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GEOMETRY OF SPACES 
OF VECTOR-VALUED HARMONIC FUNCTIONS 

PATRICK N. DOWLING, ZHIBAO HU AND MARK A. SMITH 

ABSTRACT. It is shown that the space hp(D,X) has the Kadec-Klee property with 
respect to pointwise norm convergence in the Banach space X if and only if X has the 
Radon-Nikodym property and every point of the unit sphere of X is a denting point of 
the unit ball of X. In addition, it is shown that hp{D,X) is locally uniformly rotund if 
and only if X is locally uniformly rotund and has the Radon-Nikodym property. 

1. Introduction. The space of real-valued harmonic functions on the open unit disc 
in the complex plane has long been of interest and, more recently, spaces of vector-valued 
harmonic functions have been the object of considerable study. In 1982, Bukhvalov and 
Danilevich [B-D] showed that a Banach space X has the Radon-Nikodym property if 
and only if every bounded X-valued harmonic function from the open unit disc, D, in 
the complex plane has almost everywhere radial values in X. They also showed that X 
has the Radon-Nikodym property if and only if every function in hp(D,X) (see Section 2 
for the definition) has almost everywhere radial values in X for all p with 1 < p < oo. 
Subsequently, in 1992, Dowling and Lennard [D-L] considered Kadec-Klee and uniform 
Kadec-Klee-Huff properties of the space hp(D,X) for 1 < p < oo. 

This paper is a continuation of the study of Kadec-Klee properties of the space 
hp(D, X) for 1 < p < oo. The topology on hp(D, X) with which Dowling and Lennard [D-
L] worked exclusively is the so-called (3 topology, that is, the topology of norm uniform 
convergence on compact subsets of D. In Section 2 of this paper, some natural generaliza­
tions of the f3 topology, namely the weak-/3 topology on hp(D,X) and the weak*-/? topol­
ogy on hp(D, X*), are introduced. Then, in Section 3, characterizations of the Kadec-Klee 
property with respect to these modes of convergence in hp(D,X) are given. In particular, 
it is shown that if X is a Banach space and if 1 < p < oo, then the following assertions 
are equivalent: 

(1) If {fn}%L\ and/ are in the unit sphere of hp(D,X) and satisfy {/n(z)}^, converges 
in norm in X to f(z) for all z in the unit disc A then {fn}^L i converges in norm in hp(D, X) 
t o / . 

(1') If {fn}%L\ and/ are in the unit sphere of hp(D,X) and satisfy {fn(z)}™=\ converges 
weakly in X to f(z) for all z in the unit disc D, then {fn}%L\ converges in norm in hp(D, X) 
to / . 
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(2) The space X has the Radon-Nikodym property and every point of the unit sphere 
of X is a denting point of the unit ball of X. 

The equivalence of (1) and (2) above solves a problem implicitly stated by Dowling 
and Lennard [D-L]. Section 3 concludes with the result that hp(D, X) is locally uniformly 
rotund if and only if the Banach space X is locally uniformly rotund and has the Radon-
Nikodym property. 

2. Definitions and preliminaries. Throughout this paper X will denote a real Ba­
nach space and D will denote the open unit disc in the complex plane. A function/: D —> 
X is said to be harmonic provided it is twice continuously differentiable and its Laplacian 
is zero. Hensgen [He] showed that/: D —> X is harmonic if and only if x*f: D —> IR is 
harmonic for each x* in X*, the dual space of X. For 1 < p < oo and a Banach space X, 
let 

hP(D,X) = {/: D —> X | / is harmonic and \\f\\p < oo}, 

where 

\\f\\P= sup / \[f(re'e)rU . 
0<r<\U0 27TJ 

Let T denote the boundary of D; let *B denote the Borel a-algebra of subsets of T; and let 
À denote the normalized Haar measure on T. For 1 < p < oo, the symbol LP(J9X) will 
denote the usual Lebesgue-Bochner function space LP (J, (B, A,X); see [D-U]. 

