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Abstract

We consider the global behaviour for large solutions of the Dirac–Klein–Gordon system in critical
spaces in dimension 1 + 3. In particular, we show that bounded solutions exist globally in time
and scatter, provided that a controlling space–time Lebesgue norm is finite. A crucial step is to
prove nonlinear estimates that exploit the dichotomy between transversality and null structure, and
furthermore involve the controlling norm.
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1. Introduction

The Dirac–Klein–Gordon system for a spinor ψ : R1+3
→ C4 and a scalar field

φ : R1+3
→ R is given as

−iγ µ∂µψ + Mψ = φψ

2φ + m2φ = ψψ,
(1)

for the Dirac matrices γ µ ∈ C4×4, using the summation convention with respect to
µ = 0, . . . , 3, where ∂0 = ∂t and ∂ j = ∂x j for j = 1, 2, 3. Further, m,M > 0 are
mass parameters andψ = ψ†γ 0, whereψ† is the conjugate transpose. The system
(1) arises as a model for the description of particle interactions in relativistic
quantum mechanics; see [2] for more details, and we also refer the reader to [23]
for a thorough introduction to Dirac equations. The aim of the present paper is
to initiate the study of large dispersive solutions to (1), building on our previous
results [1, 6] on the initial value problem (1) with small initial data.
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Recently, global well-posedness and scattering results have been proven for
initial data (ψ(0), φ(0), ∂tφ(0)), which are small in spaces close to the critical
Sobolev space, which is

L2(R3)× Ḣ 1/2(R3)× Ḣ−1/2(R3).

More precisely, in the nonresonant case 2M > m > 0, [24] proved a small data
result in a critical Besov space with angular regularity. In [1] we treated the
subcritical Sobolev spaces, and for arbitrary M,m > 0 we proved this for small
initial data in the critical Sobolev space with some small amount of additional
angular regularity in [6]. We refer the reader to the introductions of [1, 6] for
more details of earlier work.

The key in [1, 6, 24] is the use of the null structure in (1) discovered in [9] and
the construction of custom-made function spaces, which allow for global-in-time
nonlinear estimates. Here, as the first step towards a better understanding of large
solutions to (1), we aim at identifying space–time Lebesgue norms that control
the global behaviour of dispersive solutions.

We always assume that the Sobolev regularity is s0 > 0, the angular regularity
is σ > 0, and the masses M,m > 0 satisfy

either 0 < s0 � 1, σ = 0, and 2M > m > 0, (2)
or s0 = 0, σ > 0, and M,m > 0. (3)

We take data in the Sobolev space

H s0
σ (R

3) = (1−∆S2)−σ H s0(R3), with norm ‖ f ‖H
s0
σ
= ‖(1−∆S2)σ f ‖H s0 .

Thus in the nonresonant regime, (2), we consider data in the standard Sobolev
spaces H s0 × H s0+1/2

× H s0−1/2, while in (3), which includes the resonant regime
0 < 2M < m, we work in the critical spaces with a small amount of angular
regularity H 0

σ × H 1/2
σ × H−1/2

σ , σ > 0. Given an interval I ⊂ R and s > 0, we
define the dispersive type norm ‖u‖Ds

0(I ) = ‖〈∇〉
su‖L4

t,x (I×R3), and for s > 0, σ > 0,
we define

‖u‖Ds
σ (I ) =

(∑
N∈2N

N 2σ
‖〈∇〉

s HN u‖2
L4

t,x (I×R3)

)1/2

, (4)

where HN denotes the projection on angular frequencies of size N ; see (7) below.
Our main result is the following.

THEOREM 1. Let s0, σ > 0, and M,m > 0 satisfy either (2) or (3). Consider any
maximal H s0

σ -solution

ψ ∈ Cloc(I ∗, H s0
σ (R

3,C4)) and
(φ, ∂tφ) ∈ Cloc(I ∗, H s0+1/2

σ (R3,R)× H s0−1/2
σ (R3,R))
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of (1), which is bounded, that is,

sup
t∈I ∗
(‖ψ(t)‖H

s0
σ (R3) + ‖(φ, ∂tφ)(t)‖H

s0+1/2
σ ×H

s0−1/2
σ (R3)

) < +∞.

If ‖ψ‖D−1/2
σ (I ∗) < +∞, then we have I ∗ = R and (ψ, φ) scatters to a free solution

as t →±∞.

The norm ‖ · ‖D−1/2
σ

is scaling-critical for (1), and in particular, if ψ is a
free solution to the Dirac equation, we have the Strichartz bound ‖ψ‖D−1/2

σ (R) .
‖ψ(0)‖H0

σ
. It is important to note that a condition of the form ‖ψ‖D−1/2

σ (I ∗) < ∞

is necessary to ensure scattering. This follows from the fact that (1) admits global
stationary solutions of the form

ψ(t) = ei tωψ∗, φ(t) = (m2
−∆)−1(ψ∗ψ∗), ω ∈ (0,M), (5)

where ψ∗ : R3
→ C4 is smooth and exponentially decreasing; see [11]. In

particular, there exist global solutions to (1), which do not scatter to free solutions
as t →±∞.

In recent years, the notion of type-I and type-II blow-up has played an important
role in the study of nonlinear wave equations; see the survey [13] for more details
and references. Roughly speaking, a maximal solution is of type-I if its spatial
Sobolev norm goes to infinity in finite time, and it is of type-II if the spatial
Sobolev norm stays finite, but it does not exist for all times. Thus an alternative
phrasing of Theorem 1 is that any type-II blow-up solution (ψ, φ) of (1) with
maximal interval I ∗ must satisfy

‖ψ‖D−1/2
σ (I ∗) = +∞. (6)

The main technical result behind Theorem 1 is Theorem 4, which gives good
control over any (strong) solutions with a small D−1/2

σ norm. We remark that it is
possible to replace the hypothesis ‖ψ‖D−1/2

σ (I ∗) < +∞ by ‖(φ, 〈∇〉−1∂tφ)‖D0
σ (I ∗) <

+∞, which follows immediately from the statement of Theorem 4 and the proof
of Theorem 1 presented in Section 4.

In the case of radial data, Theorem 1 covers the critical regularity case ψ ∈ L2,
(φ, ∂tφ) ∈ H 1/2

× H−1/2. Strictly speaking however, as the linear Dirac operator
does not preserve radial solutions, it is better to consider the partial wave subspace
of the lowest degree. More precisely, we let H be the collection of spinors ψ0 ∈

L2(R3,C4) of the form

ψ0(x) =

 f (|x |)
(

0
1

)
g(|x |)

(
ω1 + iω2

ω3

)
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with ω = x/|x |, and f, g ∈ L2([0,∞), r 2dr). The subspace H is preserved under
the linear Dirac operator [23]. Moreover, a computation shows that the subspace
H is preserved under the nonlinear evolution (1), provided that φ(0) and ∂tφ(0)
are radial. It is worth noting that there are other partial wave subspaces that remain
invariant under the evolution of (1) [23]. However, the class H is used frequently
in the literature, for instance the stationary solutions (5) belong to H.

Applying Theorem 1 to data ψ(0) ∈ H, and exploiting the conservation of
charge, ‖ψ(t)‖L2

x
, we can then drop the assumption ‖ψ‖L∞(I ∗,H0

σ (R3)) < +∞.

COROLLARY 1. Let m,M > 0. Suppose that

(ψ(0), φ(0), ∂tφ(0)) ∈ L2(R3)× H 1/2(R3)× H−1/2(R3)

with ψ(0) ∈ H, φ(0), ∂tφ(0) radial, and that the corresponding L2-maximal
solution

ψ ∈ Cloc(I ∗, L2(R3,C4)) and
(φ, ∂tφ) ∈ Cloc(I ∗, H 1/2(R3,R)× H−1/2(R3,R))

of (1) satisfies

sup
t∈I ∗
‖(φ, ∂tφ)(t)‖H1/2×H−1/2(R3) < +∞ and ‖〈∇〉

−1/2ψ‖L4(I ∗×R3) < +∞.

Then we have I ∗ = R and (φ, ψ) scatters to a free solution as t →±∞.

The main novelty of this paper is a certain refinement of the multilinear
estimates from [1, 6] in the sense that we allow for small positive powers of
suitable L4

t,x norms on the right-hand side; see Theorem 2. This is achieved by
exploiting the recent progress on bilinear adjoint Fourier restriction estimates [4].
The particular result from [4] we will exploit here is summarized in Theorem 6.
These L4

t,x norms have the elementary yet crucial property that they can be made
arbitrarily small by shrinking the time interval. This has been used successfully
to prove global well-posedness and scattering results for wave and Schrödinger
equations with polynomial nonlinearities; see for example, [3, 8, 14] and the
references therein. However, for equations with derivative nonlinearities, such as
wave maps or the Maxwell–Klein–Gordon system, this is more difficult to exploit
due to the presence of more involved norms. Recently, there has been significant
progress, such as [18, 19, 21, 22]. Our contribution here is closer in spirit to the
controlling norm result in [10] in the context of Schrödinger maps.

The estimates proved in this paper have further applications. In particular, they
are applied in [5] to prove scattering results for solutions that approximately
satisfy a so-called Majorana condition, which defines an open set of large initial
data yielding global solutions that scatter.
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The paper is organized as follows. In Section 2 we introduce notation, which
is consistent with our previous work [6]. Further, we define the relevant function
spaces and provide some auxiliary results. In Section 3 we prove our main local
results, namely Theorems 3 and 4, based on nonlinear estimates in Theorem 2,
whose proof relies on the results of the last two sections. In Section 4 we prove our
main result of this paper, Theorems 1 and Corollary 1. In Section 5 we introduce
further notation and preliminary results, which are important in the remaining
sections. Section 6 is devoted to the proof of the crucial multilinear estimates in
the subcritical regime, while in Section 7 the critical regime is considered, thereby
completing the proof of Theorem 2.

2. Notation and function spaces

Let Z denote the integers and N the nonnegative integers. Given a function f ∈
L1

x(R3), we let f̂ (ξ)=
∫
R3 f (x)e−i x ·ξ dx denote the spatial Fourier transform of f .

Similarly, for u ∈ L1
t,x(R1+3), we take ũ(τ, ξ) =

∫
R1+3 u(t, x)e−i(t,x)·(τ,ξ) dx dt to

be the space–time Fourier transform of u. We extend these transforms to tempered
distributions in the usual manner. Let ρ ∈ C∞0 (R) be a smooth bump function
satisfying supp ρ ⊂ { 1

2 < t < 2} and
∑
λ∈2Z ρ(t/λ) = 1 for t 6= 0, and take

ρ61 =
∑
λ61 ρ(t/λ) for t 6= 0, and ρ61(0) = 1. Set ρ6λ(t) = ρ61(t/λ) for λ ∈ 2Z.

For each λ ∈ 2N and d ∈ 2Z we define the Littlewood–Paley multipliers Pλ, and
the modulation localization operators C±,md as

P̂λ f (ξ) = ρ
(
|ξ |

λ

)
f̂ (ξ) if λ > 1, P̂1 f (ξ) = ρ61(|ξ |) f̂ (ξ),

C̃±,md u(τ, ξ) = ρ
(
|τ ± 〈ξ〉m |

d

)
ũ(τ, ξ),

where 〈ξ〉m = (m2
+ |ξ |2)1/2. Thus Pλ localizes to frequencies of size λ, and C±,md

localizes to space–time frequencies at distance d from the surface τ ± 〈ξ〉m = 0.
We also define

C±,m6d =
∑
d ′6d

C±,md ′ ,

which localizes to space–time frequencies within d of τ ± 〈ξ〉m = 0. We define
the localization operators to angular frequencies of size N ∈ 2N by

(HN f )(x) =
∑
`∈N

2`∑
n=0

ρ

(
`

N

)
〈 f (|x |·), y`,n〉L2(S2)y`,n

(
x
|x |

)
(N > 1),

H1 f (x) =
∑
`∈N

2`∑
n=0

ρ61(`)〈 f (|x |·), y`,n〉L2(S2) y`,n

(
x
|x |

)
,

(7)
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where (y`,n)n=0,...,2` denotes an orthonormal basis for the space of homogeneous
harmonic polynomials of degree `, as in [6, Section 7B].

To simplify notation somewhat, in Sections 6 and 7, we use the shorthand

C±d = C±,1d , C±d = Π±C±,Md ,

where the projections Π± are defined as

Π± =
1
2

(
I ±

1
〈∇〉M

(−iγ 0γ j∂ j + Mγ 0)

)
. (8)

The projections Π± diagonalize the Dirac operator, for instance we have the
identity

(−iγ µ∂µ + M)Π±ψ = γ 0(−i∂t ± 〈∇〉M)Π±ψ,

and are also used to uncover the null structure hidden in the product ψψ . See
Section 5 for further details.

Define the propagator for the homogeneous half-wave equation as U±m (t) =
e∓i t〈∇〉m and let UM denote the free Dirac propagator. Explicitly we have

UM(t) = U+M(t)Π+ + U−M(t)Π−.

Given t0 ∈ I ⊂ R and F ∈ L∞t L2
x(I ×R3), for t ∈ I we let I±,mt0 [F](t) denote the

inhomogeneous solution operator for the half-wave equation

I±,mt0 [F](t) = i
∫ t

t0

U±m (t − t ′)F(t ′) dt ′

and IM
t0 [F](t) = I+,Mt0 [Π+F](t) + I−,Mt0 [Π−F](t) denote the inhomogeneous

solution operator for the Dirac equation. Thus, if −i∂t u + 〈∇〉mu = F , then we
can write the Duhamel formula as

u(t) = U+m (t − t0)u(t0)+ I+,mt0 [F](t).

Similarly, for the Dirac equation, if −iγ µ∂µψ + Mψ = G, then we have

ψ(t) = UM(t − t0)ψ(t0)+ IM
t0 [γ

0G](t).

We now define the main function spaces in which we construct solutions. The
basic building blocks are the V 2 spaces introduced by Koch and Tataru [15], and
studied systematically in [12, 16]. Let Z = {(t j) j∈Z | t j ∈ R and t j < t j+1} and
1 6 p <∞. For a function u : R→ L2

x , the p-variation of u is defined as

|u|V p = sup
(t j )∈Z

(∑
j∈Z

‖u(t j)− u(t j−1)‖
p
L2

x

)1/p

.
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The normed space V p is then defined to be all right-continuous functions u : R→
L2

x(R3) satisfying
‖u‖V p = ‖u‖L∞t L2

x
+ |u|V p <∞.

The space V p is complete and functions in V p have one-sided limits at each point,
including ±∞. Define V p

±,m = U±m (t)V p with the norm

‖u‖V p
±,m
= ‖U±m (−t)u‖V p .

For m > 0 and 2 6 q 6∞, and any d ∈ 2Z we have

‖C±,md u‖Lq
t L2

x
. d−1/q

‖u‖V 2
±,m
;

see [12, Corollary 2.18]. We also require an additional auxiliary norm, which
is used to obtain a high–low frequency gain in a particular case of the bilinear
estimates appearing in Sections 6 and 7. Given 1 < a < 2 and b > 0 we define

‖u‖Y±,mλ
= sup

d∈2Z
d1/a

(
min{d, λ}
λ

)b

‖C±,md Pλu‖La
t L2

x
.

The parameters a and b are fixed later in Sections 6 and 7, but roughly we take
1/a− 1

2 ≈ σ + s0, and b ≈ 1/a− 1
2 where s0 and σ are as in (2) or (3). For s ∈ R

and σ > 0, we define our main function norms as

‖u‖Vs,σ
±,m
=

( ∑
λ,N∈2N

λ2s N 2σ
‖PλHN u‖2

V 2
±,m

)1/2

‖u‖Ys,σ
±,m
=

( ∑
λ,N∈2N

λ2s N 2σ
‖HN u‖2

Y±,mλ

)1/2

while if σ = 0 we take

‖u‖Vs,0
±,m
=

(∑
λ∈2N

λ2s
‖Pλu‖2

V 2
±,m

)1/2

‖u‖Ys,0
±,m
=

(∑
λ∈2N

λ2s
‖u‖2

Y±,mλ

)1/2

.

Note that strictly speaking ‖ · ‖Ys,σ
±,m

is not a norm, as ‖U±m (t) f ‖Ys,σ
±,m
= 0 for all

f ∈ H s
σ . We finally define

‖u‖Fs,σ
±,m
= ‖u‖Vs,σ

±,m
+ ‖u‖Ys,σ

±,m
.
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The wave component of the DKG equation is estimated in Vs,σ
±,m . On the other

hand, to control solutions to the Dirac equation, we define

‖ψ‖Vs,σ
M
= ‖Π+ψ‖Vs,σ

+,M
+ ‖Π−ψ‖Vs,σ

−,M
, ‖ψ‖Ys,σ

M
= ‖Π+ψ‖Ys,σ

+,M
+ ‖Π−ψ‖Ys,σ

−,M

and
‖ψ‖Fs,σ

M
= ‖ψ‖Vs,σ

M
+ ‖ψ‖Ys,σ

M
.

The Banach space Vs,σ
±,m is then defined as the collection of all right-continuous

functions u ∈ L∞t H s
σ such that ‖u‖Vs,σ

±,m
< ∞. The Banach spaces Vs,σ

M and Fs,σ
M

are defined similarly.
We next localize the spaces constructed above to intervals. Let I ⊂ R be a left-

closed interval and right-open (in the sequel, left-closed for short) and take 1I (t)
to be the corresponding indicator function. Given a function u on I , we make a
harmless abuse of notation and think of 1I (t)u(t) as a function defined on R. In
other words, 1I u is the extension of u by zero to a function on R. We then define
Vs,σ
±,m(I ) as the set of all right-continuous functions u ∈ L∞t H s

σ (I × R3) such that
1I u ∈ Vs,σ

±,m with the obvious norm

‖u‖Vs,σ
±,m (I ) = ‖1I u‖Vs,σ

±,m
.

The Banach space Fs,σ
M (I ), and the norms ‖ · ‖Fs,σ

M (I ) and ‖ · ‖Ys,σ
M (I ) are defined

analogously. Note that the existence of left-sided limits in V 2 immediately implies
that if u ∈ Vs,σ

±,m(I ) then there exists f ∈ H s
σ such that ‖u(t) − U±m (t) f ‖H s

σ
→ 0

as t → sup I . In particular, if I = [t0, t1), t1 < ∞, and ‖u‖Vs,σ
±,m (I ) < ∞ then

u(t1) ∈ H s
σ is well defined.

The following lemma shows that we may freely restrict the spaces to smaller
intervals.

