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Abstract. A range of Bayesian tools has become widely used in cosmological data treatment and
parameter inference (see Kunz et al. 2007, Trotta 2008, Amendola et al. 2013). With increasingly
big datasets and higher precision, tools that enable us to further enhance the accuracy of our
measurements gain importance. Here we present an approach based on internal robustness,
introduced in Amendola et al. (2013) and adopted in Heneka et al. (2014), to identify biased
subsets of data and hidden correlation in a model independent way.
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1. Introduction and method
Our objective is the identification of subsets that differ from the overall data set in

having a deviating underlying model. This deviation becomes evident in form of a shift
and change in size of likelihood contours (see ’biased’ subset d1 in blue as opposed to
overall set d in green in Fig.1, left). Our method is useful for identifying deviating popu-
lations otherwise not distinguishable ’by eye’ (see blue data points of lowest robustness
in Fig.1, right). We apply the formalism on supernova Ia data, the Union2.1 compila-
tion (Suzuki et al. 2012) of 580 supernovae from z=0.015 to z=1.414. Observables are
apparent magnitudes, stretch and colour corrected, as well as apparent magnitude errors.

Internal Robustness Formalism. We employ the Bayes’ ratio to assess the compati-
bility between subsets statistically, making use of the full likelihood information. The
hypothesis of having one model set of parameters MC to describe the overall dataset d
is compared with the hypothesis of having two independent distributions, i.e. parameter
sets MC and MS for subsets d1 and d2 . The corresponding Bayes’ ratio of the evidences
states, where we dub the logarithm of this ratio internal robustness R,

Btot,ind =
E (d;MC )

E (d1 ;MS ) E (d2 ;MC )
and R ≡ logBtot,ind (1.1)

Internal Robustness probability distribution function (iR-PDF). As an analytical form for
the distribution of robustness values is not available, unbiased synthetic catalogues are
necessary to test for the significance of the robustness values of the real data. They
were created by randomising the best-fit function of the observable. In practice we start
by partitioning the data into subsets and choosing a parametrisation, followed by the
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Figure 1. Left: Sketch showing shift and change of size for likelihood contours when removing
a biased subset (d1 ) from the overall set (d). Right: Hubble diagram for the 580 SN Ia of the
Union2.1 compilation (Suzuki et al. 2012), best-fit cosmology in green, distance moduli with
errors of subset of minimised robustness (R ≈ −280) in blue, complementary set in red. Note
that the otherwise indistinguishable biased set d1 is identified.

evaluation of the robustness value for each partition. Finally, robustness values for real
and synthetic catalogues can be compared to detect deviations, see Fig.2.
Genetic Algorithm (GA). We employ a genetic algorithm in order to find subsets of min-
imal robustness. Again, the parametrisation and initial subsets are chosen and their ro-
bustness values evaluated, followed by an iteration cycle of selection (in favour of subsets
of lower robustness), reproduction (replacement of disfavoured with favoured subsets)
and mutation (random data points are replaced) till convergence.

2. Results
We employ the internal robustness formalism to search for statistically significant bias

or correlations present in SN Ia data. The applicability to detect biased subsets, i.e. to
identify subsets of deviating underlying best-fit parametrisation, is demonstrated. There
are two ways to treat the data to form the iR-PDF: by randomly partitioning it into
subsets to test in an unprejudiced way or by sorting the data after specific criteria to
test prejudice on the occurrence of bias (for example angular separation, redshift, sur-
vey or hemisphere). Observables are both supernova Ia distance moduli and distance
modulus errors. The tests of subsets partitioned due to certain prejudices showed no sta-
tistically significant deviation between real data and unbiased synthetic catalogues. This
result demonstrates a successful removal of systematics for these cases and possible non-
standard signals of anisotropy or inhomogeneity at only low level of significance. Fig.2
compares the iR-PDF of unbiased synthetic catalogues in grey with the real catalogue ro-
bustness value in red for anisotropies as reported by Planck (Ade et al. 2013). For random
partitioning subsets of low robustness can be identified. We show in Fig.3, left panel, the
occurrence of distance modulus errors for the least robust set found by random selection.

The genetic algorithm (GA) randomly selects subsets for robustness analyses and trans-
forms them due to selection rules in order to find subsets of minimal robustness. Seeking
for the detection of systematics, distance modulus errors are analysed. Subsets of minimal
robustness are found at low values of R � −280. Fig.3, right panel, shows the occurrence
of distance modulus errors with redshift for a subset of lowest robustness found via genetic
algorithm minimisation. Remarkably, most SNe found in these subsets occupy a confined
region in distance modulus error - redshift - space and belong to distinct surveys of the
overall compilation.

3. Conclusion
The applicability of the internal robustness formalism to detect subsets of data whose

underlying model deviates significantly from the overall best-fit model is demonstrated.
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Figure 2. Robustness test for three anisotropies reported by Planck: hemispherical asymmetry
(left), dipole anisotropy (centre) and quadrupole-octupole alignment (right). The red vertical
lines are robustness values of the Union2.1 Compilation, the distribution of the 1000 unbiased
synthetic catalogues is shown in grey; taken from Heneka et al. 2014.

Figure 3. Colour-coded contour plots for the occurrence of SN Ia in distance modulus error-red-
shift-space. Left: Contour plot for a subset of R ≈-31, the subset of lowest robustness found for
random 105 subsets. Right: Contour-plot for the SN subset of minimal R ≈-283 found via GA.

Subsets of lowest robustness for further investigation are identified, having higher prob-
abilities of being biased. Both the degree to which systematics or cosmological signals
unaccounted for are present can be quantified in an unprejudiced and model-independent
way. This is crucial in order to detect contaminants or signals in cosmological or any as-
tronomical data, especially with upcoming surveys rendering a hunt for bias by-hand
more and more problematic.
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