The following is a list of some properties concerning the spaces LP (J, X) and hP(D, X) 
that will be used in the sequel. 

(2.1) The mapping /: LP(J, X) -> hp(D, X), given by 

I(f)(rew)= f* pr(0-t)f (<?)£-
JO 27T 

for each 0 < r < 1 and 0 < 0 < 2TT, defines an isometric embedding, where 
{Pr}o<r<\ is the Poisson kernel given, for 0 < r < 1 and 0 < u < 2ir, by 

1 - r 2 

Pr(u) = —— —2 . 
1 — 2rcosw + r2 

(2.2) A Banach space X has the Radon-Nikodym property if and only if the mapping 
/, given in (2.1), is surjective; see [B-D]. 

(2.3) If 1 < /?, q < oo with - + - = 1, then Lq(J,X)* is isometrically isomorphic to 
hp(D, X*); see [Do]. In the sequel, a reference to the weak* topology on hp(D, X*) 
will mean the isomorphic image in hp(D, X*) of the weak* topology on Lq(J, X)*. 

(2.4) Let j : X —» X** be the natural inclusion mapping. Then, for 1 < p < oo, the 
mapping J: hp(D,X) -> hP(D,X**), defined by J(f)(z) = j(f(z)) for z in D, is an 
isometric embedding. 

Dowling and Lennard [D-L] introduced the notion of (5 convergence; a sequence 
{fn}%L\ m hp(D,X) is said to converge in the (5 topology t o / in hp{D,X) provided 

lim(sup{|[/ l(z)-/(z)| | :zG^}) = 0 
n 
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for all compact subsets K of D. As in the scalar-valued case (that is, the case X — R), 

it can be shown that a bounded sequence \fn}™=\ i n hp{D,X) converges in the /3 topol­

ogy t o / in hp{D,X) if and only if {fn(z)}%Li converges in norm in X to f(z) for all z 

in D. Consequently, it is natural to define weak-/? convergence as follows: A sequence 

{fn}^L\ in hp(D,X) is said to converge in the weak-/3 topology t o / in hp{D,X) provided 

{fn(z)}%L\ converges weakly in X to / (z ) for all z in D. The notion of weak*-/? conver­

gence of a sequence in hp(D,X*) is defined in an analogous manner. 

The symbol Bx will denote the closed unit ball of X and Sx will denote the unit sphere 

of X. Let r be a topological vector space topology on X which is weaker than the norm 

topology on X. Then X is said to have the Kadec-Kleeproperty with respect to r conver­

gence provided that whenever {xn}^Lx and x are in Sx and satisfy {xn}^=l converges in 

the r topology to x, it follows that {xn}^ converges in norm to x. 

A point x in Bx is called an extreme point of Bx provided x is not the midpoint of 

any non-trivial line segment lying in Bx- A Banach space X is said to be strictly convex 

provided every x in Sx is an extreme point ofBx- The following is a list of various well-

known types of extreme points; the list is given in order of increasing strength. 

(i) A point x in Bx is called a strongly extreme point of Bx provided that whenever 

{xn}^ is a sequence in X with lim„ ||x+x„|| = 1 andlimn ||JC—JCW|| = 1, it follows 

that limw ||jcn|| = 0. A Banach space X is said to be midpoint locally uniformly 

rotund provided every x in Sx is a strongly extreme point of Bx. 

(ii) A point x in Bx is called a denting point of Bx provided x is not an element of 

the closed convex hull of {y G Bx : \\y — x\\ > e} for each e > 0. A Banach 

space X is said to have property (G) provided every x in Sx is a denting point 

of BX- A dual space X* is said to have property (G*) provided every x* in Sx* is 

a weak* denting point of Bx*, where a weak* denting point is defined as above 

for a denting point but with the closed convex hull replaced by the weak* closed 

convex hull, 

(iii) A point x in Bx is called a locally uniformly rotund point of Bx provided that 

whenever { j t n } ^ is a sequence in Bx with limn \\x + jcn|| = 2, it follows that 

lim„ ||JC — JCW|| = 0. A Banach space X is said to be locally uniformly rotund 

provided every x in Sx is a locally rotund point of Bx-

3. Kadec-Klee properties of hp{D, X). The main results in this section are charac­

terizations of various Kadec-Klee properties of the space hp(D,X) for 1 < p < oo. The 

first proposition is due to Dowling and Lennard [D-L]; it is stated here for both the sake 

of completeness and subsequent reference. 