LEMMA 1. Let M > 0, s, σ > 0, and I and I ′ be left-closed intervals with I ⊂ I ′.
If ψ ∈ Fs,σ

M (I ′) and φ ∈ Vs,σ
+,M(I

′), then

‖ψ‖Fs,σ
M (I ) . ‖ψ‖Fs,σ

M (I ′), ‖φ‖Vs,σ
+,M (I ) . ‖φ‖Vs,σ

+,M (I
′).

Proof. By taking differences, exploiting translation invariance, and unpacking the
definitions of the spaces Fs,σ

M (I ) and Vs,σ
+,M(I ), it suffices to show that

‖1I u‖V 2 6 2‖u‖V 2 (9)

and for any λ ∈ 2N

‖1I u‖Y±,Mλ
. ‖Pλu‖L∞t L2

x
+ ‖u‖Y±,Mλ

(10)
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with I = [0,∞). The first inequality follows by noting that for any increasing
sequence (t j) j∈Z we have∑

j∈Z

‖(1I u)(t j)− (1I u)(t j−1)‖
2
L2

x (R3) 6 ‖u‖
2
L∞t L2

x
+ |u|2V 2

±,M
= ‖u‖2

V 2
±,M
.

On the other hand, to prove (10), we start by defining the time frequency
localization operators P (t)

d = ρ(| − i∂t |/d) and P (t)
6d = ρ61(| − i∂t |/d), where

ρ is as in the definition of the C M,±
d and Pλ multipliers. Suppose for the moment

that we have the bounds

‖1I − P (t)
�d1I‖La

t
. d−1/a, ‖P (t)

�d1I‖L∞t . 1. (11)

Let F(t)= UM
±
(−t)u. The identity C±,Md = UM

±
(t)P (t)

d UM
±
(−t), together with (11)

and the fact that the free solution propagators are unitary on L2
x(R3), implies that

‖C±,Md (1I u)‖La
t L2

x
= ‖P (t)

d (1I F)‖La
t L2

x

6 ‖P (t)
d ([1I − P (t)

�d1I ]F)‖La
t L2

x
+ ‖P (t)

d (P (t)
�d1I F)‖La

t L2
x
.

. ‖[1I − P (t)
�d1I ]F‖La

t L2
x
+ sup

d ′≈d
‖P (t)
�d1I P (t)

d ′ F‖La
t L2

x

. d−1/a
‖u‖L∞t L2

x
+ sup

d ′≈d
‖C±,Md ′ u‖La

t L2
x
.

Thus, by definition of the Y±,Mλ norm, the required bound (10) follows.
Consequently, it only remains to prove the bounds (11). To this end, the definition
of the P (t)

�d multipliers implies that there exists a rapidly decreasing function
σ ∈ C∞(R) with

∫
R σ(t) dt = 1 such that

P (t)
�d1I (t) =

∫
∞

0
σ(td − s) ds.

Hence the second estimate in (11) is immediate. On the other hand, for the first
term, we observe that the rapid decay of σ gives

|1I (t)− P (t)
�d1I (t)| =

∣∣∣∣1I (t)
∫
R
σ(td − s) ds −

∫
∞

0
σ(td − s)

∣∣∣∣
6

∣∣∣∣ ∫
R
σ(|t |d + |s|) ds

∣∣∣∣+ ∣∣∣∣ ∫
R
σ(−|t |d − |s|) ds

∣∣∣∣
. 〈td〉−10

and hence (11) follows.
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A straightforward computation implies that linear solutions belong to the
spaces Fs,σ

M and Vs,σ
+,m . Lemma 1 implies that for any s, σ > 0, and t0 ∈ I ⊂ R we

have

‖UM(t − t0)ψ0‖Fs,σ
M (I ) . ‖ψ0‖H s

σ
, ‖U+m (t − t0)φ0‖Vs,σ

+,m (I ) . ‖φ0‖H s
σ
. (12)

The Strichartz type spaces are also controlled by the Fs,σ
M and Vs,σ

+,m norms. We
give a more precise version of this statement in Section 5, and for the moment we
simply recall that we have the bounds

‖ψ‖L∞t H s
σ (I×R3) + ‖ψ‖Ds−1/2

σ (I ) . ‖ψ‖Vs,σ
M (I )

‖φ‖L∞t H s+1/2
σ (I×R3)

+ ‖φ‖Ds
σ (I ) . ‖φ‖Vs+1/2,σ

+,m (I ).
(13)

These estimates follow directly from the fact that the estimates for the free
solutions immediately imply bounds in the corresponding V 2 space, the details
can be found in, for instance, [12]. We also need to understand how the norm
‖ · ‖Fs,σ

M (I ) depends on the interval I . Clearly, if I is left-closed, and we can write
I = I1∪ I2 with I1, I2 disjoint left-closed intervals, then by the triangle inequality
we have the bound

‖u‖Vs,σ
±,m (I ) = ‖1I (t)u‖Vs,σ

±,m
6 ‖1I1(t)u‖Vs,σ

±,m
+ ‖1I2(t)u‖Vs,σ

±,m

= ‖u‖Vs,σ
±,m (I1) + ‖u‖Vs,σ

±,m (I2). (14)

An identical argument gives

‖u‖Fs,σ
M (I ) 6 ‖u‖Fs,σ

M (I1) + ‖u‖Fs,σ
M (I2). (15)

3. Local theory for the Dirac–Klein–Gordon system

In this section, we derive two key consequences of the bilinear estimates
obtained in Sections 6 and 7, namely Theorems 3 and 4. These theorems show
that the time of existence of solutions to the DKG system can be controlled by
the L4

t,x norm, or, more precisely, by the ‖ · ‖D0
σ

norms. In particular, we refine
the previous local and small data global results obtained in [1, 6]. The proof of
Theorem 1 is then an easy consequence.

We now start with the local theory. By time reversibility, it is enough to consider
the forward-in-time problem; thus we always work on left-closed intervals I =
[t0, t1) where potentially we may have t1 = ∞. In addition, instead of the second-
order system (1), we prefer to work with a first-order system. More precisely, we
construct ψ : I ×R3

→ C4 and φ+ : I ×R3
→ C solving the first-order system

−iγ µ∂µψ + Mψ = Re(φ+)ψ

−i∂tφ+ + 〈∇〉mφ+ = 〈∇〉
−1
m (ψψ).

(16)
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If we let φ = Re(φ+), a standard computation using the fact that ψψ ∈ R then
shows that, at least for classical solutions, (ψ, φ) is a solution to the original
Dirac–Klein–Gordon system (1).

We next clarify precisely what we mean by solutions and maximal solutions.

DEFINITION 1. Let s, σ ∈ R.

(1) We say (ψ, φ+) : I × R3
→ C4

× C is an H s
σ -strong solution on an interval

I ⊂ R, if
(ψ, φ+) ∈ C(I, H s

σ (R
3,C4)× H s+1/2

σ (R3,C))
and there exists a sequence (ψn, φn) ∈ C2(I, H m(R3,C4

×C)), m =max{10,
s}, of classical solutions to (16) such that, for any compact I ′ ⊆ I ,

sup
t∈I ′
(‖ψ(t)− ψn(t)‖H s

σ (R3,C4) + ‖φ+(t)− φn(t)‖H1/2+s
σ (R3,C))→ 0.

(2) We say (ψ, φ+) : [t0, t∗)×R3
→ C4

×C is a (forward) maximal H s
σ -solution

if the following two properties hold:

(a) for any t1 ∈ (t0, t∗), (ψ, φ+) is a strong H s
σ -solution on [t0, t1);

(b) if (ψ ′, φ′
+
) : I ×R3

→ C4
×C is a strong H s

σ -solution on an interval I
satisfying I ∩ [t0, t∗) 6= ∅ and (ψ ′, φ′

+
) = (ψ, φ+) on I ∩ [t0, t∗), then

I ∩ [t0,∞) ⊆ [t0, t∗).

We remark that H s
σ -strong solutions are unique, owing to the fact that classical

solutions are unique and the local Lipschitz continuity of the data-to-solution
map in H s

σ established below. Moreover, the local theory we develop below
implies that an H s0

σ -strong solution to (16) on an interval I is also locally in
Fs0,σ

M ×Vs0+1/2,σ
+,m . Furthermore, we also show that if we have control over both the

L4
t,x type norm ‖ψ‖D0

σ (I ) and the data norm ‖(ψ, φ+)(t0)‖H
s0
σ ×H

s0+1/2
σ

, then in fact

(ψ, φ+) ∈ Fs0,σ
M (I )×Vs0+1/2,σ

+,m (I ). In view of the existence of right and left limits
of elements of V 2, this second fact is, roughly speaking, simply a restatement of
Theorem 1. We give a more detailed description of this argument in Section 4.

We state the bilinear estimates that we exploit in the following.

THEOREM 2. Let s0, σ > 0 and M,m > 0 satisfy either (3) or (2). There exist
1 < a < 2, b > 0, and C > 0 such that if I ⊂ R is a left-closed interval, t0 ∈ I ,
and φ+ ∈ Vs0+1/2,σ

m,+ (I ), ψ, ϕ ∈ Fs0,σ
M (I ), then we have the bounds

‖IM
t0 (Re(φ+)γ 0ψ)‖Vs0,σ

M (I ) 6 C(‖φ+‖D0
σ (I )‖ψ‖D−1/2

σ (I ))
θ

· (‖φ+‖Vs0+1/2,σ
+,m (I )‖ψ‖Fs0,σ

M (I ))
1−θ ,
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‖IM
t0 (Re(φ+)γ 0ψ)‖Ys0,σ

M (I ) 6 C(‖φ+‖D0
σ (I )‖ψ‖D−1/2

σ (I ))
θ

· (‖φ+‖Vs0+1/2,σ
+,m (I )‖ψ‖Vs0,σ

M (I ))
1−θ ,

and

‖Im,+
t0 (〈∇〉−1

m (ψϕ))‖Vs0+1/2,σ
+,m (I ) 6 C(‖ψ‖D−1/2

σ (I )‖ϕ‖D−1/2
σ (I ))

θ

· (‖ψ‖Fs0,σ
M (I )‖ϕ‖Fs0,σ

M (I ))
1−θ .

Moreover, for any s > s0, we have the fractional Leibniz type bounds

‖IM
t0 (Re(φ+)γ 0ψ)‖Fs,σ

M (I )

6 2sC(‖φ+‖θD0
σ (I )
‖φ+‖

1−θ

Vs0+1/2,σ
+,m (I )

‖ψ‖Fs,σ
M (I )+‖φ+‖Vs+1/2,σ

+,m (I )‖ψ‖
θ

D−1/2
σ (I )
‖ψ‖1−θ

Fs0,σ
M (I )

)

and

‖Im,+
t0 (〈∇〉−1

m (ψϕ))‖Vs+1/2,σ
+,m (I )

6 2sC(‖ψ‖θ
D−1/2
σ (I )
‖ψ‖1−θ

Fs0,σ
M (I )
‖ϕ‖Fs,σ

M (I ) + ‖ψ‖Fs,σ
M (I )‖ϕ‖

θ

D−1/2
σ (I )
‖ϕ‖1−θ

Fs0,σ
M (I )

).

Proof. First, suppose that I = R. By rescaling, we may assume m = 1. The
bounds are immediate consequences of Theorem 7 (in case (2)) and Theorem 9
(in case (3)), because of 2Re(φ+) = φ+ + φ∗+, as well as the fact that for any s ′

and m1 > 0, we have ‖ · ‖Ds′
σ
. ‖ · ‖Vs′+1/2,σ

±,m1
.

Finally, we remark that Lemma 1 implies the claims for arbitrary left-closed
intervals I with t0 ∈ I , since we have

1IIM
t0 (Re(φ+)γ 0ψ) = 1IIM

t0 (Re(1Iφ+)γ
01Iψ),

and similarly for Im,+
t0 (〈∇〉−1

m (ψϕ)).

Note that we have elected to separate the statement of the bounds in Fs0,σ
M for

spinor components into a Vs0,σ
M bound, and a Ys0,σ

M bound. The motivation is that
although the bound in Vs0,σ

M requires ψ ∈ Fs0,σ
M , the control of the Ys0,σ

M norm
only requires ψ ∈ Vs0,σ

M . Consequently, if required, by using a two-step iteration
argument, it is possible to develop a local theory using just the V 2 type norms,
without explicitly using the Ys0,σ

M spaces. Another way of stating this, is that for
solutions to the DKG system, if ψ ∈ Vs0,σ

M , then we immediately have ψ ∈ Fs0,σ
M .

We now give a precise version of the local well-posedness (and small
data global well-posedness) theory that follows from the bilinear estimates
in Theorem 2.
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THEOREM 3 (Local well-posedness). Let s0, σ > 0 and M,m > 0 satisfy either
(3) or (2). There exist θ ∈ (0, 1) and C > 1, such that if

A, B > 0, 0 < α 6 (C A1−θ )−1/θ , 0 < β 6 (C B1−θ )−1/θ ,

and I ⊂ R is a left-closed interval, then for any initial time t0 ∈ I , and any data
(ψ0, φ0) ∈ H s0

σ × H s0+1/2
σ satisfying

‖ψ0‖H
s0
σ
< A, ‖UM(t − t0)ψ0‖D−1/2

σ (I ) < α,

and
‖φ0‖H

s0+1/2
σ

< B, ‖U+m (t − t0)φ0‖D0
σ (I ) < β,

there exists a unique H s0
σ -strong solution (ψ, φ+) of (16) on I with (ψ,

φ+)(t0) = (ψ0, φ0). Moreover, the data-to-solution map is Lipschitz-continuous
into Fs0,σ

M (I )× Vs0,σ
+,m(I ) and we have the bounds

‖ψ − UM(t − t0)ψ0‖Fs0,σ
M (I ) 6 Cαθ A1−θ (αθ A1−θ

+ βθ B1−θ )

‖φ+ − U+m (t − t0)φ0‖Vs0+1/2,σ
+,m

6 C(αθ A1−θ )2.

Finally, if we have additional regularity (ψ0, φ0) ∈ H s
σ × H s+1/2

σ for some s > s0,
then (ψ, φ+) ∈ F s,σ

M (I )× Vs,σ
+,m(I ) is also an H s

σ -strong solution.

Proof. Let ε0 = αθ A1−θ
+ βθ B1−θ and εs = ‖ψ0‖H s

σ
+ ‖φ0‖H s+1/2

σ
. For ease of

notation, we take

ψL = UM(t − t0)ψ0, φL = U+m (t − t0)φ0, ψN = ψ − ψL, φN = φ − φL .

Define the set Xs ⊂ Fs,σ
M (I )×Vs,σ

+,m(I ) as the collection of all (ψ, φ) ∈ Fs,σ
M (I )×

Vs,σ
+,m(I ) such that

‖ψN‖Fs0,σ
M (I ) + ‖φN‖Vs0,σ

+,m (I )
6 ε0, ‖ψN‖Fs,σ

M (I ) + ‖φN‖Vs,σ
M (I ) 6 εs .

Our goal is to construct a fixed point of the map T = (T1,T2) : Xs → Xs defined
as

T1(ψ, φ) = ψL + IM
t0 [Re(φ)γ 0ψ], T2(ψ, φ) = φL + I+,mt0 [〈∇〉

−1
m (ψψ)].

To this end, if (ψ, φ) ∈ Xs , then after decomposing the product φψ = φLψL +

φNψL + φLψN + ψNφN , an application of Theorem 2 together with bounds (12)
and (13) implies there exists C∗ > 0 such that

‖IM
t0 (Re(φ)γ 0ψ)‖Fs0,σ

M (I ) 6 C∗(βθ B1−θ
+ ε0)ε0

‖IM
t0 (Re(φ)γ 0ψ)‖Fs,σ

M (I ) 6 C∗(βθ B1−θ
+ ε0)εs .

(17)
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Similarly, decomposingψψ = ψ LψL+ψ NψL+ψ LψN+ψ NψN , we have C∗ > 0
such that

‖I+,mt0 (〈∇〉−1
m ψψ)‖Vs0,σ

+,m (I )
6 C∗ε2

0

‖I+,mt0 (〈∇〉−1
m ψψ)‖Vs,σ

+,m (I ) 6 C∗ε0εs .
(18)

To show that T is a contraction on Xs , we observe that for (ψ, φ), (ψ ′, φ′) ∈ X
after decomposing the difference of the products as

φψ − φ′ψ ′ = (φ − φ′)(ψL + ψN )+ (φL + φ
′

N )(ψ
′
− ψ)

another application of Theorem 2, (12), and (13) implies that there exists C∗ =
C∗(s) > 0 such that

‖IM
t0 (Re(φ)γ 0ψ)− IM

t0 (Re(φ′)γ 0ψ ′)‖Fs0,σ
M (I )

6 C∗(βθ B1−θ
+ ε0)(‖ψ − ψ

′
‖Fs0,σ

M (I ) + ‖φ − φ
′
‖Vs0,σ
+,m (I )

) (19)

and

‖IM
t0 (Re(φ)γ 0ψ)− IM

t0 (Re(φ′)γ 0ψ ′)‖Fs,σ
M (I )

6 C∗(βθ B1−θ
+ ε0)(‖ψ − ψ

′
‖Fs,σ

M (I ) + ‖φ − φ
′
‖Vs,σ
+,m (I ))

+ C∗εs(‖ψ − ψ
′
‖Fs0,σ

M (I ) + ‖φ − φ
′
‖Vs0,σ
+,m (I )

). (20)

Similarly, we have C∗ = C∗(s) > 0 such that

‖I+,mt0 (〈∇〉−1
m ψψ)− I+,mt0 (〈∇〉−1

m ψ
′ψ ′)‖Vs0,σ

+,m (I )

6 C∗ε0(‖ψ − ψ
′
‖Fs0,σ

M (I ) + ‖φ − φ
′
‖Vs0,σ
+,m (I )

) (21)

and

‖I+,mt0 (〈∇〉−1
m ψψ)− I+,mt0 (〈∇〉−1

m ψ
′ψ ′)‖Vs,σ

+,m (I )

6 C∗ε0(‖ψ − ψ
′
‖Fs,σ

M (I ) + ‖φ − φ
′
‖Vs,σ
+,m (I ))

+ C∗εs(‖ψ − ψ
′
‖Fs0,σ

M (I ) + ‖φ − φ
′
‖Vs0,σ
+,m (I )

). (22)

Consequently, taking C∗ = C∗(s) > 0 to be the largest of the constants appearing
in (17)–(22), we see that provided

βθ B1−θ
+ αθ A1−θ 6 (2C∗)−1

we have T : Xs → Xs and the difference bounds

‖T1(ψ, φ)− T1(ψ
′, φ′)‖Fs0,σ

M (I ) + ‖T2(ψ, φ)− T2(ψ
′, φ′)‖Vs0,σ

+,m (I )

6 1
2 (‖ψ − ψ

′
‖Fs0,σ

M (I ) + ‖φ − φ
′
‖Vs0,σ
+,m (I )

)
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and

‖T1(ψ, φ)− T1(ψ
′, φ′)‖Fs,σ

M (I ) + ‖T2(ψ, φ)− T2(ψ
′, φ′)‖Vs,σ

+,m (I )

6 1
2 (‖ψ − ψ

′
‖Fs,σ

M (I ) + ‖φ − φ
′
‖Vs,σ
+,m (I ))

+ 2C∗εs(‖ψ − ψ
′
‖Fs0,σ

M (I ) + ‖φ − φ
′
‖Vs0,σ
+,m (I )

).

