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COUNTEREXAMPLES CONCERNING SUPPORT THEOREMS 
FOR CONVEX SETS IN HILBERT SPACE 

BY 

R. R. PHELPS 

ABSTRACT. The Bishop-Phelps theorem guarantees the existence 
of support points and support functionals for a nonempty closed 
convex subset of a Banach space; equivalently, it guarantees the 
existence of subdifferentials and points of subdifferentiability of a 
proper lower semicontinuous convex function on a Banach space. In 
this note we show that most of these results cannot be extended to 
pairs of convex sets or functions, even in Hilbert space. For instance, 
two proper lower semicontinuous convex functions need not have 
a common point of subdifferentiability nor need they have a 
subdifferential in common. Negative answers are also obtained to 
certain questions concerning density of support points for the closed 
sum of two convex subsets of Hilbert space. 

This note was motivated by a question arising in mathematical economics 
posed by Professor R. Vohra [18] concerning a particular form of the 
Bishop-Phelps theorem for the sum (assumed to be weak* closed) of two weak* 
closed convex subsets of a dual Banach space. It is easy to see that if a 
functional attains its supremum on the sum of two convex sets, then it attains 
its supremum on each of them, so we were led first to consider the question of 
the existence of such simultaneous support functionals. They need not exist; 
Edelstein and Thompson [10] have constructed a counterexample in c0. What 
our first example shows is that this can be done in Hilbert space. This does not 
respond to Professor Vohra's question, however, since the sum of the two sets in 
our example is not closed. A related second example does, however, answer his 
question in the negative. These examples had their genesis in an earlier result 
[14] concerning common points of subdifferentiability of two convex functions 
on Hilbert space; this is reproduced in a third example. All of these examples 
reduce in one way or another to the following elementary lemma. 

LEMMA. If y e l2 is bounded above on B^ = {x e /2: IM loo = 1}* then y is an 
element of / j . If moreover, y attains its supremum on 2?^, then y is an finitely 
nonzero sequence. 
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PROOF. Suppose that for some M ^ Owe have (x, y) = M for all x G B^. 
For each n > 0 define x(n) G 2?^ by x(n)t = sgn _yz-, / = 1, 2, . . . , fl, while 
x(ft)z = 0 if / > n. Then (X(H) , y) = 2 " = i l/zl = M for all ft, which shows 
that y G lx. If there exists x G 2?^ such that (z, y) ^ (x, jy) for all z G 5 œ , 
define x(n) as above to obtain 2" = i b j = 2 x,^- for all n, hence HJHJ ^ 
2 x ^ ^ lUlloolljlli = \\y\\\- This implies that \xt\ = 1 whenever^- ^ 0; since 
xz- —» 0 as i —» oo, we conclude that { jz} is finitely nonzero. 

The example presented below exists in /2, but it is more easily seen if we 
represent this space as the product space l2 X R, where R is the real line. 
We pair this space with its dual (that is, with itself) by 

( (x, r), (y, s) > = (x, y) — rs, x, y G /2, r, s G R. 

EXAMPLE. 1. There exist two closed convex subsets C b C2 of /2 X R, each 
with nonempty interior, such that a functional (y, s) G /2 X R i s bounded 
above on both sets if (and only if) | |_v| 11 = s, while no nonzero functional attains 
its supremum on both sets. 

PROOF. We define 

Cx = { (x, r) G l2 X R: r g 0 and IMU I r l l ) and 

C2 = { (x, r) G /2 X R: IML ^ 1 and r ^ (x, a) }, 

where a = (2_ /) G lx c /2. Since x —» IMI^ is convex and continuous on /2, it 
is immediate that both sets are closed, convex and have nonempty interior. 
Suppose, first, that ( j , s) defines a functional which is bounded above on Cx. 
Since (az, Hazily — 1) G Cx whenever z ^ l2 and a > 0, there is a constant 
M > 0 such that 

<<*z,j> - *( Hazily - 1) ^ M 

for all such a and z. Dividing by a and letting the latter tend to +oo shows that 
(z, y) ^ ÎUHQO for all z G /2. It follows readily (take z = X(A) as in the proof of 
the above lemma) that s ^ \\y\\\- This proves the "only i f assertion. Suppose 
now, that (y, s) ¥= (0, 0) attains its supremum on Cx at the point (x, r). This 
means that r ^ 0, IWI^ ^ r + 1 and 

(*) <z, y) - ts ^ (x, j ) - rs 

whenever (z, /) G C^ If z G /2 with Hzll^ ^ r + 1, then (z, r) G C b so from (*) 
we have (z, _y) ^ (x, y). This says that the functional on /2 represented by y 
attains its supremum on (r -f 1 )5^ at the point x, and hence by the Lemma, 
y must be a finitely nonzero sequence. Note that since s ~ \\y\\\ and 
(>', s) ¥= (0, 0), we must have s > 0. 

