetic island domain.
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