PROPOSITION 3.1. Let 1 < p < oo and let X be a Banach space. Ifhp(D,X) has 

the Kadec-Klee property with respect to ft convergence, then X has the Radon-Nikodym 

property and is strictly convex. 

THEOREM 3.2. Let 1 < p < oo and let X be a Banach space. Then hp(D,X*) has 

the Kadec-Klee property with respect to weak*-(3 convergence if and only ifX* has prop­

erty (G*). 
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PROOF. Suppose hp(D,X*) has the Kadec-Klee property with respect to weak*-/? 
convergence. It follows immediately from the definition that hp(D,X*) has the Kadec-
Klee property with respect to /3-convergence, and so, by Proposition 3.1, the space X* is 
strictly convex. By considering the constant X*-valued harmonic functions, it is easily 
seen that X* has the Kadec-Klee property with respect to weak* convergence. Hu and 
Lin [H-L1] proved that X* is strictly convex and has the Kadec-Klee property with re­
spect to weak* convergence if and only if X* has property (G*). Consequently, X* has 
property (G*) whenever hp(D,X*) has the Kadec-Klee property with respect to weak*-/? 
convergence. 

Conversely, suppose X* has property (G*). Note that the weak* topology (see (2.3)) 
and the weak*-/? topology on B^^^*) are equivalent since they are comparable com­
pact Hausdorff topologies. Thus hp(D,X*) has the Kadec-Klee property with respect to 
weak*-/? convergence if and only if hp(D,X*) has the Kadec-Klee property with respect 
to weak* convergence. Since X* has property (G*), it follows that X* has the Radon-
Nikodym property (see [H-Ll]), and hence, by (2.3), the space hp(D,X*) is isometri-
cally isomorphic to LP(J9X*). So hp(D,X*) has the Kadec-Klee property with respect 
to weak* convergence whenever Z/(T,X*) has the Kadec-Klee property with respect to 
weak* convergence. However, Hu and Lin [H-L3] proved that LP(J,X*) has property 
(G*), and hence the Kadec-Klee property with respect to weak* convergence, whenever 
X* has property (G*). This completes the proof. 

LEMMA 3.3. If x is in Bx andx is not a denting point ofBx, then there exist a sequence 
{fn}%Li in Bunjjo and £ > 0 such that \\fn —f\\p > £ for each n in N, where f — x\j, and 
{fn}%L\ converges in the a-topologytof, where a — cr(Z/(T,X),Z^(T,X*)) and 1 < p, 
a < oo with - + - = 1. 
•* p q 

PROOF. Since x is not a denting point of Bx, there exists e > 0 such that x is in 
CO(BX \ B(x, e)), where B(x, e) = {y G X : \\y — x\\ < e}. Therefore, for each n in N, 
there exist mn in N with mn>2 and a finite set {^}^j in Bx \ B(x, e) such that 

rE4 
n k=l 

1 
n 

For n in N, let Mn = m\ni2 • • • mn and define, for 1 < j < Mn, 

BH=lj:M^<t<*5L\ 
n 1 Mn - Mn\ 

Now, let Un = {Ejn ' 1 < J; < Mn] for each n in N. Clearly, each EU is a partition of T 
and the cr-algebra generated by Un>i Yin is ®- F° r e a c n « in N, define 