Suppose, next, that the functional represented by (y\ s) also attains its 
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supremum on the set C2, at a point (w, w), say. This means that IMIoo = 1 a n d 
u â (w, a) and that for all (z, r) G C2 we have 

(**) (z,y) ~ st ^ <>,>>> - JW. 

Now, for any z G /2 with UzH^ ê 1 we have (z, (z, a) ) e C2 and hence it 
follows from (**) that 

(z, y — sa) = (z, y) — s(z9 a) = (w, y) — su 

= (w, y — sa) + ( (w, a) — u)s = (H>, y — .sa). 

This inequality shows that the functional represented by y — sa attains its 
supremum on B^, hence by the Lemma is a finitely nonzero sequence. But since 
s > 0 and ai > 0 for all /, it is impossible for both y and y — sa to be finitely 
nonzero, so no functional attains its supremum on both sets. 

It remains to prove that any element of the cone K = { (y, s) e /2: s ^ \\y\\\} 
is bounded above on both sets; this will show that there are many such 
functional. First, if (y, s) G K and (x, r) G Cj, then 

(x,y) - rs^ (x,y) - r|W|, ^ ( IWU - r) \\y\\} ^ \\y\\u 

so ( y, s) is bounded above on C,. Moreover, if (JC, r) G C2, then 

(x,y) - rs ^ (x, >>> - *<*, a> = (x, y - sa) ^ ||^ - sa\\l9 

so (y, s) is bounded above on C2 as well. 
As a corollary to the result above, we see that the sum C = C] + C2 is 

actually open, because it has empty boundary: Since Cx has nonempty interior, 
then so does C, hence any boundary point x of C would be a support point, and 
any decomposition x = u -f- v would yield simultaneous support points w, v of 
Cj, C2 respectively. 

The cone K of elements of /2 X R which are bounded above on both of the 
sets Cj and C2 in Example 1 is the epigraph of the lx norm on /2. Thus, while it is 
"big" in a certain sense (since lx is dense in /2), it clearly has empty interior. 
(Otherwise, the lx norm would be continuous, hence equivalent to the /2 norm.) 
In fact, if the set of functionals which are bounded above on two closed convex 
subsets of /2 has nonempty interior, then there are many functionals which 
simultaneously support both sets; this is a consequence of the fact that reflexive 
Banach spaces have the Radon-Nikodym property, together with the following 
proposition. (For information about spaces with the Radon-Nikodym property 
and strongly exposed points see either of the monographs [4] or [9].) 

PROPOSITION. Suppose that the Banach space E has the Radon-Nikodym 
property, that C}, C2 are nonempty closed convex subsets of E and that the cone 
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K = {/ e £*: sup/ (C ; ) < oo, / = 1, 2} /zos nonempty interior int # . 77ze/i 
j7zer£ /5 a dense subset of Junctionals in K which simultaneously support both Cx 

and C2. 

PROOF. If Cx and C2 are bounded, then this is trivial: For / = 1,2, the set of 
functionals which strongly expose some point of Ct is a dense G8 subset of £* 
[4, p. 55], so the intersection of these two sets is also a dense G8. We prove 
the general result by reducing it to the bounded case, as follows: Suppose that 

f0 is an interior point of K, let a = sup fo(Cx) ~ 1 a n d define the slice Sx 

of Cx by 

Sx = {x<= Cx:f0(x) ^a}. 

Obviously, Sx is closed, nonempty and convex. To see that it is bounded, it 
suffices to prove that it is weakly bounded, that is, that sup f(Sx) < oo for 
eve ry / e E*. Since f0 is an interior point of K there exists e > 0 such that 
/ 0 + c/ G # . If x G 5 l 9 then 

« 4- €/(*) â / 0 ( x ) + ^ ( x ) ^ sup(/0 + c/XS,) ^ sup(/0 + c/XC,) < oo, 

so sup f(Sx) < oo. Since Sx is bounded, there is a dense G5 subset of E* 
consisting of functionals which strongly expose points of Sx. Those which are in 
a sufficiently small neighborhood of/0 actually strongly expose a point of Cx. 
To see this, first choose a point x0 of Cx such that 