Therefore, a standard argument implies that there exists a unique fixed point in
Xs , and that the resulting solution map depends continuously on the initial data.

Fix C = sups06s610 2C∗(s) and suppose that 0 < α 6 (C A1−θ )−1/θ and
0 < β 6 (C B1−θ )−1/θ . Then running the above argument with s = s0 shows
that for data (ψ0, φ0) ∈ H s0

σ H s0+1/2
σ we get a unique solution (ψ, φ+) ∈ Xs0 ,

which depends continuously on the data. Approximating the data with functions
in H 10

σ × H 10+1/2
σ and applying the previous argument with s = 10, we obtain a

sequence of solutions in X10, which converge to (ψ, φ+). In particular, (ψ, φ+)
is an H s0

σ -strong solution to (16). The claimed bounds on the norms of (ψ, φ+)
follow directly from the fact that (ψ, φ+) ∈ X together with (17) and (18). Finally,
if in addition we have additional regularity (ψ0, φ0) ∈ H s

σ with s > s0, then
running the fixed point argument as above gives a solution in Fs,σ

M (I ′)×Vs,σ
+,m(I ′)

provided that the interval I ′ ⊂ I is chosen sufficiently small such that

‖ψL‖
θ

D−1/2
σ (I ′)

‖ψ0‖
1−θ
H

s0
σ
+ ‖φL‖

θ
D0
σ (I ′)
‖φ0‖

1−θ

H
s0+1/2
σ

6 (2C∗(s))−1.

Since we can cover the full interval I by Os(1) smaller intervals I ′, we deduce
that (ψ, φ+) ∈ Fs,σ

M (I )× Vs,σ
M (I ) as claimed.

Note that we may take I = [0,∞) in the previous theorem. In particular, if
(ψ0, φ0) ∈ H s0

σ ×H s0+1/2
σ then provided ‖UM(t)ψ0‖D−1/2

σ (I ) and ‖U+m (t)φ0‖D0
σ (I ) are

sufficiently small, we have global existence and scattering.
The next result we give implies that H s0

σ -strong solutions belong to Fs0,σ
M (I ) ×

Vs0+1/2,σ
+,m (I ), provided that the L4

t,x type norm is sufficiently small relative to ‖(ψ,
φ+)(t0)‖H

s0
σ ×H

s0+1/2
σ

.

THEOREM 4. Let s0, σ > 0 and M,m > 0 satisfy either (3) or (2). There exist
C > 1 and 0 < θ < 1 such that, if A > 0 and I ⊂ R is a left-closed interval,
t0 ∈ I , and (ψ, φ+) is an H s0

σ -strong solution on I satisfying

‖ψ(t0)‖H
s0
σ
+ ‖φ+(t0)‖H

s0+1/2
σ

6 A

and min{‖ψ‖D−1/2
σ (I ), ‖φ+‖D0

σ (I )} 6 (C(1+ A)2−θ A1−θ )−1/θ ,

then (ψ, φ+) ∈ Fs0,σ
M (I )× Vs0+1/2,σ

+,m (I ) and we have the bound

‖ψ‖Fs0,σ
M (I ) + ‖φ+‖Vs0+1/2,σ

+,m (I ) 6 C A(1+ A).
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Proof. Let C∗ be the largest of the constants appearing in Lemma 1, Theorems 2
and 3, and (12), (13). We first consider the case I = [t0, t1) with t1 6 ∞. Let
(ψ, φ) be an H s0

σ -strong solution on I , and define

δ = min{‖ψ‖D−1/2
σ (I ), ‖φ+‖D0

σ (I )}

and

T =
{

t0 < T 6 t1

∣∣∣∣ sup
t0<T ′6T

‖ψ‖Fs0,σ
M ([t0,T ′)) 6 2C∗A,

sup
t0<T ′6T

‖φ+‖Vs0+1/2,σ
+,m ([t0,T ′))

6 (2C∗)3 A(1+ A)
}
.

An application of the local well-posedness result in Theorem 3 implies that T ∈ T
provided that T − t0 is sufficiently small, in particular, T is nonempty. If we let
Tsup = supT , then our goal is to show that Tsup = t1. Suppose that Tsup < t1 and let
Tn ∈ T be a sequence of times converging to Tsup. The continuity of the solution
(ψ, φ+) at Tsup, together with (13) and the definition of T implies that

‖ψ(Tsup)‖H
s0
σ
+‖φ+(Tsup)‖H

s0+1/2
σ

6 C∗ sup
t0<T<Tsup

(‖ψ‖Fs0,σ
M ([t0,T ))+‖φ+‖Vs0+1/2,σ

+,m ([t0,T ))
)

6 (2C∗)4 A(1+ A).

Hence, again applying Theorem 3, there exist n and ε0 > 0 such that for all
0 < ε < ε0 we have on the interval [Tn, Tsup + ε) the bound

‖ψ‖Fs0,σ
M ([Tn ,Tsup+ε))

+ ‖φ‖Vs0+1/2,σ
+,m ([Tn ,Tsup+ε))

6 2C∗(‖ψ(Tsup)‖H
s0
σ
+ ‖φ+(Tsup)‖H

s0
σ
)

6 (2C∗)5 A(1+ A).

We now exploit the smallness assumption on the L4
t,x norm. An application of (13),

(15), and (14), together with Theorem 2 and the fact that (ψ, φ+) is an H s0
σ -strong

solution on [t0, t1) implies that

‖ψ‖Fs0,σ
M ([t0,Tsup+ε))

6 C∗‖ψ(t0)‖H
s0
σ
+ C∗(‖ψ‖D−1/2

σ ([t0,Tsup+ε))
‖φ+‖D0

σ ([t0,Tsup+ε)))
θ

·
(
(‖ψ‖Fs0,σ

M ([t0,Tn))
+ ‖ψ‖Fs0,σ

M ([Tn ,Tsup+ε))
)

· (‖φ+‖Vs0+1/2,σ
+,m ([t0,Tn))

+ ‖φ+‖Vs0+1/2,σ
+,m ([Tn ,Tsup+ε))

)
)1−θ

6 C∗A + δθ (2C∗)12(1+ A)2−θ A2−θ .

Consequently, provided δ 6 [(2C∗)12(1+ A)2−θ A1−θ
]
−1/θ , we see that

‖ψ‖Fs0,σ
M ([t0,Tsup+ε))

6 2C∗A.
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To bound φ, we simply observe that another application of Theorem 2 implies
that

‖φ+‖Vs0+1/2
+,m ([t0,Tsup+ε))

6 C∗‖ψ+(t0)‖H
s0+1/2
σ
+ C∗‖ψ‖2

Fs0,σ
M ([t0,Tsup+ε))

6 (2C∗)3 A(1+ A).

Therefore Tsup+ε ∈ T , which contradicts the assumption Tsup < t1. Consequently,
we must have Tsup = t1 and hence ψ ∈ Fs0,σ

M (I ), φ+ ∈ Vs0+1/2
+,m (I ), and the claimed

bounds hold. In the general case, when t0 is not the left end point of I , we simply
need to run the above argument for times smaller than t0.

4. Proof of Theorem 1 and Corollary 1

Here we give the proof of Theorem 1 and Corollary 1.

4.1. Proof of Theorem 1. We first observe that since (1) and (16) are
equivalent in the class of H s0

σ -strong solutions, and the Dirac–Klein–Gordon
system is time reversible, it is enough to consider the forward-in-time problem
for the reduced system (16). Thus let (ψ, φ+) : [t0, t∗) × R3

→ C4
× C be a

forward maximal H s0
σ -solution to (16) such that

sup
t∈[t0,t∗)

(‖ψ(t)‖H
s0
σ
+ ‖φ+(t)‖H

s0+1/2
σ

) 6 A, ‖ψ‖D−1/2
σ ([t0,t∗))

<∞.

The finiteness of the dispersive norm ‖ · ‖D−1/2
σ ([t0,t∗))

, together with the dominated
convergence theorem, implies that for every δ > 0 we can find an interval I = [t1,

t∗) with t1 < t∗ such that

‖ψ‖D−1/2
σ (I ) 6 δ.

In particular, choosing δ sufficiently small, depending only on A, an application
of Theorem 4 implies that (ψ, φ+) ∈ Fs0,σ

M (I ) × Vs0+1/2,σ
+,m (I ). Therefore, by the

existence of left limits in V 2, there exists (ψ0, φ0) ∈ H s0
σ × H s0+1/2

σ such that

lim
t→t∗

(‖ψ(t)− UM(t)ψ0‖H
s0
σ
+ ‖φ(t)− U+m (t)φ0‖H

s0+1/2
σ

) = 0.

The local well-posedness theory in Theorem 3, together with the definition of
maximal H s0

σ -solution, then implies that we must have t∗ =∞. Consequently, the
solution (ψ, φ+) exists globally in time and scatters as t →∞.
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4.2. Proof of Corollary 1. In view of Theorem 1, and the fact that the spinor
remains in H and that the wave component φ remains radial, it is enough to show
that for ψ0 ∈ H, 1 < p <∞, and σ > 0 we have the bound∑

N∈2N

N σ
‖HNψ0‖L p

x
6 ‖ψ0‖L p

x
. (23)

However, this follows directly from the definition of the angular frequency
localization operators HN , since the orthogonality of the spherical harmonics y`,n
implies that for ` > 2 and j = 1, 2, 3 we have

〈1, yl,n〉L2(S2) = 〈ω j , y`,n〉L2(S2) = 0.

Therefore, HNψ0 = 0 for N � 1 and hence (23) follows.

5. Further notation and preliminary results

In this section, we recall a number of results that will be used in the proof of
the bilinear estimates in Theorem 2. The setup and notation follow closely our
previous paper [6]; in particular, we refer the reader to [6] for further details and
references.

We start by recalling the key fact that estimating a Duhamel term in V 2
±,m can be

reduced to estimating a bilinear integral. More precisely, suppose that F ∈ L∞t L2
x ,

and

sup
‖PλHN v‖V 2

±,m
.1

∣∣∣∣ ∫
R
〈PλHNv(t), F(t)〉L2

x
dt
∣∣∣∣ <∞.

If u ∈ C(R, L2
x) satisfies −i∂t u ± 〈∇〉mu = F , then PλHN u ∈ V 2

±,m and we have

‖PλHN u‖V 2
±,m

. ‖PλHN u(0)‖L2 + sup
‖PλHN v‖V 2

±,m
.1

∫
R
〈PλHNv(t), F(t)〉L2

x
dt. (24)

An analogous bound holds without the angular frequency multiplier HN . See, for
instance, [6, Lemma 7.3] for a proof of this inequality.

Let Qµ be a collection of cubes of diameter proportional to µ covering R3 with
uniformly finite overlap, and let (ρq)q∈Qµ

be a subordinate partition of unity. For
q ∈ Q let Pq = ρq(|−i∇|). Given α 6 1 and a collection Cα of spherical caps κ
of diameter α with uniformly finite overlap, we let (ρκ)κ∈Cα be a smooth partition
of unity subordinate to the conic sectors spanned by κ , and define the angular
Fourier localization multipliers as Rκ = ρκ(−i∇). In certain regimes, we need to
use the fact that the modulation localization operators are uniformly disposable.
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LEMMA 2. Let 1 6 q, r 6 ∞, and m > 0. For any 0 < α 6 1, λ ∈ 2N, κ ∈ Cα,
q ∈ Qαλ2 , and d ∈ 2Z with d & α2λ, we have

‖C±,md Rκ PλPqu‖Lq
t Lr

x
+ ‖C±,m6d Rκ PλPqu‖Lq

t Lr
x
. ‖Rκ PλPqu‖Lq

t Lr
x
. (25)

Here, if α & λ−1, the operator Pq can be dropped, and if λ ≈ 1, the operator Rκ
can be dropped. Further, for every d ∈ 2Z

‖C±,md u‖V 2
±,m
+ ‖C±,m6d u‖V 2

±,m
. ‖u‖V 2

±,m
. (26)

Proof. First, it is enough to consider 0 < α 6 1, λ ∈ 2N, r0 > 0 satisfying 〈r0〉 ≈ λ
and d ∈ 2Z with d & α2λ, and any function u satisfying

supp(û(t)) ⊂ {ξ ∈ R3
| ||ξ | − r0| . αλ2, 〈ξ〉 ≈ λ, r 1/2

0 (|ξ | − ξ1)
1/2 . λα},

and to prove the estimate

‖C±,m6d u‖Lq
t Lr

x
. ‖u‖Lq

t Lr
x
. (27)

The support assumptions imply that we can write

C±,m6d u = ω ∗ u

for ω̃ a smooth bump function adapted to the set

{(τ, ξ) ∈ R1+3
| |τ ± 〈ξ〉| . d, ||ξ | − r0| . αλ2, 〈ξ〉 ≈ λ, r 1/2

0 (|ξ | − ξ1)
1/2 . λα}.

Multiple integration by parts yields

|ω(t, x)| .N dβλ(αλ)2
(

1+ d|t | + βλ
∣∣∣∣x1 ± t

r0

〈r0〉

∣∣∣∣+ (αλ)|(x2, x3)|

)−N

,

where β = min{1, αλ} and N ∈ N. Clearly, this implies (25).
Second, from C±,m6d = U±m P6dU±m (−·) and

‖σ ∗ v‖V 2 . ‖σ‖L1‖v‖V 2,

the estimate (26) follows.

In a similar vein, for all 1 6 p 6∞, we note that

sup
N>1
‖HN‖L p(R3)→L p(R3) < +∞,

and HN commutes with any radial Fourier multiplier such as Pλ. While HN

also commutes with Cd , it does not commute with the cube and cap localization
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operators Rκ and Pq . We also note an angular concentration bound [20, Lemma
5.2], which corresponds to [6, Lemma 8.5]. Let 2 6 p < ∞ and 0 6 s < 2/p.
For all λ, N > 1, α & λ−1, and κ ∈ Cα we have

‖Rκ PλHN f ‖L p
x (R3) . αs N s

‖PλHN f ‖L p
x (R3). (28)

The proof of Theorem 2 requires carefully exploiting the structure of the
product ψψ . To this end, we recall a number of null form bounds that have been
used frequently in the literature; see for instance, [6] and [1] for further details.
We start by recalling that the multipliers Π± satisfy

‖(Π±1 −Π±1(λω(κ)))Rκ Pλ f ‖Lr
x
. α‖Rκ Pλu‖Lr

x
, (29)

provided that λ > 1, α & λ−1, and κ ∈ Cα. Similarly, in the Klein–Gordon regime
we have

‖(Π±1 −Π±1(ξ0))Rκ Pq Pλ f ‖Lr
x
. α‖Rκ Pq Pλu‖Lr

x
, (30)

provided λ > 1, 0 < α . λ−1, κ ∈ Cα, and q ∈ Qλ2α with centre ξ0. Consequently,
the identity

[Π±1 f ]†γ 0Π±2 g = [(Π±1 −Π±1(x)) f ]†γ 0Π±2 g

+ [Π±1(x) f ]†γ 0(Π±2 −Π±2(y))g + f †Π±1(x)γ
0Π±2(y)g,

together with the pointwise null form type bound

|Π±1(x)γ
0Π±2(y)| . θ(±1x,±2 y)+

|±1 |x | ±2 |y||
〈x〉〈y〉

(31)

then immediately implies, for instance, that

‖Π±1 Rκψλ1Π±2 Rκ ′ϕλ2‖Lr
x
. α‖ψ‖La

x
‖ϕ‖Lb

x
, (32)

where 1/r = 1/a+1/b, 1 < r, a, b <∞, and the caps κ, κ ′ ∈ Cα satisfy |±1 κ−

±2κ
′
| . α, with α & (min{λ1, λ2})

−1. Similarly, if we have the V 2 bound

‖ψ†ϕ‖Lr
x
6 C‖ψ‖V 2

±1,M
‖ϕ‖V 2

±2,M

under some conditions on supp ψ̂ and supp ϕ̂, then we also have, under the same
conditions on supp ψ̂ and supp ϕ̂, the null form bound

‖Π±1 RκψΠ±2 Rκ ′ϕ‖Lr
x
. αC‖ψ‖V 2

±1,M
‖ϕ‖V 2

±2,M
. (33)

These estimates are used frequently in the proof of Theorem 2.
Next, we recall the Strichartz estimates for the wave equation, which

corresponds to [6, Lemma 8.2] and relies on [1, Lemma 3.1] and [20, Appendix].
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LEMMA 3 (Wave Strichartz). Let m > 0 and 2 < q 6∞. If 0 < µ 6 λ, N > 1,
and 1/r = 1

2 − 1/q then for every q ∈ Qµ we have

‖e∓i t〈∇〉m Pq Pλ f ‖Lq
t Lr

x
. µ1/2−1/rλ1/2−1/r

‖Pq Pλ f ‖L2
x
.

Moreover, if 1/q + 2/r < 1 and ε > 0, we have

‖e∓i t〈∇〉m PλHN f ‖Lq
t Lr

x
. λ3(1/2−1/r)−1/q N 1/2+ε

‖PλHN f ‖L2
x
.

We also require Strichartz estimates in the Klein–Gordon regime. The first
bound can be found in, for instance, [17, Lemma 3], while the second is a special
case of [7, Theorem 1.1] and corresponds to [6, Lemma 8.3].

LEMMA 4 (Klein–Gordon Strichartz). Let m > 0. Then for 1
4 6 1/r 6 3

10 we
have

‖e∓i t〈∇〉m Pλ f ‖Lr
t,x
. λ1/2

‖Pλ f ‖L2
x
.

On the other hand, if 3
10 < 1/r < 5

14 and ε > 0 we have

‖e∓i t〈∇〉m PλHN f ‖Lr
t,x
. λ2−5/r N 7(1/r−3/10)+ε

‖PλHN f ‖L2
x
.

Both Lemmas 3 and 4 have analogues in V 2
±,m . This follows by decomposing

into U 2
±,m atoms, and applying the estimate for free solutions; see for instance, the

arguments used in [12, Proposition 2.19 and Corollary 2.21]. For instance, under
the assumptions in Lemma 3, the first inequality in Lemma 3 implies that

‖Pq Pλu‖Lq
t Lr

x
. µ1/2−1/rλ1/2−1/r

‖Pq Pλu‖V 2
±,m
.