M„ 

7=1 

where 1 < rn(j) < mn and rn(j) = j (mod mn). Note that {fnj^i is a sequence in the 
closed unit ball of LP(J,X). For each t in T, it is easily seen that \\fn(t) —/(Oil > ^ and 
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hence \\fn —f\\p > e for each n in N. Now for each k in N and x* in X*, it is the case that, 
for each E in EU and n > k, 

i^XEJn ~f)d\\ = \j/{fn(t) -f(t))d\(t) < \\x*\\-\(E). 
n 

Since Lq(T,X*) is the closed linear span of {x*\E : E G |J*>i n* and x* G X*}, the 
calculation above shows that {fn}%L\ converges in the a topology t o / . This completes 
the proof. 

REMARK. Using arguments similar to those in the proof of Lemma 3.3, it can be 
shown that if (£2, X, /i) is an atom-free measure space and/ is a a 
point of sequential continuity of BU>(Q X), then/ is a denting point of ̂ (Q^ ) ; this strength­
ens a result of Hu and Lin [H-L2] which concludes that such a n / is a strongly extreme 
point of Bv^xy 

THEOREM 3.4. Let 1 < p < oo and let X be a Banach space. Then hp(D,X) has 
the Kadec-Klee property with respect to weak-(3 convergence if and only if X has the 
Radon-Nikodym property and property (G). 

PROOF. Suppose hp(D, X) has the Kadec-Klee property with respect to weak-/3 con­
vergence. It follows immediately from the definition that hp(D,X) has the Kadec-Klee 
property with respect to /3 convergence, and so, by Proposition 3.1, the space X has 
the Radon-Nikodym property. To obtain a contradiction, suppose X fails to have prop­
erty (G). Then there exists a point x in Sx which is not a denting point of BX- By 
Lemma 3.3, there exist a sequence {fn}%Ll in #LP(T,X) and £ > 0 such that \\fn —f\\p > £ 
for each n in N, where/ = x\j, and {fn}%L\ converges in the a topology t o / . Let 
/: If(J,X) —> hp(D,X) be the isometric embedding defined in (2.1). For z = rei9 in D 
and** inX*, 

r2n ^ dt \ r27r 

and 

*(UfnXzJ) = *r(JQ *Pr(6 - t)fn{elt)-) = JQ > , ( 0 - t)x\fn(<?)) — 

**{l(f)(z)) = J^(Pr(0 - t)x\f(elt))^-. 

Since \fn}™=\ converges in the a topology to / , it follows from the calculation above that 
{I(fn)}%L\ converges in the weak-/3 topology to 1(f). Now, since || • \\p is a weak-/3 lower 
semicontinuous function on hp(D,X), since {fn}^L\ is in Z?LP(T,X)>

 anc* since ||/(/)||^ = 
\\f\\p = 1, it follows that lim„ 111(fn)\\p = \\I(f)\\P = 1. So the hypothesis that 
hp(D, X) has the Kadec-Klee property with respect to weak-/3 convergence yields that 
lim„ 11/(/*„) — I(f)\\p — 0 and hence lim„ ||/n — f\\p = 0. This contradicts the fact that 
\[fn — f\\P > £, for each n in N, and hence this portion of the proof is complete. 