/o(x0) > sup/oCQ) - 1/2 = a H- 1/2 

and use the boundedness of Sx to choose M > 0 such that ||x0 — x|| ^ M for all 
x G Sj. Choose/such that \\f — f0\\ < 1/2M and/s t rongly exposes Ŝ  at x, 
say. It will strongly expose Cx at x provided fQ(x) > a, so suppose thatf{)(x) = 
a. Now, / 0 ( i 0 — JC) > 1/2, s o x ^ x 0 and thereforef(x) > / ( x 0 ) . Thus, 

H/0- / I I ê ( / 0 - / ) [ ( x 0 - x ) / i U 0 - x | | ] 

> [1/2 + / ( * ) - / ( JCO) ] / | | JC 0 - Jc|| > 1/2M, 

a contradiction. 
By carrying out this same construction for C2 we obtain a neighborhood of f0 

which contains a dense G8 set of functionals which simultaneously support both 
Cx and C2. 

What if the Banach space E does not have the Radon-Nikodym property? Is 
it possible to find two bounded closed convex nonempty sets with no common 
support functionals? As noted earlier, Edelstein and Thompson [10] have shown 
that this is possible in c0. Both of their sets have nonempty interior, one of them 
being the unit ball and the other an isomorph of the unit ball. Their proof uses 
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the same fact which we have exploited: Those functionals which attain their 
supremum on the unit ball of c0 are finitely nonzero elements of lx. Moreover, 
the inverse of the adjoint of the associated isomorphism carries such elements 
into those having infinitely many nonzero terms. Further investigations 
stemming from the Edelstein-Thompson paper have been carried out by 
J. Borwein [2], Cobzas [6, 7, 8], Edelstein [11] and Fonf [12]. 

We now return to Professor Vohra's original question: Suppose that Cx, C2 

are closed convex sets and that C = Cx + C2 is closed. Given z in the boundary 
of C with z = z1 -I- z2, zl G. Ci9 and 8 > 0, does there exist a support point of C 
of the form xl + x2, V e C„ such that \\x* - z'\\ < 81 (Actually, he also 
assumes that the C7 are weak* closed convex subsets of a dual space which 
contains a weak* closed convex cone K for which K + Ci ; c Ci c K\ we will 
address this below.) The example which follows gives a strong negative answer 
to this question. 

EXAMPLE 2. There exists a weakly compact convex subset Bx of l2 which 
shows, taking Cx = C2 = B]9 that the answer to the above question is 
negative. 

PROOF. Let Bx = {x G l2: 2 \xÉ\ = 1}; this is a closed, convex and bounded 
subset of /2, hence is weakly compact. Suppose that 0 ¥> y G l2 attains 
its supremum on Bx at x e Bx. This imposes the following restrictions on x 
and y: Assume, without loss of generality, that WyW^ = 1. If we define u by 
ut = Xj sgn(xz j - ) , then u G BX and 

(*) 2 M l = (u,y) ̂  <x,y) = 2 *,>>• ^ IblU • 2 W ^ 1. 

The first inequality in (*) shows that xiyi = 0 for all /*. Since yi —» 0, we 
must have |^z| = 1 for some /, so if el denotes the z'-th basis vector for /2, then 
u — (sgn^^e7 G Bx and (w, y) = 1; combining this with the second inequal­
ity in (*) shows that (x, y) = 1. If xk ¥* 0 for some k, and if | ^ | < 1, then 
xkyk < \xk\ and therefore (x,y) = 2 xtyt < 2 U/l = 1; that is, xk ¥= 0 implies 
that | ^ | = 1. 

Write 0 = e1 — e1 G Bx + 5 b let 0 < 8 < 1, and suppose that there exists a 
support point w -f v e J9j + Z?j such that ||w — e1!! < 5 and ||v — ( — e1) || < 8. 
Let ^ ¥= 0 support 5j + Bx at w + v; then it supports Bx at both u and v. 
Assume that Halloo = 1- Since |wj — 1| < 1 and |vj + 1| < 1, we must have 
ux > 0 and v} < 0. Since ux ¥* 0 (for instance), what we have shown above 
implies that \yx\ = 1. Moreover, we must also have uxyx > 0 and vxyx > 0, an 
impossibility. 