Similarly, the remaining bounds in Lemmas 3 and 4 imply corresponding versions
in V 2

±,m .
We now turn to the bilinear estimates that we require in the proof of Theorem 2.

To simplify the gain of the L4 type norm in a particular high modulation
interaction, we use the following ‘cheap’ bilinear L2

t,x estimate in V 2.

THEOREM 5. Let µ� λ1 ≈ λ2. Then for any 0 < γ 6 1 we have

‖Pµ(Π±1ψλ1Π±2ϕλ2)‖L2
t,x

. µ

(
µ

λ1

)−2γ

(λ
−1/2
1 ‖ψλ1‖L4

t,x
λ
−1/2
2 ‖ψλ2‖L4

t,x
)γ (‖ψλ1‖V 2

±1,M
‖ϕλ2‖V 2

±2,M
)1−γ .

Proof. We consider separately the cases ±1 = ±2 and ±1 = −±2. In the former
case, the fact that the output frequencies are restricted to be of size µ, implies that
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we can directly exploit the null structure together with the standard L4
t,x Strichartz

bound to deduce that for every ε > 0 we have

‖Pµ(Π±1ψλ1Π±2ϕλ2)‖L2
t,x
.
µ

λ1

∑
q,q ′∈Qµ

|q−q ′|≈µ

‖Pqψλ1‖L4
t,x
‖Pq ′ϕλ2‖L4

t,x

. µ

(
µ

λ1

)1/2−ε

‖ψλ1‖V 2
±1,M
‖ϕλ2‖V 2

±2,M
.

On the other hand, in the ±1 = −±2 case, the frequency restriction implies that
the free waves (−i∂t ±1 〈∇〉M)ψ = (−i∂t ±2 〈∇〉)ϕ = 0 are fully transverse. In
particular, for free waves, we have the bilinear estimate

‖Pµ(Π±1ψλ1Π±2ϕλ2)‖L2
t,x
. µ‖ψλ1(0)‖L2

x
‖ϕλ2(0)‖L2

x
;

see for instance [6, Lemma 2.6]. Arguing as in [12, Proposition 2.19 and Corollary
2.21], by interpolating this with the standard L4

t,x bound, we deduce that for every
ε > 0 we have the V 2

±,M bound

‖Pµ[(Π±1ψλ1)
†γ 0Π±2ϕλ2]‖L2

t,x
. µ

(
µ

λ1

)−ε
‖ψλ1‖V 2

±1,M
‖ϕλ2‖V 2

±2,M
.

Thus in either of the ± cases, by L p interpolation, we obtain

‖Pµ[(Π±1ψλ1)
†γ 0Π±2ϕλ2]‖L2

t,x

. µ

(
µ

λ1

)−ε(1−γ )−γ
(λ
−1/2
1 ‖ψλ1‖L4

t,x
λ
−1/2
2 ‖ψλ2‖L4

t,x
)γ (‖ψλ1‖V 2

±1,M
‖ϕλ2‖V 2

±2,M
)1−γ .

Therefore, the result follows by choosing ε sufficiently small.

The main bilinear input in the critical case is the following bilinear restriction
type bound from [4], which extends the corresponding bound in [6]. The key point
in the following is that the estimate holds for functions in V 2

±,m , in the full bilinear
range. This is a highly nontrivial observation, which, in contrast to the linear and
bilinear estimates mentioned above, does not follow from the same bounds for
free homogeneous solutions. Instead it requires a more involved direct argument;
see [4, 6] for further details.

THEOREM 6. Let ε > 0, 1 6 q, r 6 2, 1/q + 2/r < 2. For all m1,m2 > 0,
0 < α 6 1, and ξ0, η0 ∈ R3 such that 〈ξ0〉m1 ≈ λ1, 〈η0〉m2 ≈ λ2, and

|m2|ξ0| − m1|η0||

λ1λ2
+

(
|ξ0||η0| ∓ ξ0 · η0

λ1λ2

)1/2

≈ α,
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and for all u, v satisfying

supp û ⊂ {||ξ | − |ξ0|| � βλ1, (|ξ ||ξ0| − ξ · ξ0)
1/2
� αλ1},

supp v̂ ⊂ {||ξ | − |η0|| � βλ2, (|ξ ||η0| − ξ · η0)
1/2
� αλ2},

then we have the bilinear estimate

‖uv‖Lq
t Lr

x
. α2−2/r−2/qβ1−1/rλ

3−3/r−1/q
min

(
λmax

λmin

)1/q−1/2+ε

‖u‖V 2
±1,m1
‖v‖V 2

±2,m2
,

where λmin = min{λ1, λ2}, λmax = max{λ1, λ2}, and β = (m1/αλ1 +

m2/αλ2 + 1)−1.

6. Multilinear estimates in the subcritical case

Our aim in this section is to establish the following result, which applies to the
nonresonant regime. Here, after rescaling, we have m = 1 and M > 1

2 now.

THEOREM 7. Let M > 1
2 . If s0 > 0 is sufficiently small, there exist 0 < θ < 1,

1 < a < 2, and C > 1, such that if b = 4(1/a − 1
2 ), for all s > s0 > 0

‖Π±1I
±1
M [φγ

0Π±2ϕ]‖Vs
±1,M

. sup
µ,λ2>1

(‖φµ‖L4
t,x
λ

s−s0−1/2
2 ‖ϕλ2‖L4

t,x
)θ (‖φ‖V1/2+s0

+,1
‖ϕ‖Fs

±2,M
)1−θ

+ sup
µ,λ2>1

(µs−s0‖φµ‖L4
t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
)θ (‖φ‖V1/2+s

+,1
‖ϕ‖Fs0

±2,M
)1−θ (34)

and

‖Π±1I
±1
M [φγ

0Π±2ϕ]‖Ys
±1,M

. sup
µ,λ2>1

(‖φµ‖L4
t,x
λ

s−s0−1/2
2 ‖ϕλ2‖L4

t,x
)θ (‖φ‖V1/2+s0

+,1
‖ϕ‖Vs

±2,M
)1−θ

+ sup
µ,λ2>1

(µs−s0‖φµ‖L4
t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
)θ (‖φ‖V1/2+s

+,1
‖ϕ‖Vs0

±2,M
)1−θ . (35)

Similarly,

‖〈∇〉
−1I+m [(Π±1ψ)

†γ 0Π±2ϕ]‖V1/2+s
+,1

. sup
λ1,λ2>1

(λ
−1/2
1 ‖ψλ1‖L4

t,x
λ

s−s0−1/2
2 ‖ϕλ2‖L4

t,x
)θ (‖ψ‖Fs0

±1,M
‖ϕ‖Fs

±2,M
)1−θ

+ sup
λ1,λ2>1

(λ
s−s0−1/2
1 ‖ψλ1‖L4

t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
)θ (‖ψ‖Fs

±1,M
‖ϕ‖Fs0

±2,M
)1−θ . (36)

The proof, which we postpone to Section 6.2, relies on trilinear estimates.

https://doi.org/10.1017/fms.2018.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.8


T. Candy and S. Herr 24

6.1. A subcritical trilinear estimate. Here, we consider frequency localized
estimates and use the shorthand notation fλ = Pλ f .

THEOREM 8. Let M > 1
2 , 0 < % � 1, 5

3 < a < 2, and 0 < b < %/4. Let
φ : R1+3

→ C, and ϕ,ψ : R1+3
→ C4 such that Π±1ψ = ψ and Π±2ϕ = ϕ.

Define
A = ‖φµ‖L4

t,x
λ
−1/2
1 ‖ψλ1‖L4

t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
.

There exists θ0 ∈ (0, 1) such that∣∣∣∣ ∫
R1+3

φµψλ1ϕλ2 dx dt
∣∣∣∣

. µ%
(

µ

max{λ1, λ2}

)1/10

Aθ0(µ1/2
‖φµ‖V 2

+,1
‖ψλ1‖V 2

±1,M
‖ϕλ2‖V 2

±2,M
)1−θ0 . (37)

If λ1 � λ2, we can improve this to∣∣∣∣ ∫
R1+3

φµψλ1ϕλ2 −

∑
d.λ2

C6dφµC±1
6dψλ1C

±2
d ϕλ2 dx dt

∣∣∣∣
. λ%2

(
λ2

λ1

)1/10

Aθ0(µ1/2
‖φµ‖V 2

+,1
‖ψλ1‖V 2

±1,M
‖ϕλ2‖V 2

±2,M
)1−θ0 (38)

and ∣∣∣∣ ∫
R1+3

∑
d.λ2

C6dφµC±1
6dψλ1C

±2
d ϕλ2 dx dt

∣∣∣∣
. λ%2

(
λ2

λ1

)(1/4)(1/a−1/2)

Aθ0(µ1/2
‖φµ‖V 2

+,1
‖ψλ1‖V 2

±1,M
‖ϕ‖Y

±2,M
λ2

)1−θ0 . (39)

Similarly, if λ1 � λ2, we have∣∣∣∣ ∫
R1+3

φµψλ1ϕλ2 −

∑
d.λ1

C6dφµC±1
d ψλ1C

±2
6dϕλ2 dx dt

∣∣∣∣
. λ%1

(
λ1

λ2

)1/10

Aθ0(µ1/2
‖φµ‖V 2

+,1
‖ψλ1‖V 2

±1,M
‖ϕλ2‖V 2

±2,M
)1−θ0 (40)

and ∣∣∣∣ ∫
R1+3

∑
d.λ1

C6dφµC±1
d ψλ1C

±2
6dϕλ2 dx dt

∣∣∣∣
. λ%1

(
λ1

λ2

)(1/4)(1/a−1/2)

Aθ0(µ1/2
‖φµ‖V 2

+,1
‖ψ‖Y

±1,M
λ1
‖ϕλ2‖V 2

±2,M
)1−θ0 . (41)
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Proof. The first step is to decompose the trilinear product into the modulation
localized terms

φµ(Π±1ψλ1)
†γ 0Π±2ϕλ2 =

∑
d

A0 + A1 + A2,

where
A0 = Cdφµ(C±1

�dψλ1)
†γ 0C±2

�dϕλ2,

A1 = C.dφµ(C±1
d ψλ1)

†γ 0C±2
.dϕλ2,

A2 = C.dφµ(C±1
.dψλ1)

†γ 0C±2
d ϕλ2 .

We now consider separately the small modulation cases:

µ . λ1 ≈ λ2 and d . µ, µ� min{λ1, λ2} and d . min{λ1, λ2}

and the high modulation cases:

µ . λ1 ≈ λ2 and d � µ, µ� min{λ1, λ2} and d � min{λ1, λ2}.

Due to the L4
t,x Strichartz inequality we have the obvious bound

A . µ1/2
‖φµ‖V 2

+,1
‖ψλ1‖V 2

±1,M
‖ϕλ2‖V 2

±2,M
.

Therefore, if we have the bounds (37), (38), and (40) for some θ0, we can
always replace θ0 with a smaller factor. In particular, in each of the various cases
considered below, it is enough to get some (potentially very small) power of A;
the factor θ0 can then be taken to the minimum of the powers obtained. In the
remaining estimates involving the ‖ · ‖

Y
± j ,M
λ j

-norms, as this norm does not give

control of the L4
t,x norm, we directly verify the fact that it is possible to make the

exponent of A smaller if needed.
Before we start the case-by-case analysis, we recall some facts from the

modulation analysis for the Dirac–Klein–Gordon system [1, 6, 9]. As in [6,
Section 8B], we define the modulation function

M±1,±2(ξ, η) = |〈ξ − η〉 ∓1 〈ξ〉 ±2 〈η〉|,

where we take ξ ∈ supp ψ̂ , η ∈ supp ϕ̂, and ξ−η ∈ supp φ̂. A computation shows
that, for any j = 0, 1, 2,∫

R1+3
A j dx dt 6= 0 implies M±1,±2(ξ, η) . d within the domain of integration.

(42)
Furthermore, since m = 1 and M > 1

2 we are in the nonresonant case where

M±1,±2 & (min{µ, λ1, λ2})
−1. (43)

In particular, in the case-by-case analysis below, we may assume that d &
(min{µ, λ1, λ2})

−1.
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Case 1:µ. λ1 ≈ λ2 and d . µ. We first observe that the sum over the modulation
is restricted to the region µ−1 . d . µ. Moreover, the resonance identities in [6,
Lemma 8.7] together with (42) imply that

d &M±1,±2(ξ, η)&
λ2

1

µ
θ 2(±1ξ,±2η)+µθ

2(ξ−η,±1ξ)+µθ
2(ξ−η,±2η). (44)

Consequently, the angle between the Fourier supports of ψ and ϕ must be of
size α = (dµ/λ2

1)
1/2. In particular, decomposing ψ and ϕ into caps of size α and

cubes of size µ, applying Hölder’s inequality, and using the null form bound (32)
we deduce that for every 0 < δ < 1:∣∣∣∣ ∫

R1+3
A0 dx dt

∣∣∣∣
. α

∑
q,q ′∈Qµ

|q−q ′|≈µ

∑
κ,κ ′∈Cα

|±1κ−±2κ
′
|≈α

‖Cdφµ‖L2
t,x
‖Pq Rκψλ1‖L4

t,x
‖Pq ′Rκ ′ϕλ2‖L4

t,x

.

(
d
µ

)−2δ(
µ

λ1

)1/2−8δ

µ1/2
‖φµ‖V 2

+,1
(λ
−1/2
1 λ

−1/2
2 ‖ψλ1‖L4

t,x
‖ϕλ2‖L4

t,x
)δ

· (‖ψλ1‖V 2
±1,M
‖ϕλ2‖V 2

±2,M
)1−δ, (45)

where we absorbed the square over caps and cubes using [6, Lemma 8.6], which
gives, in particular( ∑

q∈Qµ

∑
κ∈Cα

‖Pq Rκψλ1‖
2
L4

t,x

)1/2

. α−2δ

(
µ

λ1

)−2δ

(µλ1)
1/4(λ

−1/2
1 ‖ψλ1‖L4

t,x
)δ‖ψλ1‖

1−δ
V 2
±1,M

. (46)

On the other hand, applying the Klein–Gordon Strichartz estimate and (44), we
deduce that for 10

3 6 r < 4 and β = (d/µ)1/2:∣∣∣∣ ∫
R1+3

A0 dx dt
∣∣∣∣

. α
∑
κ,κ ′∈Cα

|±1κ−±2κ
′
|≈α

∑
κ ′′∈Cβ

|κ ′′−±2κ
′
|.β

‖Cd Rκ ′′φµ‖Lr/(r−2)
t,x
‖RκC±1

�dψλ1‖Lr
t,x
‖Rκ ′C±2

�dϕλ2‖Lr
t,x

.

(
d
µ

)4/r−1−2δ(
µ

λ1

)−6δ

µ8/r−2
‖φµ‖

8/r−2
L4

t,x
(µ1/2
‖φµ‖V 2

+,1
)3−8/r

‖ψλ1‖V 2
±1,M
‖ϕλ2‖V 2

±2,M
.
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Combining these bounds with r = 10
3 then gives, for every 0 < δ, θ < 2

5 ,∣∣∣∣ ∫
R1+3

A0 dx dt
∣∣∣∣

.

(
d
µ

)−2δ(
µ

λ1

)1/2−6(θ+δ)

µ(2/5)θAδθ (µ1/2
‖φµ‖V 2

+,1
‖ψλ1‖V 2

±1,M
‖ϕλ2‖V 2

±2,M
)1−δθ .

Summing up over µ−1 . d . µ and choosing δ, θ > 0 sufficiently small then
gives the required estimate for the A0 term.

To estimate the A1 term, we again put the high modulation term into L2
t,x , which

gives∣∣∣∣ ∫
R1+3

A1 dx dt
∣∣∣∣

. α
∑
κ,κ ′∈Cα

|±1κ−±2κ
′
|.α

∑
κ ′′∈Cβ

|κ ′′−±2κ
′
|.β

‖Rκ ′′C.dφµ‖L4
t,x
‖RκC±1

d ψλ1‖L2
t,x
‖Rκ ′C±2

.dϕλ2‖L4
t,x

.

(
d
µ

)−2δ(
µ

λ1

)1/2−6δ

(‖φµ‖L4
t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
)δ

· (µ1/2
‖φµ‖V 2

+,1
‖ϕλ2‖V 2

±2,M
)1−δ‖ψλ1‖V 2

±1,M
. (47)

To gain an L4
t,x norm of ψλ1 , we essentially repeat the argument used in the A0

case. More precisely, we observe that using the Klein–Gordon Strichartz estimate
for φµ and ϕλ2 gives for every 10

3 6 r < 4 and δ > 0:∣∣∣∣ ∫
R1+3

A1 dx dt
∣∣∣∣

. α
∑
κ,κ ′∈Cα

|±1κ−±2κ
′
|.α

‖C.dφµ‖Lr
t,x
‖Cd Rκψλ1‖

3−8/r
L2

t,x
‖Cd Rκψλ1‖

8/r−2
L4

t,x
‖C.d Rκ ′ϕλ2‖Lr

t,x

.

(
d
µ

)4/r−1−4δ(
µ

λ1

)3/2−4/r−4δ

µ4/r−1µ1/2
‖φµ‖V 2

+,1

· (λ
−1/2
1 ‖ψλ1‖L4

t,x
)8/r−2

‖ψλ1‖
3−8/r
V 2
±1,M
‖ϕλ2‖V 2

±2,M
,

where the square sums over caps were again controlled by using [6, Lemma 8.6].
Together with (47), this completes the proof for the A1 component. An identical
computation gives an acceptable bound for the A2 term. Hence, by choosing δ
sufficiently small and summing up over µ−1 . d . µ, we get the required bound
in Case 1.
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Case 2: µ� min{λ1, λ2} and d . min{λ1, λ2}. We only consider the case λ1 > λ2,
as the remaining case is identical. As previously, we first estimate A0 by placing
φµ ∈ L2 and ψλ1, ϕλ2 ∈ L4. From the resonance identities in [6, Lemma 8.7]
together with (42) we obtain

d & M±1,±2(ξ, η) &
µ2

λ2
θ 2(ξ − η,±1ξ)+ λ2θ

2(±1ξ,±2η)+ λ2θ
2(ξ − η,±2η).

(48)
Hence, if we let β = (d/λ2)

1/2 we obtain∣∣∣∣ ∫
R1+3

A0 dx dt
∣∣∣∣

. β
∑

q,q ′′∈Qλ2
|q−q ′′|≈λ2

∑
κ,κ ′∈Cβ

|±1κ−±2κ
′
|.β

‖Pq ′′Cdφµ‖L2
t,x
‖Rκ Pqψλ1‖L4

t,x
‖Rκ ′ϕλ2‖L4

t,x

.