Conversely, suppose X has the Radon-Nikodym property and property (G). Let 
{fn}^L\ be a sequence of norm-one functions in hp(D,X) which converges in the weak-
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(3 topology to the norm-one function/ in hp(D,X). Then, for each z in D, it follows 
that {fn(z)}(^=l converges weakly in X to/(z), and hence {j(fn(z))}™=l converges in the 
weak* topology in X** to j(f(z)\ where j : X —> X** is the natural inclusion mapping. 
Thus {J(fn)(z)}™=\ converges in the weak* topology in X** to J(f)(z) for each z in Z), 
where J is the mapping defined in (2.4); that is, {J(fn)}%L\ converges in the weak*-/? 
topology in hp(D,X**) to J(f). As was noted in the proof of Theorem 3.2, this is equiv­
alent to saying {J(fn)}™={ converges in the weak* topology (see (2.3)) in hp(D,X**) to 
J(f). Since / is an isometry, it follows that J(fn), for each n in N, and J(f) are norm-one 
functions in hF(D,X**). But hp(D,X**) is isometrically isomorphic to Lq(J,X*)*9 where 
- + - = 1, and thus {J(fn)}%L\ may be considered as a sequence of norm-one functions 
in Lq(J, X*)* which converges in the weak* topology in Lq(J, X*)* to the norm-one func­
tion J(f). Now, if J(f) were a weak* denting point ofBLq(jj(*y, then it would follow that 
lim„ \\Jifn) — J(f)\\P = 0 and so liir^ \\fn —f\\p — 0, which would complete the proof. To 
see that this is the case, note that, since X has the Radon-Nikodym property, the space 
hp(D,X) is isometrically isomorphic to LP(J,X) by (2.2) and, since X has property (G), 
the space LP(J,X) also has property (G) by a result of Lin and Lin [L-L]. Hence, by 
considering/ as an element ofLp(J,X), it is the case that/ is a denting point of #z/(T,x)-
Notice that the natural embedding of Z/(T,X) into L*(T,X*)* sends/ to J(f). Finally, Hu 
and Lin [H-L3] proved that J(f) is a weak* denting point of BLq{j^*y whenever/ is a 
denting point of #z/>ow- This completes the proof. 

The next goal is to characterize the Banach spaces X such that hp(D, X) has the Kadec-
Klee property with respect to /? convergence. To accomplish this, the following notion 
will be used: For 1 < p < oo and X a Banach space, a point x in Sx is said to be a 
strong hp-point provided that whenever {fn}^L\ is a sequence in hp(D, X) with {fn(0)}%L\ 
converging in norm in X to x and limn \\fn\\P = 1, it follows that limn |\fn — x\\p = 0, where 
the symbol x in \\fn — JC||P is to be interpreted as the constant function in hp(D,X) with 
value x. It is easy to show that if x in Sx is a strong hp-point, then x is a strongly extreme 
point of Bx. 

PROPOSITION 3.5. Let 1 < p < oo and let Xbe a Banach space. Ifhp(D, X) has the 
Kadec-Klee property with respect to (3 convergence, then every point in the unit sphere 
ofX is a strong hp-point. 

PROOF. Let x be a point in S*. Suppose {fn}^L{ is a sequence in hp(D,X) with 
{/*(0)}^i converging in norm in X to x and limn l^l^ = 1. For each n in N, define 
gn: D —> X by gn(z) = fn(z

n) for each z in D and define g: D —• X by g(z) = x for each z 
in £). Clearly, each gn and g are elements of hp(D,X) with H^Hp = \\fn\\P (by a compu­
tation similar to that given below), for each n in N, and \\g\\p = 1. Also, since {gn}^ 
is a bounded sequence in hp(D,X), it follows that {gn(z)}^L\ converges in norm in X to 
g(z) for each z in D. Hence, since hp(D,X) has the Kadec-Klee property with respect to 
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f3 convergence, it follows that lim„ \\gn — g\\p = 0. However, 

\\gn-g%= SUp FWg^-xW'f-

fin • a dO 
= sup / \%^^>)-4P±-

fin -n dO 
= sup / \\fni^)-x\\P^. 

0<r<lJO ^ 

fin -a dO 
= sup / \\fn^)-x\\"^-

0<r<l J0 ^ 

— \\f —x\\p 
~ 11/« x\\p' 

Thus limn \\fn—x\\p = 0. This shows that x is a strong /^-point and the proof is complete. 

Let AT be a closed bounded convex subset of a Banach space X. A point x in K is called 

a very strong extreme point of AT provided that for every sequence {xn}
(^=l of A'-valued, 

Bochner integrable functions on [0,1] satisfying lim„ || j j xn{t) dt — x\\ = 0, it follows 

that limn Jj} \\xn(t) — x\\ dt = 0. Lin, Lin and Troyanski [L-L-T] showed that x in K is a 

very strong extreme point of K if and only if x is a denting point of K. 