This example can be placed in the context of Professor Vohra's original 
question by letting K c l2 X R be the cone generated by Bx X {1} and letting 
Cx = C2 = K The details go as follows: 
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We will pair l2 X R with itself as before, and put an /2 norm on the product. 
Suppose that (y, s) ¥= (0, 0) attains its supremum on K at (x, r) ¥- (0, 0). The 
latter implies that r > 0 and it is straightforward to verify that y attains its 
supremum on Bx at r~xx e Bx and that y ^ 0. Suppose, now, that 0 < 8 < 1/2 
and write (0, 1) = ( e \ 1) + ( - e 1 , 1) e AT + K = K. Suppose, further, that 
there were a support point (u, r) + (v, /) of K -f T̂T with 

|| (ii, r) - (e1, 1) || < 5 and || (v, t) - ( - e \ 1) || < 8. 

We have \r ~ 1| < 8, so r > 0 and r~xu e ^ Since H r " 1 ^ ^ 1 it follows that 
||r_1w|| ^ 1 and hence ||w|| ^ r. Consequently, 

\\r~xu - e1!! ^ Hr-1!! - u|| + ||u - e1!! 

^ |r~ l - 1| • ||u|| + 8 ^ |1 - r| + 8 < 28 < 1. 

Similar assertions are true for t~xv and — e1. Let (y, s) be any functional which 
supports K at the sum (w, r) -f (v, /) ; then it necessarily supports K at both 
points, andjy ^ 0. Without loss of generality, we can assume that HjHIoo = 1- % 
the observations made above, y supports Bx at r~ u and / _ v. The argument 
given for Example 2 shows that this is impossible. 

Suppose that E is a Banach space and that F is a partially ordered Banach 
space. A function <p with values in F and domain a convex subset dom <p of E is 
defined to be "convex" in exact analogy with the real-valued case, by simply 
interpreting the convexity inequality in terms of the partial ordering on F. One 
can adjoin the element oo to F, require that it satisfy certain obvious properties, 
and set <p equal to oo outside of dom <p. Thus, the latter set (now called the 
effective domain of <p) is the set of x where <p(x) =£ oo. The subdifferential set 
d<p(x) at a point x in dom <p is defined to be the set of all continuous linear maps 
T.E —> F satisfying 

Ty - Tx ^ €p(y) - <p(x), y G E. 

The existence of such operators has been investigated by a number of authors 
[1, 3, 13, 15, 16, 17, 19]. These results all involve continuity assumptions on cp (as 
well as additional hypotheses on the order structure of F). In the case of an 
extended real-valued convex function, Br0ndsted and Rockafellar [5] extended 
the Bishop-Phelps theorem to prove that if <p is lower semicontinuous, then there 
is a dense set of points x in dom cp for which 8<p(x) is nonempty. Since there is a 
natural definition of semicontinuity in the vector-valued case, it is reasonable to 
hope that this result can be generalized. In the example which follows we show 
that this is impossible, even in the simplest case when F is two-dimensional. 
Note that in this case we can represent our convex function <p by a pair of 
extended real-valued functions having the same effective domain, and dy(x ) will 
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be nonempty if and only if each of these functions has a nonempty sub-
differential at the same point x. 

EXAMPLE 3. There exist two proper lower semicontinuous convex functions/, 
and/ 2 on l2 with common effective domain /, such that no point of /, is a point 
of subdifferentiability for both functions. 

PROOF. Let a = (2~n) e /, c /2 as in Example 1, define f{(x) = 2 \xn\ and 
let / 2(^) = f\(x — a), x e l2. As the supremum of a sequence 2 „ = i \xn\ of 
continuous convex functions fx (and hence f2) is lower semicontinuous and 
clearly dom/j = d o m ^ = /,. A subdifferential of/, at a point x is any element 
y e l2 satisfying (x, y) = 2 \xn\ and \yn\ ^ 1 for all n. As in the proof 
of Lemma 1, this implies that \yn\ = 1 whenever xn ¥= 0 and hence xn = 0 
for all but finitely many n. Any point with the latter property is clearly in 
dom 9/j = {x Œ /, : 3/,(x) is nonempty}, so this set consists precisely of the 
finitely nonzero sequences. It is easily seen that dom 8/2 = dom 3/, + a, so 
these two sets have no points in common. 

The two sets in Example 1 were obtained by first taking the epigraphs of the 
conjugate convex functions/* and /* t o / , a n d / in Example 3, then modifying 
the epigraph of / * so as to avoid "vertical" support functional. The usual 
duality theory shows tha t /* and /* have no subdifferential s in common. 
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