(
d
λ2

)−4δ(
λ2

µ

)1/4−2δ

µ1/2
‖φµ‖V 2

+,1
(λ
−1/2
1 ‖ψλ1‖L4

t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
)δ

· (‖ψλ1‖V 2
±1,M
‖ϕλ2‖V 2

±2,M
)1−δ (49)

for every 0 < δ < 1. Thus we have a high–low gain provided we place the
functions φµ, ψλ1 , and ϕλ2 into the relevant V 2 space. On the other hand, letting
α = (dλ2/µ

2)1/2 and applying the Klein–Gordon Strichartz estimate gives for
10
3 6 r < 4:∣∣∣∣ ∫

R1+3
A0 dx dt

∣∣∣∣
. β

∑
κ,κ ′∈Cβ

|±1κ−±2κ
′
|.β

∑
κ ′′∈Cα

|±1κ−κ
′′
|.α

‖Cd Rκ ′′φµ‖Lr/(r−2)
t,x
‖RκC±1

d ψλ1‖Lr
t,x
‖Rκ ′C±2

d ϕλ2‖Lr
t,x

.

(
d
λ2

)4/r−1−2δ(
µ

λ2

)1+4/r

λ
8/r−2
2

· (µ1/2
‖φµ‖V 2

+,1
)3−8/r

‖φµ‖
8/r−2
L4

t,x
‖ψλ1‖V 2

±1,M
‖ϕλ2‖V 2

±2,M
,

where we used that supκ∈Cβ {κ
′′
∈ Cα : | ±1 κ − κ

′′
| . α} . (µ/λ2)

2. Provided we
choose δ > 0 sufficiently small, the above estimates and summation with respect
to λ−1

2 . d . µ give an acceptable bound for the A0 term.
The argument to control the A1 term is similar. We just reverse the roles of φµ

and ψλ1 , and note that, with α = (dλ2/µ
2)1/2,
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R1+3

A1 dx dt
∣∣∣∣

. β
∑

q,q ′′∈Qλ2
|q−q ′′|≈λ2

∑
κ,κ ′′∈Cα
|±1κ−κ

′′
|.α

∑
κ ′∈Cβ

|±1κ−±2κ
′
|.β

‖Pq ′′Rκ ′′φµ‖L4
t,x
‖Rκ PqC±1

d ψλ1‖L2
t,x
‖Rκ ′ϕλ2‖L4

t,x

.

(
d
λ2

)−4δ(
λ2

µ

)1/4−4δ

‖ψλ1‖V 2
±1,M

(‖φµ‖L4
t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
)δ

· (µ1/2
‖φµ‖V 2

+,1
‖ϕλ2‖V 2

±2,M
)1−δ. (50)

As in the A0 case, we can apply the Klein–Gordon Strichartz estimate to gain a
positive factor of d/λ2 as well as an L4

t,x factor of ψλ1 . Hence summing up over
λ−1

2 . d � λ2 gives the claimed bound for the A1 term.
Finally to bound the A2 component, we can either lose ε high derivatives, or

avoid this loss by exploiting the Y±,Mλ type norms. More precisely, using the wave
Strichartz pair (2r/(r − 1), 2r) with 1/r = 1/a − 1

2 (1/a −
1
2 ) and a as in the

definition of the Y±,Mλ norm, we see that for any δ > 0 sufficiently small:∣∣∣∣ ∫
R1+3

A2 dx dt
∣∣∣∣

. β
∑

q,q ′′∈Qλ2
|q−q ′′|≈λ2

∑
κ,κ ′′∈Cα
|±1κ−κ

′′
|.α

∑
κ ′∈Cβ

|±1κ−±2κ
′
|.β

‖Pq ′′Rκ ′′C+.dφµ‖L2r/(r−1)
t L2r

x

· ‖Rκ PqC±1
.dψλ1‖L2r/(r−1)

t L2r
x
‖Rκ ′C±2

d ϕλ2‖Lr
t Lr/(r−1)

x

.

(
d
λ2

)−b−4δ(
λ2

µ

)1/2a−1/4−4δ

Aδ(µ1/2
‖φµ‖V 2

+,1
‖ψλ1‖V 2

±1,M
‖ϕ‖Y

±2,M
λ2

)1−δ. (51)

Here, we have used two estimates, which require further explanation. First, Lr

interpolation together with Bernstein’s inequality implies

‖Rκ ′C±2
d ϕλ2‖Lr

t Lr/(r−1)
x

.

(
d
λ2

)−1/2

λ
2/r−3/2
2 (λ

−1/2
2 ‖Rκ ′C±2

d ϕλ2‖L4
t,x
)δ0(d−1/a

‖Rκ ′C±2
d ϕλ2‖La

t L2
x
)1−δ0,

with δ0 ∈ (0, 1) satisfying 1/r = δ0/4 + (1− δ0)/a. Then, by writing C±2
d ϕλ2 as

a superposition of free waves and applying the Strichartz estimate and Hölder’s
inequality, we obtain

λ
−1/2
2 ‖Rκ ′C±2

d ϕλ2‖L4
t,x
. d1/a

‖Rκ ′C±2
d ϕλ2‖La

t L2
x
.
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We conclude that for all 0 < δ < δ0

‖Rκ ′C±2
d ϕλ2‖Lr

t Lr/(r−1)
x

.

(
d
λ2

)−1/2−b

λ
1/a−1
2 (λ

−1/2
2 ‖ϕλ2‖L4

t,x
)δ‖ϕ‖1−δ

Y
±2,M
λ2

,

since Rκ ′C±2
d is uniformly disposable here. The second estimate used above is the

following: Since 5
3 < a < 2 we have via [6, Lemma 8.6] for every 0 < δ < 1

2( ∑
q∈Qλ2

∑
κ∈Cα

‖Rκ PqC±1
.dψλ1‖

2
L2r/(r−1)

t L2r
x

)1/2

. (µλ2)
1/2−1/2r

( ∑
q∈Qλ2

∑
κ∈Cβ

(λ
−1/2
1 ‖ψλ1‖L4

t,x
)2δ‖ψλ1‖

2−2δ
V 2
±1,M

)1/2

.

(
λ2

µ

)−2δ( d
λ2

)−2δ

(µλ2)
3/8−1/4a(λ

−1/2
1 ‖ψλ1‖L4

t,x
)δ‖ψλ1‖

1−δ
V 2
±1,M

together with a similar bound for the φµ term. Thus summing up over λ−1
2 .

d . λ2 and choosing δ > 0 sufficiently small (depending on both a and %), we
get an acceptable bound for the A2 term.

We also require a bound for the A2 component without using the Y±,Mλ norm.
To this end, we note that for every δ > 0 we have the weaker bound∣∣∣∣ ∫

R1+3
A2 dx dt

∣∣∣∣
. β

∑
q,q ′′∈Cλ2
|q−q ′′|≈λ2

∑
κ,κ ′′∈Cα
|±1κ−κ

′′
|.α

∑
κ ′∈Cβ

|±1κ−±2κ
′
|.β

‖Rκ ′′Pq ′′C+.dφµ‖L4
t,x

· ‖Rκ PqC±1
.dψλ1‖L4

t,x
‖Rκ ′C±2

d ϕλ2‖L2
t,x

.

(
d
λ2

)−4δ(
λ2

µ

)−4δ

(‖φµ‖L4
t,x
λ
−1/2
1 ‖ψλ1‖L4

t,x
)δ

· (µ1/2
‖φµ‖V 2

+,1
‖ψλ1‖V 2

±1,M
)1−δ‖ϕλ2‖V 2

±2,M
. (52)

To gain a power of the L4
t,x norm of ϕλ2 , we exploit the Klein–Gordon Strichartz

estimates as previously, which gives for 10
3 6 r < 4 and δ > 0:∣∣∣∣ ∫

R1+3
A2 dx dt

∣∣∣∣
. β

∑
κ,κ ′∈Cα

|±1κ−±2κ
′
|.α

∑
κ ′∈Cβ

|±1κ−±2κ
′
|.β

‖C.d Rκ ′′φµ‖Lr
t,x
‖C.d Rκψλ1‖Lr

t,x
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· ‖Cd Rκ ′ϕλ2‖
3−8/r
L2

t,x
‖Cd Rκ ′ϕλ2‖

8/r−2
L4

t,x

.

(
d
λ2

)4/r−1+δ(
λ2

µ

)−1/2−2δ

λ
8/r−2
2 µ1/2

‖φµ‖V 2
+,1
‖ψλ1‖V 2

±1,M

· (λ
−1/2
1 ‖ϕλ2‖L4

t,x
)8/r−2

‖ϕλ2‖
3−8/r
V 2
±2,M

.

Combining these bounds and summing up with respect to λ−1
2 . d . λ2, we

obtain an acceptable contribution for the A2 term.

Case 3: µ � λ1 ≈ λ2 and d � µ. To bound the A0 component, we first observe
that

∫
R1+3 A0 6= 0 implies d ≈ M±1,±2 . In particular, since either M±1,±2 . µ or

M±1,±2 ≈ λ1, the sum over the modulation is restricted to d & λ1. If we now apply
Theorem 5 with γ = 1

8 we see that

∣∣∣∣ ∫
R1+3

A0 dx dt
∣∣∣∣

. ‖C+d φµ‖L2
t,x
‖Pµ[(C±1

�dψλ1)
†γ 0C±2

�dϕλ2]‖L2
t,x

.

(
d
λ1

)−1/2(
µ

λ1

)1/4

µ1/2
‖φµ‖V 2

+,1

· (λ
−1/2
1 ‖ψλ1‖L4

t,x
λ
−1/2
1 ‖ϕλ2‖L4

t,x
)1/8(‖ψλ1‖V 2

±1,M
‖ϕλ2‖V 2

±2,M
)7/8.

On the other hand, using the Klein–Gordon Strichartz estimates, and noting that
the C�d multipliers are now disposable, we have for 10

3 6 r < 4 the estimate

∣∣∣∣ ∫
R1+3

A0 dx dt
∣∣∣∣ 6 ‖Cdφµ‖Lr/(r−2)

t,x
‖ψλ1‖Lr

t,x
‖ϕλ2‖Lr

t,x

.

(
d
µ

)4/r−1

µ8/r−2
‖φµ‖

8/r−2
L4

t,x

· (µ1/2
‖φµ‖V 2

+,1
)3−8/r

‖ψλ1‖V 2
±1,M
‖ϕλ2‖V 2

±2,M
. (53)

In particular, interpolating between these bounds and summing up over d & λ1

gives an acceptable contribution for the A0 term.
The bound for the A1 term is slightly different as we no longer have M±1,±2 ≈ d ,

and thus have to consider the full region d � µ. We first deal with the region
d & λ1. Here we argue as usual by controlling the integral by L4

× L2
× L4,

which gives for every 0 < δ 6 1
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R1+3

A1 dx dt
∣∣∣∣

. ‖φµ‖L4
t,x

∑
q,q ′∈Qµ

|q−q ′|.µ

‖PqCdψλ1‖L2
t,x
‖Pq ′ϕλ2‖L4

t,x

.

(
d
λ1

)−1/2(
µ

λ1

)1/4−2δ

‖φµ‖L4
t,x
‖ψλ2‖V 2

±1,M
(λ
−1/2
1 ‖ϕλ2‖L4

t,x
)δ‖ϕλ2‖

1−δ
V 2
±2,M

, (54)

where we controlled the square sum as previously via an estimate analogous to
(46). To gain an L4

t,x norm of ψ , we again exploit the Klein–Gordon Strichartz
estimate and observe that for 10

3 6 r < 4 we have∣∣∣∣ ∫
R1+3

A1 dx dt
∣∣∣∣

. ‖φµ‖Lr
t,x
‖Cdψλ1‖

3−8/r
L2

t,x
‖Cd Rκψλ1‖

8/r−2
L4

t,x
‖ϕλ2‖Lr

t,x

.

(
d
λ1

)4/r−3/2

λ
8/r−2
1 µ1/2

‖φµ‖V 2
+,1
‖ϕλ2‖V 2

±2,M
(λ
−1/2
1 ‖ψλ1‖L4

t,x
)8/r−2

‖ψλ1‖
3−8/r
V 2
±1,M

.

(55)

Combining bounds (54) and (55), and summing up over modulation, we deduce
the required bound for A1 in the region d & λ1.

We now consider the case µ� d � λ1. This implies that M±1,±2 � λ1, which
is only possible if ±1 = ±2. The key point is that we may now exploit the null
structure in the product of the spinors ψ and ϕ, since we gain θ(ξ, η), and the
angle between the supports of ψ̂ and φ̂ is less than µ/λ1. In particular, exploiting
the standard null structure bound implies that we may improve (54) to∣∣∣∣ ∫

R1+3
A1 dx dt

∣∣∣∣
.

(
d
λ1

)−1/2(
µ

λ1

)5/4−2δ

‖φµ‖L4
t,x
‖ψλ2‖V 2

±1,M
(λ
−1/2
1 ‖ϕλ2‖L4

t,x
)δ‖ϕλ2‖

1−δ
V 2
±2,M

. (56)

Again combining this bound with (55), and summing up over µ � d � λ1, the
required bound for the A1 term follows. The A2 term follows from an identical
argument.

Case 4: µ & min{λ1, λ2} and d & min{λ1, λ2}. It is enough to consider the case
λ1 > λ2. To estimate the A0 term, we first observe that as in the previous case, we
may restrict the sum over modulation to d & µ. If we now observe that
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R1+3

A0 dx dt
∣∣∣∣ . ‖C+d φµ‖L2

t,x
‖ψλ1‖L4

t,x
‖ϕλ2‖L4

t,x

.

(
d
µ

)−1/2(
λ2

µ

)1/2

µ1/2
‖φµ‖V 2

+,1
λ
−1/2
1 ‖ψλ1‖L4

t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x

(57)

then, together with (53), summing up over d & µ gives the required bound for the
A0 term.

If we suppose that d & µ, then a similar argument handles the A1 term. Again
supposing that d & µ, to bound the A2 term, we decompose into cubes of diameter
µ to obtain ∣∣∣∣ ∫

R1+3
A2 dx dt

∣∣∣∣
.

∑
q,q ′∈Qλ2
|q−q ′′|≈µ

‖Pq ′′φµ‖L4
t,x
‖Pqψλ1‖L4

t,x
‖C±2

d ϕλ2‖L2
t,x

.

(
d
µ

)−1/2(
λ2

µ

)1/2−4δ

(‖φµ‖L4
t,x
λ
−1/2
1 ‖ψλ1‖L4

t,x
)δ

· (µ1/2
‖φµ‖V 2

+,1
‖ψλ1‖V 2

±1,M
)1−δ‖ϕλ2‖V 2

±2,M
. (58)

An analogous estimate to (55) then gives an additional L4
t,x norm of ϕλ2 . This

gives an acceptable bound when d & µ.
It remains to bound the A1 and A2 terms when λ2 � d � µ. We first recall that

either M±1,±2 ≈ λ1 or M±1,±2 . λ2. Hence the restriction λ2 � d � µ implies
that M±1,±2 � d and consequently, a short computation shows that at least two of
the functions φ, ψ , and ϕ must have large modulation. More precisely, we have
the decomposition∫

R1+3
A1 dx dt =

∫
R1+3

C≈dφµ(C±1
d ψλ1)

†γ 0C±2
.dϕλ2 dx dt

+

∫
R1+3

C�dφµ(C±1
d ψλ1)

†γ 0C±2
≈dϕλ2 dx dt. (59)

To bound the first term in (59), we observe that∣∣∣∣ ∫
R1+3

C≈dφµ(C±1
d ψλ1)

†γ 0C±2
.dϕλ2 dx dt

∣∣∣∣
. ‖C≈dφµ‖L2

t,x
‖C±1

d ψλ1‖L2
t,x
‖C±2

.dϕλ2‖L∞t,x

.

(
d
λ2

)−1(
λ2

µ

)1/2

µ1/2
‖φµ‖V 2

+,1
‖ψλ1‖V 2

±1,M
‖ϕλ2‖V 2

±2,M
.
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On the other hand, to bound the second term in (59), we decompose into cubes of
size λ2 and apply Bernstein’s inequality, which gives for every ε > 0∣∣∣∣ ∫

R1+3
C�dφµ(C±1

d ψλ1)
†γ 0C±2

.dϕλ2 dx dt
∣∣∣∣

.
∑

q,q ′∈Qλ2
|q−q ′|.λ2

‖C�d Pq ′φµ‖L∞t,x‖PqC±1
d ψλ1‖L2

t,x
‖C±2
≈dϕλ2‖L2

t,x

.

(
d
λ2

)−1(
λ2

µ

)1/2−ε

µ1/2
‖φµ‖V 2

+,1
‖ψλ1‖V 2

±1,M
‖ϕλ2‖V 2

±2,M
.

Thus we deduce that for λ2 � d � µ and µ ≈ λ1 & λ2 we have∣∣∣∣ ∫
R1+3

A1 dx dt
∣∣∣∣ . (

d
λ2

)−1(
λ2

µ

)1/4

µ1/2
‖φµ‖V 2

+,1
‖ψλ1‖V 2

±1,M
‖ϕλ2‖V 2

±2,M
. (60)

To gain powers of the L4
t,x norm, we simply use an analogous bound to (57) and

(53). Thus summing up over λ2 � d � µ then gives the required bound for the
A1 term.

We now consider the A2 term in the region λ2 � d � µ. As in the argument
for the A1 term, we have the decomposition∫

R1+3
A2 dx dt =

∫
R1+3

C≈dφµ(C±1
.dψλ1)

†γ 0C±2
d ϕλ2 dx dt

+

∫
R1+3

C�dφµ(C±1
≈dψλ1)

†γ 0C±2
d ϕλ2 dx dt. (61)

The first term in (61) can be handled in an analogous manner to the second term in
(59). Namely, decomposing into cubes and applying Bernstein’s inequality gives
for every ε > 0∣∣∣∣ ∫

R1+3
C≈dφµ(C±1

.dψλ1)
†γ 0C±2

d ϕλ2 dx dt
∣∣∣∣

.
∑

q,q ′∈Qλ2
|q−q ′|.λ2

‖C≈d Pq ′φµ‖L2
t,x
‖PqC±1

d ψλ1‖L∞t,x‖C
±2
≈dϕλ2‖L2

t,x

.

(
d
λ2

)−1(
λ2

µ

)1/2−ε

µ1/2
‖φµ‖V 2

+,1
‖ψλ1‖V 2

±1,M
‖ϕλ2‖V 2

±2,M
.

Applying an identical argument to the second term in (61), we deduce that∣∣∣∣ ∫
R1+3

A2 dx dt
∣∣∣∣ . (

d
λ2

)−1(
λ2

µ

)1/4

µ1/2
‖φµ‖V 2

+,1
‖ψλ1‖V 2

±1,M
‖ϕλ2‖V 2

±2,M
. (62)

https://doi.org/10.1017/fms.2018.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.8


Conditional large data scattering for DKG 35

Together with the standard bound (58) and the A2 version of (55), after
summing up over λ2 � d � µ we deduce the final bound required for the A2

component.

6.2. Proof of Theorem 7. The first step is to obtain frequency localized
versions of the required bounds. Namely, if % > 0 is sufficiently small and we take
1/a = 1

2 + %/32 and b = 4(1/a − 1
2 ), our aim is to show there exists 0 < θ1 <

1
4

such that for all 0 6 θ 6 θ1 we have for the Dirac Duhamel term, the bounds

‖Π±1 Pλ1I±1,M(φµγ
0Π±2ϕλ2)‖V 2

±1,M

. (min{µ, λ2})
%

(
min{µ, λ2}

max{µ, λ2}

)%/100

(‖φµ‖L4
t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
)θ

· (µ1/2
‖φµ‖V 2

+,1
‖ϕ‖F

±2,M
λ2

)1−θ (63)

and

‖Π±1I±1,M(φµγ
0Π±2ϕλ2)‖Y

±1,M
λ1

. (min{µ, λ2})
%

(
min{µ, λ2}

max{µ, λ2}

)%/100

(‖φµ‖L4
t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
)θ

· (µ1/2
‖φµ‖V 2

+,1
‖ϕλ2‖V 2

±2,M
)1−θ , (64)

while for the wave Duhamel term, we have

µ−1/2
‖PµI+,1(Π±1ψλ1Π±2ϕλ2)‖V 2

+,1

. (min{µ, λ1, λ2})
%

(
min{µ, λ1, λ2}

max{µ, λ1, λ2}

)%/100

(λ
−1/2
1 ‖ψλ1‖L4

t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
)θ

· (‖ψ‖F
±1,M
λ1
‖ϕ‖F

±2,M
λ2

)1−θ . (65)

Assuming bounds (63), (64), and (65) for the moment, the estimates in Theorem 7
are a consequence of a straightforward summation argument. More precisely, fix
s0 > 0 sufficiently small. We have

‖Π±1I±1,M(φγ 0Π±2ϕλ2)‖Vs0
±1,M

.
∑
λ1

λs0
1

( ∑
µ,λ2

µ≈λ2�λ1

‖Pλ1Π±1I±1,M(φµγ
0Π±2ϕλ2)‖V 2

±1,M

+

∑
µ,λ2

λ1≈max{µ,λ2}

‖Pλ1Π±1I±1,M(φµγ
0Π±2ϕλ2)‖V 2

±1,M

)
.
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An application of (63) with % = 100
101 s0 gives 0 < θ0 <

1
2 such that for all 0 < θ <

min{θ0,
1

202 } we have

‖Π±1I±1,M(φγ 0Π±2ϕλ2)‖Vs0
±1,M

.

(
sup
µ,λ2

(‖φµ‖L4
t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
)θ (µ1/2+s0‖φµ‖V 2

+,1
λs0

2 ‖ϕ‖F
±2,M
λ2

)(1−θ)
)

·

(∑
λ1

∑
µ�λ1

λ
−(1/101−2θ)s0
1

(
µ

λ1

)−(102/101−2θ)s0

+

∑
λ1

∑
µ.λ1

λ
−(1/101−2θ)s0
1

(
µ

λ1

)θs0
)

. sup
µ,λ2

(‖φµ‖L4
t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
)θ (µ1/2+s0‖φµ‖V 2

+,1
λs0

2 ‖ϕ‖F
±2,M
λ2

)(1−θ).

Thus we obtain (34) in the case s = s0. The general case s > s0 follows by using
the fact that λs

1 . λ
s0
1 (max{µ, λ2})

s−s0 . An identical argument using (64) gives the
Ys
±1,M bound (35). Similarly the bound (36) follows from (65).
We now turn to the proof of estimates (63), (64), and (65). It is enough to

consider the case θ = θ1, as the L4
t,x terms are dominated by the corresponding V 2

norms. Bounds (63) and (65) follow directly from Theorem 8 together with (24).
On the other hand, the argument used to obtain (64) is slightly more involved.
We start by considering the case µ . λ2. An application of the Klein–Gordon
Strichartz estimate gives for every ε > 0:

d3/5

(
min{d, λ1}

λ1

)1−3/5

‖Pλ1C
±1,M
d I±1,M(φµγ

0Π±2ϕλ2)‖L5/3
t L2

x

. λ−2/5
1

∥∥∥∥( ∑
q∈Qµ

‖φµPqϕλ2‖
2
L2

x

)1/2∥∥∥∥
L5/3

t

. λ−2/5
1 ‖φµ‖L10/3

t,x

( ∑
q∈Qµ

‖Pqϕλ2‖
2
L10/3

t L5
x

)1/2

. λ−2/5
1 (µλ2)

3/10

(
µ

λ2

)−ε
µ1/2
‖φµ‖V 2

+,1
‖ϕλ2‖V 2

±2,M
.

As we may assume that max{µ, λ1} ≈ λ2, by choosing ε > 0 small, we deduce
that

d3/5

(
min{d, λ1}

λ1

)1−3/5

‖Pλ1C
±1,M
d I±1,M(φµγ

0Π±2ϕλ2)‖L5/3
t L2

x

. µ1/5

(
µ

λ2

)1/11

µ1/2
‖φµ‖V 2

+,1
‖ϕλ2‖V 2

±2,M
. (66)
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On the other hand, an application of (37) in Theorem 8 gives

d1/2
‖Pλ1C

±1,M
d I±1,M(φµγ

0Π±2ϕλ2)‖L2
t,x

. ‖Pλ1Π±1I±1,M(φµγ
0Π±2ϕλ2)‖V 2

±1,M

. µ%/2
(
µ

λ2

)1/10

(‖φµ‖L4
t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
)θ0(µ1/2

‖φµ‖V 2
+,1
‖ϕλ2‖V 2

±2,M
)1−θ0 . (67)

Hence (64) in the region µ . λ2 follows by interpolating between (66) and (67)
and using the condition 1/a = 1

2 + %/32.
We now consider the case µ � λ2. For this frequency interaction, Theorem 8

requires a Y±,Mλ2
norm on the right-hand side. Thus, as our goal is to obtain a bound

only using the V 2
±,M norms, we have to work a little harder. We start by writing

the product as

φµγ
0Π±2ϕλ2 =

(
φµγ

0Π±2ϕλ2 −

∑
d ′.λ2

C±1,M
6d ′ (C6d ′φµγ

0C±2
d ′ ϕλ2)

)
+

∑
d ′.λ2

C±1,M
6d ′ (C6d ′φµγ

0C±2
d ′ ϕλ2). (68)

The first term can be bounded by adapting the argument used in the case µ . λ2
as here (38) in Theorem 8 gives a bound without using the Y±,Mλ2

norm. More
precisely, letting β = (d ′/λ2)

1/2 and exploiting the null structure, we have

d3/5

(
d
λ1

)1−3/5∥∥∥∥Pλ1C
±1
d I±1,M

( ∑
d ′.λ2

C±1,M
6d ′ (C6d ′φµγ

0C±2
d ′ ϕλ2)

)∥∥∥∥
L5/3

t L2
x

. µ−2/5
∑

d ′.λ2

∥∥∥∥( ∑
κ,κ ′∈Cβ
|κ−κ ′|.β

‖RκΠ±1(C6d ′φµγ
0 Rκ ′C±2

d ′ ϕλ2)‖
2
L2

x

)1/2∥∥∥∥
L5/3

t

. µ−2/5
∑

d ′.λ2

β‖C6d ′φµ‖L10/3
t,x

( ∑
κ ′∈Cβ

‖Rκ ′C±2
d ′ ϕλ2‖

2
L10/3

t L5
x

)1/2

. λ1/5
2

(
λ2

µ

)2/5

µ1/2
‖φµ‖V 2

+,1
‖ϕλ2‖V 2

±2,M
.

Consequently, applying a similar argument to the φµγ 0Π±2ϕλ2 component, we
deduce that

d3/5

(
d
λ1

)1−3/5∥∥∥∥Pλ1C
±1
d I±1,M

(
φµγ

0Π±2ϕλ2 −

∑
d ′.λ2

C±1,M
6d ′ (C6d ′φµγ

0C±2
d ′ ϕλ2)

)∥∥∥∥
L5/3

t L2
x

. λ1/5
2

(
λ2

µ

)2/5

µ1/2
‖φµ‖V 2

+,1
‖ϕλ2‖V 2

±2,M
.
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On the other hand, an application of Theorem 8 gives

d1/2

∥∥∥∥Pλ1C
±1
d I±1,M

(
φµγ

0Π±2ϕλ2 −

∑
d ′.λ2

C±1,M
6d ′ (C6d ′φµγ

0C±2
d ′ ϕλ2)

)∥∥∥∥
L2

t,x

.

∥∥∥∥Pλ1Π±1I±1,M

(
φµγ

0Π±2ϕλ2 −

∑
d ′.λ2

C±1,M
6d ′ (C6d ′φµγ

0C±2
d ′ ϕλ2)

)∥∥∥∥
V 2
±1,M

. λ%/22

(
λ2

µ

)1/10

(‖φµ‖L4
t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
)θ0(µ1/2

‖φµ‖V 2
+,1
‖ϕλ2‖V 2

±2,M
)1−θ0

and therefore interpolating as before gives the required bound for the first term
in the decomposition (68). It remains to bound the second term in (68). Let 1 <
r < a. Exploiting the null structure and decomposing φµ into caps of size α =
(d ′λ2/µ

2)1/2 and ϕλ2 into caps of size β = (d ′/λ2)
1/2, we deduce that for all 0 <

θ < 1
4 and max{d, λ−1

2 } . d ′ . λ2 we have

‖Pλ1C
±1
d C±1,M

6d ′ (C6d ′φµγ
0C±2

d ′ ϕλ2)‖La
t L2

x

. d1/r−1/a

∥∥∥∥( ∑
q∈Qλ2

∑
κ,κ ′′∈Cα
|κ−κ ′′|.α

∑
κ ′∈Cβ
|κ−κ ′|.β

· ‖Pλ1 RκΠ±1(C6d ′Rκ ′′Pqφµγ
0C±2

d ′ Rκ ′ϕλ2)‖
2
L2

x

)1/2∥∥∥∥
Lr

t

. d1/r−1/aβ

( ∑
q∈Qλ2

∑
κ ′′∈Cα

‖C6d ′Rκ ′′ Pqφµ‖
2
L2r

t L2r/(r−1)
x

)1/2( ∑
κ ′∈Cβ

‖C±2
d ′ Rκ ′ϕλ2‖

2
L2r

t,x

)1/2

. d1/r−1/aµ1−1/r

(
λ2

µ

)3/2−3/2r−6θ( d ′

λ2

)1−1/r−2θ

· (‖φµ‖L4
t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
)θ (µ1/2

‖φµ‖V 2
+,m
‖ϕλ2‖V 2

±2,M
)1−θ , (69)

where we used the bounds( ∑
κ ′′∈Cα

∑
q∈Qλ2

‖C6d ′Rκ ′′ Pqφµ‖
2
L2r

t L2r/(r−1)
x

)1/2

. λ1/r−1/2
2 α−2θ

(
λ2

µ

)1/2−1/2r−4θ

‖φµ‖
θ

L4
t,x
(µ1/2
‖φµ‖V 2

+,m
)1−θ

and( ∑
κ ′∈Cβ

‖C±2
d ′ Rκ ′ϕλ2‖

2
L2r

t,x

)1/2

. β−θλ
1−1/r
2 (d ′)1/2−1/r (λ

−1/2
2 ‖ϕλ2‖L4

t,x
)θ‖ϕλ2‖

1−θ
V 2
±2,M

,
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which, similar to (46), hold for all sufficiently small θ > 0 and follow from L p

interpolation, Lemma 3, an application of Hölder’s inequality, and the square sum
bound for V 2. An application of (43) implies that after restricting the output to
modulation d , the sum over the modulation is only over the region max{d, λ−1

2 } .
d ′ . λ2. Consequently, summing up (69) we deduce that for 1 < r < a and θ > 0
sufficiently small∥∥∥∥Pλ1C

±1
d I±1,M

( ∑
d ′.λ2

C±1,M
6d ′ (C6d ′φµγ

0C±2
d ′ ϕλ2)

)∥∥∥∥
La

t L2
x

. d−1
∑

max{d,λ−1
2 }.d ′.λ2

‖Pλ1C
±1
d (C6d ′φµγ

0C±2
d ′ ϕλ2)‖La

t L2
x

. d1/r−1/a−1µ1−1/r

(
λ2

µ

)3/2−3/2r−6θ ∑
max{d,λ−1

2 }.d ′.λ2

(
d ′

λ2

)1−1/r−2θ

· (‖φµ‖L4
t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
)θ (µ1/2

‖φµ‖V 2
+,m
‖ϕλ2‖V 2

±2,M
)1−θ

. d−1/a

(
d
µ

)1/r−1(
λ2

µ

)1−1/r

· (‖φµ‖L4
t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
)θ (µ1/2

‖φµ‖V 2
+,m
‖ϕλ2‖V 2

±2,M
)1−θ . (70)

Therefore, taking 1/r = 1− 4(1/a− 1
2 ) we obtain (64). This completes the proof

of Theorem 7.

7. Multilinear estimates in the critical case

In this section, we consider the scale-invariant regime with a small amount of
angular regularity. Here, after rescaling, we have m = 1 and M > 0.

THEOREM 9. Let M > 0 and σ > 0. There exist 0 < θ < 1, 1 < a < 2, and
b > 0 such that for all s > 0

‖Π±1I±1,M(φγ 0Π±2ϕ)‖Vs,σ
±1,M

.

(
sup
µ,λ2>1

‖φµ‖Ds
σ
‖ϕλ2‖D−1/2

σ

)θ
(‖φ‖Vs+1/2,σ

+,1
‖ϕ‖F0,σ

±2,M
)1−θ

+

(
sup
µ,λ2>1

‖φµ‖D0
σ
‖ϕλ2‖Ds−1/2

σ

)θ
(‖φ‖V1/2,σ

+,1
‖ϕ‖Fs,σ

±2,M
)1−θ (71)
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and

‖Π±1I±1,M(φγ 0Π±2ϕ)‖Ys,σ
±1,M

.

(
sup
µ,λ2>1

‖φµ‖Ds
σ
‖ϕλ2‖D−1/2

σ

)θ
(‖φ‖Vs+1/2,σ

+,1
‖ϕ‖V0,σ

±2,M
)1−θ

+

(
sup
µ,λ2>1

‖φµ‖D0
σ
‖ϕλ2‖Ds−1/2

σ

)θ
(‖φ‖V1/2,σ

+,1
‖ϕ‖Vs,σ

±2,M
)1−θ . (72)

Similarly,

‖〈∇〉
−1I+,1(Π±1ψΠ±2ϕ)‖Vs+1/2,σ

+,1

.

(
sup
λ1,λ2>1

‖ψλ1‖Ds−1/2
σ
‖ϕλ2‖D−1/2

σ

)θ
(‖ψ‖Fs,σ

±1,M
‖ϕ‖F0,σ

±2,M
)1−θ

+

(
sup
λ1,λ2>1

‖ψλ1‖D−1/2
σ
‖ϕλ2‖Ds−1/2

σ

)θ
(‖ψ‖F0,σ

±1,M
‖ϕ‖Fs,σ

±2,M
)1−θ . (73)

The proof will be postponed to Section 7.2.

7.1. The trilinear estimate. To obtain the L4
t,x norms in Theorem 9, we use

the following consequence of Theorem 6, which gives the required L4
t,x at a cost

of modulation and high–low factors. However, as we have room in our estimates,
we can always absorb a small power of this loss elsewhere, which is sufficient to
obtain the required Strichartz norms in Theorem 9.

LEMMA 5. Let d > 0 and for j = 1, 2, 3, let m j > 0 and λ j , N j > 1. If σ > 0
there exists θ > 0 such that∣∣∣∣ ∫

R1+3
C±1,m1

d uλ1,N1vλ2,N2wλ3,N3 dx dt
∣∣∣∣

. N σ
min

(
min{d, λ1}

λ1

)−1/2−σ

λ−1
min(‖uλ1,N1‖L4

t,x
‖vλ2,N3‖L4

t,x
‖wλ3,N3‖L4

t,x
)θ

· ((λ1λ2λ3)
1/2
‖uλ1,N1‖V 2

±1,m1
‖vλ2,N2‖V 2

±2,m2
‖wλ3,N3‖V 2

±3,m3
)1−θ ,

where λmin = min{λ1, λ2, λ3} and Nmin = min{N1, N2, N3}.

Proof. We first observe that an application of Hölder’s inequality gives∣∣∣∣ ∫
R1+3

C±1,m1
d uλ1,N1vλ2,N2wλ3,N3 dx dt

∣∣∣∣
6 ‖C±1,m1

d uλ1,N1‖L2
t,x
‖vλ2,N2‖L4

t,x
‖wλ3,N3‖L4

t,x
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. d−1/2
‖uλ1,N1‖V 2

±1,m1
‖vλ2,N2‖L4

t,x
‖wλ3,N3‖L4

t,x

.

(
min{d, λ1}

λ1

)−1/2

λ−1
minλ

1/2
1 ‖uλ1,N1‖V 2

±1,m1
‖vλ2,N2‖L4

t,x
‖wλ3,N3‖L4

t,x
. (74)

Thus it only remains to show we can gain a power of the L4
t,x norm of uλ1,N1 . To

this end, we first consider the case where N2 = Nmin. An application of the wave
Strichartz estimate with angular regularity in Lemma 3 gives for 3 < p < 4:∣∣∣∣ ∫

R1+3
C±1,m1

d uλ1,N1vλ2,N2wλ3,N3 dx dt
∣∣∣∣

6 ‖C±1,m1
d uλ1,N1‖

4/p−1
L4

t,x
‖C±1,m1

d uλ1,N1‖
2−4/p
L2

t,x
‖vλ2,N2‖L p

t,x
‖wλ3,N3‖L4

t,x

.

(
min{d, λ1}

λ1

)−5/2(4/p−1)

‖uλ1,N1‖
4/p−1
L4

t,x
(d−1/2

‖uλ1,N1‖V 2
±1,m1

)2−4/p

· N2λ
3/2−4/p
2 ‖vλ2,N2‖V 2

±2,m2
λ

1/2
3 ‖wλ3,N3‖V 2

±3,m3

.

(
min{d, λ1}

λ1

)−3/2 Nmin

λmin
‖uλ1,N1‖

4/p−1
L4

t,x
(λ

1/2
1 ‖uλ1,N1‖V 2

±1,m1
)2−4/p

· λ
1/2
2 ‖vλ2,N2‖V 2

±2,m2
λ

1/2
3 ‖wλ3,N3‖V 2

±3,m3
, (75)

where to remove the C±1,m1
d multiplier from the L4

t,x norm, we let α =
(min{d, λ1}/λ1)

1/2 and apply Lemma 2 to deduce that

‖C±1,m1
d uλ1,N1‖L4

t,x
6
∑
κ∈Cα

∑
q∈Q

αλ2

‖C±1,m1
d Rκ Pquλ1,N1‖L4

t,x

. α−2((αλ)−3
+ 1)‖uλ1,N1‖L4

t,x

.

(
min{d, λ1}

λ1

)−5/2

‖uλ1,N1‖L4
t,x
. (76)

If we combine (74) and (75) we deduce that∣∣∣∣ ∫
R1+3

C±1,m1
d uλ1,N1vλ2,N2wλ3,N3 dx dt

∣∣∣∣
.

[(
min{d, λ1}

λ1

)−1/2

λ−1
minλ

1/2
1 ‖uλ1,N1‖V 2

±1,m1
‖vλ2,N2‖L4

t,x
‖wλ3,N3‖L4

t,x

]1−σ

·

[(
min{d, λ1}

λ1

)−3/2

λ−1
min Nmin‖uλ1,N1‖

4/p−1
L4

t,x

· (λ
1/2
1 ‖uλ1,N1‖V 2

±1,m1
)2−4/pλ

1/2
2 ‖vλ2,N2‖V 2

±2,m2
λ

1/2
3 ‖wλ3,N3‖V 2

±3,m3

]σ
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. N σ
min

(
min{d, λ1}

λ1

)−3/2

λ−1
min(‖uλ1,N1‖L4

t,x
‖vλ2,N3‖L4

t,x
‖wλ3,N3‖L4

t,x
)σ(4/p−1)

· ((λ1λ2λ3)
1/2
‖uλ1,N1‖V 2

±1,m1
‖vλ2,N2‖V 2

±2,m2
‖wλ3,N3‖V 2

±3,m3
)1−σ(4/p−1)

as required. A similar argument gives the case N3 = Nmin. Thus it remains to
consider N1 = Nmin. It is also straightforward to deal with the case λ2 ≈ 1,
since we may then apply the Klein–Gordon Strichartz estimate. More precisely,
an application of Lemma 4 to vλ2,N2 together with Lq

t,x interpolation, gives for
10
3 6 p < 4:∣∣∣∣ ∫

R1+3
C±1,m1

d uλ1,N1vλ2,N2wλ3,N3 dx dt
∣∣∣∣

6 ‖C±1,m1
d uλ1,N1‖

4/p−1
L4

t,x
‖C±1,m1

d uλ1,N1‖
2−4/p
L2

t,x
‖vλ2,N2‖L p

t,x
‖wλ3,N3‖L4

t,x

.

(
min{d, λ1}

λ1

)−(5/2)(4/p−1)

λ
1/2
3 ‖uλ1,N1‖

4/p−1
L4

t,x
(d−1/2

‖uλ1,N1‖V 2
±1,m1

)2−4/p

· ‖vλ2,N2‖V 2
±2,m2
‖wλ3,N3‖V 2

±3,m3

.

(
min{d, λ1}

λ1

)3/2−8/p

λ−1
min‖uλ1,N1‖

4/p−1
L4

t,x
(λ

1/2
1 ‖uλ1,N1‖V 2

±1,m1
)2−4/p

· λ
1/2
2 ‖vλ2,N2‖V 2

±2,m2
λ

1/2
3 ‖wλ3,N3‖V 2

±3,m3
, (77)

where we applied bound (76). Combining (74) and (77) we obtain the required
bound in the case where λ2 ≈ 1. A similar argument gives the case λ3 ≈ 1.

It remains to gain a power of the L4 norm of uλ1,N1 , in the case where Nmin = N1

and λ2, λ3 � 1. Clearly we may also assume that λ2 > λ3. In this region we apply
the bilinear restriction estimate to deduce the required bound. The first step is to
observe that, as either λ1 � λ2 ≈ λ3 or λ1 ≈ max{λ2, λ3}, an angular Whitney
type decomposition gives the identity∫

R1+3
C±1,m1

d uλ1,N1vλ2,N2wλ3,N3 dx dt

=

∑
1/λ3.`.max{1,λ1/λ3}

∑
κ,κ ′∈C`

|±2κ−±3κ
′
|≈`

∫
R1+3

C±1,m1
d uλ1,N1 Rκvλ2,N2 Rκ ′wλ3,N3 dx dt

+

∑
κ,κ ′∈C1/λ3

|±2κ−±3κ
′
|.1/λ3

∫
R1+3

C±1,m1
d uλ1,N1 Rκvλ2,N2 Rκ ′wλ3,N3 dx dt. (78)
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To estimate the first term in (78), we note that as we may restrict the support of
ûλ1,N1 to lie in the set

{−(ξ + η) | ξ ∈ κ, η ∈ κ ′, |ξ | ≈ λ2, |η| ≈ λ3},

we have for κ, κ ′ ∈ C` with | ±2 κ −±3κ
′
| ≈ `:∫

R1+3
C±1,m1

d uλ1,N1 Rκvλ2,N2 Rκ ′wλ3,N3 dx dt

=

∑
κ ′′∈E

∫
R1+3

C±1,m1
d Rκ ′′uλ1,N1 Rκvλ2,N2 Rκ ′wλ3,N3 dx dt,

where E is the set of all κ ′′ ∈ C`(λ3/λ1) satisfying min{|κ ′′−κ|, |κ ′′+κ|}. `(λ3/λ1)}.
Notice that we have #E . 1. Consequently, applying Hölder’s inequality, the
angular concentration bound (28), and Theorem 6, we deduce that for κ, κ ′ ∈ C`
with | ±2 κ −±3κ

′
| ≈ ` and 3

2 < p < 2 we have∣∣∣∣ ∫
R1+3

C±1,m1
d uλ1,N1 Rκvλ2,N2 Rκ ′wλ3,N3 dx dt

∣∣∣∣
.

(
sup

κ ′′∈C`(λ3/λ1)
‖C±1,m1

d Rκ ′′uλ1,N1‖
4(1/p−1/2)
L4

t,x
‖C±1,m1

d Rκ ′′uλ1,N1‖
3−4/p
L2

t,x

)
· ‖Rκvλ2,N2 Rκ ′wλ3,N3‖L p

t,x

. N σ
1

(
`
λ3

λ1

)σ
`2−4/pλ

7/2−5/p−ε
3 λ

1/q−1/2+ε
2 ‖C±1,m1

d uλ1,N1‖
4(1/p−1/2)
L4

t,x

· (d−1/2
‖uλ1,N1‖V 2

±1,m1
)3−4/p

· ‖Rκvλ2,N2‖V 2
±2,m2
‖Rκ ′wλ3,N3‖V 2

±3,m3

. `σ+2−4/p N σ
1

(
min{d, λ1}

λ1

)7/2−8/p

λ−1
min‖uλ1,N1‖

4(1/p−1/2)
L4

t,x

· (λ
1/2
1 ‖uλ1,N1‖V 2

±1,m1
)3−4/p

· λ
1/2
2 ‖Rκvλ2,N2‖V 2

±2,m2
λ

1/2
3 ‖Rκ ′wλ3,N3‖V 2

±3,m3
,

where we again applied bound (76) to dispose of the Cd multiplier. Hence
summing up over caps, letting 1/p = 1

2 + σ/8, and applying the square sum
bound in V 2, we deduce that∑

1/λ3.`.max{1,λ1/λ3}

∑
κ,κ ′∈C`

|±2κ−±3κ
′
|≈`

∣∣∣∣ ∫
R1+3

C±1,m1
d uλ1,N1 Rκvλ2,N2 Rκ ′wλ3,N3 dx dt

∣∣∣∣
. N σ

1

(
min{d, λ1}

λ1

)−1/2−σ

λ−1
min‖uλ1,N1‖

σ/2
L4

t,x
(λ

1/2
1 ‖uλ1,N1‖V 2

±1,m1
)1−σ/2

· λ
1/2
2 ‖Rκvλ2,N2‖V 2

±2,m2
λ

1/2
3 ‖Rκ ′wλ3,N3‖V 2

±3,m3
.
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Together with (74), we obtain an acceptable bound for the first term in (78). To
bound the second term in (78), we apply a similar argument together with the
Klein–Gordon Strichartz estimate to deduce that for 5

3 < p < 2 we have

∑
κ,κ ′∈C1/λ3

|±2κ−±3κ
′
|.1/λ3

∣∣∣∣ ∫
R1+3

C±1,m1
d uλ1,N1 Rκvλ2,N2 Rκ ′wλ3,N3 dx dt

∣∣∣∣
.

∑
κ,κ ′∈C1/λ3

|±2κ−±3κ
′
|.1/λ3

sup
κ ′′∈C`(λ3/λ1)

‖C±1,m1
d Rκ ′′uλ1,N1‖

4(1/p−1/2)
L4

t,x
‖C±1,m1

d Rκ ′′uλ1,N1‖
3−4/p
L2

t,x

· ‖Rκvλ2,N2‖L2p
t,x
‖Rκ ′wλ3,N3‖L2p

t,x

. N σ
1

(
min{d, λ1}

λ1

)7/2−8/p

λ
8(1/p−1/2)−σ
1 λ−1

min‖uλ1,N1‖
4(1/p−1/2)
L4

t,x

· (λ
−1/2
1 ‖uλ1,N1‖V 2

±1,m1
)3−4/p

· λ
1/2
2 ‖vλ2,N2‖V 2

±2,m2
λ

1/2
3 ‖wλ3,N3‖V 2

±3,N3
.

Choosing 1/p = 1
2 + σ/8 as before and combining the resulting bound with (74),

the lemma follows.

We now give the proof of the main step in the proof of Theorem 9.

THEOREM 10. Let M > 1
2 , 0 < % � 1, 5

3 < a < 2, and 0 < b < %/4. Define

A = ‖φµ,N‖L4
t,x
λ
−1/2
1 ‖ψλ1,N1‖L4

t,x
λ
−1/2
2 ‖ϕλ2,N2‖L4

t,x
.

There exists θ0 ∈ (0, 1) such that, if µ . λ1 ∼ λ2 we have∣∣∣∣ ∫
R3+1

φµ,NΠ±1ψλ1,N1Π±2ϕλ2,N2 dx dt
∣∣∣∣

. N %

min

(
µ

λ1

)1/10

Aθ0(µ1/2
‖φµ,N‖V 2

+,1
‖ψλ1,N1‖V 2

±1,M
‖ϕλ2,N2‖V 2

±2,M
)1−θ0 . (79)

On the other hand, when µ ∼ λ1 � λ2 we have∣∣∣∣ ∫
R3+1

φµ,NΠ±1ψλ1,N1Π±2ϕλ2,N2 −

∑
λ−1

2 .d.λ2

C6dφµ,NC±1
6dψλ1,N1C

±2
d ϕλ2,N2 dx dt

∣∣∣∣
. N %

min

(
λ2

µ

)1/10

Aθ0(µ1/2
‖φµ,N‖V 2

+,1
‖ψλ1,N1‖V 2

±1,M
‖ϕλ2,N2‖V 2

±2,M
)1−θ0 (80)
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and∑
λ−1

2 .d.λ2

∣∣∣∣ ∫
R3+1

C6dφµ,NC±1
6dψλ1,N1C

±2
d ϕλ2,N2 dx dt

∣∣∣∣
. (min{N , N1})

%

(
λ2

µ

)1/10

Aθ0(µ1/2
‖φµ,N‖V 2

+,1
‖ψλ1,N1‖V 2

±1,M
‖ϕλ2,N2‖V 2

±2,M
)1−θ0 .

(81)

Moreover, if we also use the Y±,M norm, we have∑
λ−1

2 .d.λ2

∣∣∣∣ ∫
R3+1

C6dφµ,NC±1
6dψλ1,N1C

±2
d ϕλ2,N2 dx dt

∣∣∣∣
. N %

min

(
λ2

µ

)(1/4)(1/a−1/2)

Aθ0(µ1/2
‖φµ,N‖V 2

+,1
‖ψλ1,N1‖V 2

±1,M
‖ϕN2‖Y

±2,M
λ2

)1−θ0 .

(82)

Analogous bounds hold in the case λ1 � λ2.

Proof. As in the proof of Theorem 8, we begin by decomposing

φµ(Π±1ψλ1)
†γ 0Π±2ϕλ2 =

∑
d

A0 + A1 + A2,

where

A0 = Cdφµ(C±1
�dψλ1)

†γ 0C±2
�dϕλ2,

A1 = C.dφµ(C±1
d ψλ1)

†γ 0C±2
.dϕλ2,

A2 = C.dφµ(C±1
.dψλ1)

†γ 0C±2
d ϕλ2,

and consider separately the small modulation cases:

µ� λ1 ≈ λ2 and d . µ, µ & min{λ1, λ2} and d . min{λ1, λ2}

and the high modulation case:

d � min{µ, λ1, λ2}.

Note that bound (43) does not hold in the case M 6 1
2 , which is admissible

now.

Case 1: µ� λ1 ≈ λ2 and d . µ. From [6, (8-16)] we have the bound∣∣∣∣ ∫ A0 dx dt
∣∣∣∣. (

d
µ

)1/8−ε(
µ

λ1

)−1

N 1/4
minµ

1/2
‖φµ,N‖V 2

+,1
‖ψλ1,N1‖V 2

±1,M
‖ϕλ2,N2‖V 2

±2,M
.
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Combining this bound with Lemma 5, choosing ε > 0 sufficiently small, and
summing up over d . µ, then gives θ > 0 such that∑

d.µ

∣∣∣∣ ∫
R1+3

A0 dx dt
∣∣∣∣

. N %

min

(
µ

λ2

)1/4

Aθ (µ1/2
‖φµ,N‖V 2

+,1
‖ψλ1,N1‖V 2

±1,M
‖ϕλ2,N2‖V 2

±2,M
)1−θ .

We now turn to the bound for the A1 term. From [6, (8-18)] we have for every
ε > 0:∣∣∣∣ ∫ A1 dx dt

∣∣∣∣
.

(
d
µ

)1/8−ε(
µ

λ1

)−1/2

N 1/4
minµ

1/2
‖φµ,N‖V 2

+,1
‖ψλ1,N1‖V 2

±1,M
‖ϕλ2,N2‖V 2

±2,M
.

Again combining this bound with a small power of the estimate from Lemma 5,
we get an acceptable contribution for the A1 term. The proof for the A2 term is
identical.

Case 2:µ & min{λ1, λ2} and (min{λ1, λ2})
−1 . d . min{λ1, λ2}. We may assume

that λ1 > λ2. From [6, (8-23)], we have for every ε > 0:∣∣∣∣ ∫
R1+3

A0 dx dt
∣∣∣∣+ ∣∣∣∣ ∫

R1+3
A1 dx dt

∣∣∣∣
.

(
d
λ2

)1/8−ε

N 1/4
minµ

1/2
‖φµ,N‖V 2

+,1
‖ψλ1,N1‖V 2

±1,M
‖ϕλ2,N2‖V 2

±2,M
.

An application of Lemma 5, summing up over λ−1
2 . d . λ2, then gives an

acceptable bound for both A0 and A1.
It remains to bound the A2 term. From [6, (8-25)] we have∣∣∣∣ ∫

R1+3
A2 dx dt

∣∣∣∣
.

(
d
λ2

)1/4−ε(
λ2

µ

)1/4−ε

min{N , N1}µ
1/2
‖φµ,N‖V 2

+,1
‖ψλ1,N1‖V 2

±1,M
‖ϕλ2,N2‖V 2

±2,M
.

As previously, together with Lemma 5, this is enough to deduce the required
estimates. The remaining case, where N2 = Nmin, requires the use of the Y±2,M

λ2

norm. To this end, a similar argument to (51) implies that if we let β = (d/λ2)
1/2,
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then for every ε > 0 by using the angular concentration bound on ϕλ2,N2

we have∣∣∣∣ ∫
R1+3

A2 dx dt
∣∣∣∣

.
∑

q,q ′′∈Qλ2
|q−q ′′|≈λ2

∑
κ,κ ′κ ′′∈Cβ
|±1κ−κ

′′
|.β,

|±1κ−±2κ
′
|.β

β‖Pq ′′Rκ ′′C+.dφµ,N‖L2a/(a−1)
t L2a

x

· ‖Rκ PqC±1
.dψλ1,N1‖L2a/(a−1)

t L2a
x
‖Rκ ′C±2

d ϕλ2,N2‖La
t La/(a−1)

x

.

(
d
λ2

)%/2−b−ε(
λ2

µ

)1/2a−1/4−ε

N %

2µ
1/2
‖φµ,N‖V 2

+,1
‖ψλ1,N1‖V 2

±1,M
‖HN2ϕ‖Y

±2,M
λ2

.

Therefore, since 1/a = 1
2 + %/16, provided we choose ε > 0 sufficiently small,

by combining the above estimate with Lemma 5 we get the claimed bound for the
A2 component.

Case 3: µ & min{λ1, λ2} and d � (min{λ1, λ2})
−1. We now turn our attention

to the resonant region where we no longer have a lower bound on d . It is worth
noting that in this region the proof deviates somewhat from the argument in [6],
as here we obtain an improvement in the amount of angular regularity required.

If µ� min{λ1, λ2}, [6, Lemma 8.7] implies that

M±1,±2 & (min{λ1, λ2})
−1, (83)

which is ruled out in Case 3. Hence from now on we may assume µ ≈ λ1 ≈ λ2.
If ±1 = ±2, or (±1,±2) = (−,+), or M > 1

2 [6, Lemma 8.7] implies (83) again,
so that it remains to consider (±1,±1) = (+,−) and we are either in the weakly
resonant regime M = 1

2 or the strongly resonant case 0 < M < 1
2 . In order to treat

this case, we use

M+,−(ξ, η)

≈
1

〈ξ〉 + 〈η〉

∣∣∣∣M2 (|ξ | − |η|)2

〈ξ〉M〈η〉M + |ξ ||η| + M2
+ |ξ ||η| + ξ · η +

4M2
− 1

2

∣∣∣∣
&

1
〈η〉

∣∣∣∣ (|ξ | − M |ξ − η|)2

〈ξ〉M〈ξ − η〉+ |ξ ||ξ − η| + M
+ |ξ ||ξ − η| − ξ · (ξ − η)+

2M − 1
2

∣∣∣∣
(84)

from [6, Lemma 8.7]. We start by considering the case M =
1
2 . The key

observation (originally made in [6]) is that the null structure now acts at
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all scales 0 < d < min{λ1, λ2}. More precisely, (84) and (31) imply that for
|ξ | ≈ |η| ≈ µ:

|Π+(ξ)γ
0Π−(η)|

2 .

∣∣∣∣ ||ξ | − |η||µ2
+ θ(ξ,−η)

∣∣∣∣2 . µ−1M+,−(ξ, η),

which we exploit via (30). In particular, letting β = (d/µ)1/2, using (84) and the
L4

t,x Strichartz bound in Lemma 3 we obtain∣∣∣∣ ∫
R1+3

A0 dx dt
∣∣∣∣

. β
∑

κ,κ ′,κ ′′∈Cβ
|κ+κ ′|,|κ−κ ′′|.β

∑
q,q ′∈Q

µ2β

|q−q ′|.µ2β

‖Rκ ′′Cdφµ,N‖L2
t,x
‖Rκ Pqψλ1,N1‖L4

t,x
‖Rκ ′Pq ′ϕλ2,N2‖L4

t,x

. (βµ)1/4µ1/2
‖φµ,N‖V 2

+,1
‖ψλ1,N1‖V 2

±1,M
‖ϕλ2,N2‖V 2

±2,M
.

Together with Lemma 5, and as the sum over modulation 0 < d . µ−1 is bounded,
this gives control over the trilinear product when M = 1

2 . The arguments for the
A1 and A2 terms are essentially identical.

It remains to consider the fully resonant case 0 < M < 1
2 . In this regime the null

structure no longer gives any gain at modulation scales d � µ−1. Consequently,
if we followed the argument used in the M = 1

2 case, we would not be able to
sum up over modulation scales. Instead, our goal will be to simply estimate the
remaining trilinear term∫

R1+3
C�µ−1φµ,NC+�µ−1ψλ1,N1C−�µ−1ϕλ2,N2 dx dt

directly. The key observation, which was exploited in [6], is that in this trilinear
interaction the three waves are already transverse, and thus we can apply the
bilinear restriction estimates contained in Theorem 6. The argument is as follows.
We first observe that, by Lemma 3 and L p interpolation, for every 10

3 < 1/r < 5
14

there exists θ > 0 such that

‖φµ,N‖Lr
t,x
. µ3/14 N 2/5

‖φµ,N‖
θ

L4
t,x
‖φµ,N‖

1−θ
V 2
+,1
.

Interpolating with the trivial L∞t L2
x estimate, we conclude that for all 3

2 (
1
2−1/r) <

1/q < 5
2 (

1
2 − 1/r) and sufficiently small θ > 0 the bound

‖φµ,N‖Lq
t Lr

x
. µ3/7q+3/7(1/2−1/r)N 4/5q+4/5(1/2−1/r)

‖φµ,N‖
θ

L4
t,x
‖φµ,N‖

1−θ
V 2
+,1
. (85)
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On the other hand, by interpolating Theorem 6 with Hölder’s inequality and
exploiting the null structure, we have for 1 6 q, r < 2, 1/q + 2/r < 2, and
all sufficiently small θ > 0:∑

κ,κ ′∈C
µ−1

∑
q,q ′∈Qµ

|q−q ′|/µ2
+|κ+κ ′|≈µ−1

‖Rκ PqC+�µ−1ψλ1,N1 Rκ ′Pq ′C−�µ−1ϕλ2,N2‖Lq
t Lr

x

. µ1/q−1/r+6θ (λ
−1/2
1 ‖ψλ1,N1‖L4

t,x
λ
−1/2
2 ‖ϕλ2,N2‖L4

t,x
)θ

· (‖ψλ1,N1‖V 2
±1,M
‖ϕλ2,N2‖V 2

±2,M
)1−θ .

Therefore, if we let 1/r = 1
2 + ε and 1/q = 1 − 9

4ε, then the above estimates,
together with the orthogonality implied by (84), give∣∣∣∣ ∫

R1+3
C�µ−1φµ,NC+�µ−1ψλ1,N1C−�µ−1ϕλ2,N2 dx dt

∣∣∣∣
.

∑
κ,κ ′∈C

µ−1

∑
q,q ′∈Qµ

|q−q ′|/µ2
+|κ+κ ′|≈µ−1

‖φµ,N‖Lq′
t Lr ′

x

· ‖Rκ PqC+�µ−1ψλ1,N1 Rκ ′Pq ′C−�µ−1ϕλ2,N2‖Lq
t Lr

x

. µ7θ−(13/4)εN (13/5)εAθ (µ1/2
‖φµ,N‖V 2

+,1
‖ψλ1,N1‖V 2

±1,M
‖ϕλ2,N2‖V 2

±2,M
)1−θ .

Choosing ε and θ sufficiently small, we obtain the required bound in the case
Nmin = N . The remaining cases N1 = Nmin and N2 = Nmin are similar; the only
change is to use (85) on the term with the smallest angular frequency, and control
the remaining pair using the bilinear restriction estimate in Theorem 6.

Case 4: d � min{µ, λ1, λ2}. We start by estimating the A0 component. As in the
subcritical case, nontrivial contributions require M±1,±2 ≈ d . From the definition
of M±1,±2 we see that either M±1,±2 . min{µ, λ1, λ2} or M±1,±2 ≈ max{µ,
λ1, λ2}. In conclusion, we must have d ≈ max{µ, λ1, λ2}. If µ . λ1 ≈ λ2, an
application of Theorem 5 gives∣∣∣∣ ∫

R1+3
A0 dx dt

∣∣∣∣ 6 ‖Cdφµ,N‖L2
t,x
‖C±1
�dψλ1,N1C

±2
�dϕλ2,N2‖L2

t,x

.

(
d
λ2

)−1/2(
µ

λ2

)1/2−ε

µ1/2
‖φµ,N‖V 2

+,1
‖ψλ1,N1‖V 2

±1,m1
‖ϕλ2,N2‖V 2

±2,m2
.

On the other hand, ifµ� min{λ1, λ2} (thusµ is essentially the largest frequency),
we simply have
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R1+3

A0 dx dt
∣∣∣∣ 6 ‖Cdφµ,N‖L2

t,x
‖C±1
�dψλ1,N1‖L4

t,x
‖C±2
�dϕλ2,N2‖L4

t,x

.

(
d
µ

)−1/2(min{λ1, λ2}

µ

)1/2

µ1/2

· ‖φµ,N‖V 2
+,1
‖ψλ1,N1‖V 2

±1,m1
‖ϕλ2,N2‖V 2

±2,m2
.

Thus in either case we have a high–low gain, and consequently applying Lemma 5
to gain L4

t,x norms, and summing up over d ≈ max{µ, λ1, λ2} we obtain the
required bound for the A0 component.

To estimate the A1 component, as in the subcritical case, we consider separately
the cases min{µ, λ1, λ2} � d � max{µ, λ1, λ2} and d & max{µ, λ1, λ2}. In
the latter case, we only require Hölder’s inequality together with the (refined)
L4

t,x Strichartz estimate. In particular, decomposing into cubes of size λmin =

min{µ, λ1, λ2}, we obtain∣∣∣∣ ∫
R1+3

A1 dx dt
∣∣∣∣ . ∑

q,q ′,q ′′∈Qλmin
|q−q ′+q ′′|.λmin

‖Pq ′′φµ,N‖L4
t,x
‖PqC±1

d ψλ1,N1‖L2
t,x
‖Pq ′ϕλ2,N2‖L4

t,x

.

(
d
λ2

)−1/2(
λmin

λ2

)1/4−ε(
λmin

µ

)1/4−ε

µ1/2

· ‖φµ,N‖V 2
+,1
‖ψλ1,N1‖V 2

±1,M
‖ϕλ2,N1‖V 2

±2,M
.

Again applying Lemma 5 and summing up over d & max{µ, λ1, λ2} controls the
A1 term.

We now consider the region min{µ, λ1, λ2} � d � max{µ, λ1, λ2}. Here we
can simply observe that the bounds in the subcritical case, namely (56) and (60),
imply that we have∣∣∣∣ ∫

R1+3
A1 dx dt

∣∣∣∣ . (
d

min{µ, λ1, λ2}

)−1/2(min{µ, λ1, λ2}

max{µ, λ1, λ2}

)1/4

µ1/2

· ‖φµ,N‖V 2
+,1
‖ψλ1,N1‖V 2

±1,M
‖ϕλ2,N1‖V 2

±2,M
.

Again applying Lemma 5 and summing up over

min{µ, λ1, λ2} � d � max{µ, λ1, λ2},

we deduce the required bound for the A1 term. An identical argument bounds the
A2 term.
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7.2. Proof of Theorem 9. Similarly to Section 6.2, the first step is to obtain
frequency localized versions of the required bounds. Let λmin = min{µ, λ1, λ2}

and λmax = max{µ, λ1, λ2}. Our aim is to show that, if % > 0 is sufficiently small,
1/a = 1

2 + %/16, and b = 2(1/a − 1
2 ), then there exists 0 < θ1 <

1
4 such that for

all 0 6 θ 6 θ1 we have for the Dirac Duhamel term, the bounds

‖Pλ1 HN1Π±1I±1,M(φµ,Nγ
0Π±2ϕλ2,N2)‖V 2

±1,M

. (min{N , N2})
%

(
λmin

λmax

)%/100

(‖φµ,N‖L4
t,x
λ
−1/2
2 ‖ϕλ2,N2‖L4

t,x
)θ

· (µ1/2
‖φµ,N‖V 2

+,1
‖ϕN2‖F

±2,M
λ2

)1−θ (86)

and

‖HN1Π±1I±1,M(φµ,Nγ
0Π±2ϕλ2,N2)‖Y

±1,M
λ1

. (min{N , N2})
%

(
λmin

λmax

)%/100

(‖φµ,N‖L4
t,x
λ
−1/2
2 ‖ϕλ2,N2‖L4

t,x
)θ

· (µ1/2
‖φµ,N‖V 2

+,1
‖ϕλ2,N2‖V 2

±2,M
)1−θ , (87)

while for the wave Duhamel term, we have

µ−1/2
‖PµHNI+,1(Π±1ψλ1,N1Π±2ϕλ2,N2)‖V 2

+,1

. (min{N1, N2})
%

(
λmin

λmax

)%/100

(λ
−1/2
1 ‖ψλ1,N1‖L4

t,x
λ
−1/2
2 ‖ϕλ2,N2‖L4

t,x
)θ

· (‖ψN1‖F
±1,M
λ1
‖ϕN2‖F

±2,M
λ2

)1−θ . (88)

Assuming bounds (86), (87), and (88) for the moment, the estimates in Theorem 9
are a consequence of a straightforward summation argument. Fix σ > 0. As in the
subcritical case, it is enough to consider the case s = 0 by using that, due to the
convolution constraint, we always have λs

1 . (max{µ, λ2})
s . Summing up (86)

with % = σ/2 over angular frequencies N1 gives 0 < θ0 <
1
2 such that for all

0 < θ < θ0 we have( ∑
N1∈2N

N 2σ
1 ‖Pλ1 HN1Π±1I

±1
M (φµγ

0Π±2ϕλ2)‖
2
V 2
±1,M

)1/2

.

(
λmin

λmax

)σ/200

(‖φµ‖D0,σ ‖ϕλ2‖D−1/2,σ )θ

·

[
µ1/2

(∑
N∈2N

N 2σ
‖φµ,N‖

2
V 2
+,1

)1/2( ∑
N2∈2N

N 2σ
2 ‖ϕN2‖

2
F
±2,M
λ2

)1/2]1−θ

. (89)
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Note that for 1/q + 1/r = 1
2 and ε > 0 we have the elementary inequality

∥∥∥∥( ∑
µ,λ2∈2N
µ+λ2≈λ1

(
min{µ, λ2}

λ1

)ε
aµbλ2

)
λ1∈2N

∥∥∥∥
`2

+

∥∥∥∥( ∑
µ,λ2∈2N
µ≈λ2&λ1

(
λ1

λ2

)ε
aµbλ2

)
λ1∈2N

∥∥∥∥
`2

. ‖(aµ)µ∈2N‖`q‖(bλ2)λ2∈2N‖`r .

Thus summing up (89) over spatial frequencies, and assuming that 0 < θ < 1
4 , we

deduce bound (71). An identical argument using (87) gives the Ys
±1,M bound (72).

Similarly the bound for φ follows from (88).
We now turn to the proof of estimates (86), (87), and (88). It is enough to

consider the case θ = θ1, as the L4
t,x terms are dominated by the corresponding

V 2 norms. Bounds (86) and (88) follow directly from Theorem 10 together with
(24). On the other hand, the argument used to obtain (87) is slightly more involved.
We first note that, from [6, (8-38)–(8-40)], we have the bound

d2/3

(
min{d, λ1}

λ1

)1−2/3

‖Pλ1 HN1C
±1
d I±1,M(φµ,Nγ

0Π±2ϕλ2,N2)‖L3/2
t L2

x

. min{N , N2}

(
λmax

λmin

)1/3

µ1/2
‖φµ,N‖V 2

+,1
‖ψλ1,N1‖V 2

±2,M
. (90)

On the other hand, if µ . λ2, then an application of (79) gives

d1/2
‖Pλ1 HN1C

±1
d I±1,M(φµ,Nγ

0Π±2ϕλ2,N2)‖L2
t,x

. ‖Pλ1 HN1C
±1
d I±1,M(φµ,Nγ

0Π±2ϕλ2,N2)‖V 2
±1,M

. (min{N , N2})
%/2

(
µ

λ2

)1/10

(‖φµ‖L4
t,x
λ
−1/2
2 ‖ϕλ2‖L4

t,x
)θ0

· (µ1/2
‖φµ‖V 2

+,1
‖ϕλ2‖V 2

±2,M
)1−θ0 . (91)

Hence (87) in the region µ . λ2 follows by interpolating between (90) and (91)
and using the conditions 1/a = 1

2 + %/16 and b = 2(1/a − 1
2 ). The case µ� λ2

and N 6 N2 follows from a similar argument using (80) and (81).
It remains to consider the case µ � λ2 and N2 6 N . For this frequency

interaction, Theorem 10 requires a Y±,Mλ2
norm on the right-hand side. Thus, as

our goal is to obtain a bound only using the V 2
±,M norms, we have to work a
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little harder. We start by writing the product as

φµ,Nγ
0Π±2ϕλ2,N2 =

(
φµ,Nγ

0Π±2ϕλ2,N2 −

∑
d ′.λ2

C±1,M
6d ′ (C6d ′φµ,Nγ

0C±2
d ′ ϕλ2,N2)

)
+

∑
d ′.λ2

C±1,M
6d ′ (C6d ′φµ,Nγ

0C±2
d ′ ϕλ2,N2). (92)

The first term can be bounded by adapting the argument used in the previous
cases as here (80) in Theorem 10 gives a bound without using the Y±,Mλ2

norm.
More precisely, letting β = (d ′/λ2)

1/2 and exploiting the null structure together
with the now familiar modulation bounds, we have

d2/3

(
d
λ1

)1−2/3∥∥∥∥Pλ1 HN1C
±1
d I±1,M

( ∑
d ′.λ2

C±1,M
6d ′ (C6d ′φµ,Nγ

0C±2
d ′ ϕλ2,N2)

)∥∥∥∥
L3/2

t L2
x

. µ−1/3
∑

d ′.λ2

∥∥∥∥( ∑
κ,κ ′,κ ′′∈Cβ

|±1κ−±2κ
′
|,|κ−κ ′′|.β

‖Rκ(C6d ′Rκ ′′φµ,Nγ 0 Rκ ′C±2
d ′ ϕλ2,N2)‖

2
L2

x

)1/2∥∥∥∥
L3/2

t

. µ−1/3
∑

d ′.λ2

β

( ∑
κ ′′∈Cβ

‖C6d ′Rκ ′′φµ,N‖2
L4

t,x

)1/2

‖ϕλ2,N2‖L12/5
t L4

x

. N2

(
λ2

µ

)1/3

µ1/2
‖φµ,N‖V 2

+,1
‖ϕλ2,N2‖V 2

±2,M
.

Together with (90), we deduce that

d2/3

(
min{d, λ1}

λ1

)1−2/3∥∥∥∥Pλ1 HN1C
±1
d I±1,M

(
φµ,Nγ

0ϕλ2,N2

−

∑
d ′.λ2

C±1,M
6d ′ (C6d ′φµ,Nγ

0C±2
d ′ ϕλ2,N2)

)∥∥∥∥
L3/2

t L2
x

. N
(
µ

λ2

)1/3

µ1/2
‖φµ,N‖V 2

+,1
‖ϕλ2,N2‖V 2

±2,M
.

Applying L p interpolation together with (80) and arguing as previously, we
deduce that∥∥∥∥HN1Π±1I±1,M

(
φµ,Nγ

0ϕλ2,N2 −

∑
d ′.λ2

C±1,M
6d ′ (C6d ′φµ,Nγ

0C±2
d ′ ϕλ2,N2)

)∥∥∥∥
Y
±1,M
λ1

. N %

(
λ2

µ

)%/100

(‖φµ,N‖L4
t,x
λ
−1/2
2 ‖ϕλ2,N2‖L4

t,x
)θ (µ1/2

‖φµ,N‖V 2
+,1
‖ϕλ2,N2‖V 2

±2,M
)1−θ .
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Therefore, it only remains to bound the second term in (92), but this follows by
taking 1/r = 1− 2(1/a − 1

2 ) in (70).
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Poincaré Anal. Non Linéaire (2018), doi:10.1016/j.anihpc.2018.02.001.

[6] T. Candy and S. Herr, ‘Transference of bilinear restriction estimates to quadratic variation
norms and the Dirac–Klein–Gordon system’, Anal. PDE 11(5) (2018), 1171–1240.
MR 3785603.

[7] Y. Cho and S. Lee, ‘Strichartz estimates in spherical coordinates’, Indiana Univ. Math. J.
62(3) (2013), 991–1020. MR 3164853.

[8] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, ‘Global well-posedness and
scattering for the energy-critical nonlinear Schrödinger equation in R3’, Ann. of Math. (2)
167(3) (2008), 767–865. MR 2415387.

[9] P. D’Ancona, D. Foschi and S. Selberg, ‘Null structure and almost optimal local regularity
for the Dirac–Klein–Gordon system’, J. Eur. Math. Soc. (JEMS) 9(4) (2007), 877–899.
MR 2341835.

[10] B. Dodson and P. Smith, ‘A controlling norm for energy-critical Schrödinger maps’, Trans.
Amer. Math. Soc. 367(10) (2015), 7193–7220. MR 3378828.
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