PROPOSITION 3.6. Le£ 1 < p < oo and letX be a Banach space. Ifx in Sx is a strong 

hp-point, then x is a very strong extreme point ofBx (that is, x is a denting point ofBx). 

PROOF. It is clear that in the définition of a very strong extreme point that [0,1 ] with 

Lebesgue measure can be replaced by T with its normalized Haar measure. Let x in Sx be 

a strong /^-point. Suppose that {xn}^{ is a sequence of ^ -va lued , Bochner integrable 

functions on T with 
fin • dt il 

1 ^ z H 
lim 

2TT 

For each n in N, define /„ : D —> X by 

0. 

fn(rew) = j ^ Prid-^Xnie11) 
dt 

2n 

for each 0 < r < 1 and 0 < 6 < 2i\. Clearly, /„ is harmonic and, since xn is B^-valued, 

it follows that |[/n(z)|| < 1 for all n in N and all z in D. Thus each/ n is an element of 

hP(D,X) and \]fn\\p < 1. Note that, for all n in N, 

^ . ;,. dt 
/„(0) = //*„(*<•')-

By the supposition concerning {xn}^Ll above, it follows that {fn(0)}%L\ converges in 

norm in X to x and so limn |[/n(0)|| = 1. S ince / is harmonic, it follows that |[/w(0)|| < 

\\fn\\p < 1 and hence limn \[fn\\p = 1. Now, since x is a strong /^-point, it follows that 

limn \% - x\\p = 0. But \\fn - x\\p = \\xn - x\\p and so 

fin . dt 
/ \\xn(e

l ) - x\\ —- = \\xn - x\\ i < \\xn - x\\p = \\fn - x\\p, 
JO Z7T 
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from which it follows that 

l i m / \\Xn(e
u)-x\\— = 0. 

n JO Z7T 

This shows that x is a very strong extreme point of Bx and so the proof is complete. 

THEOREM 3.7. Let 1 < p < oo tfrcd fef X be a Banach space. Then the following 

assertions are equivalent: 

(1) The space hp(D,X) has the Kadec-Klee property with respect to weak-(5 conver­

gence; 

(2) The space hp(D, X) has the Kadec-Klee property with respect to (3 convergence; 

(3) The space X has the Radon-Nikodym property and property (G). 

PROOF. Assertion (1) implies (2) by definition; and (1) and (3) are equivalent by 

Theorem 3.4. It remains to show (2) implies (3). So, suppose that hp(D, X) has the Kadec-

Klee property with respect to j3 convergence. Then X has the Radon-Nikodym property 

by Proposition 3.1. Now, every point in Sx is a strong /z^-point by Proposition 3.5 and 

hence every point in Sx is a denting point of Bx by Proposition 3.6. Thus X has prop­

erty (G) and the proof is complete. 

REMARK. Let (Q, Z, fi) be a measure space and let p be such that 1 < p < oo. Let 

r be a topological vector space topology on a Banach space X that is weaker than the 

norm topology and is such that the norm on X is a r lower semicontinuous function. It 

is interesting to compare the results of this section with the following result noted by 

Besbes, Dilworth, Dowling and Lennard [B-D-D-L]: The space X has the Kadec-Klee 

property with respect to r convergence if and only if whenever {fn}%L\ a n d / are in 

Sif(Qx) and satisfy {fn(^)}^L\ converges in the r topology to f(uo) for /x-almost all u in 

£1, it follows that limn \[fn —f\\if(çi,x) — 0- Thus, in the Sif^x) setting, norm convergence 

of {fn(^)}^L\ t o / ( ^ ) for //-almost all UJ in £1 always yields norm convergence of {fn}^L\ 

t o / in Z/(Q,X), whereas weak convergence of {fn{^)}^L\ to/(o;) for /i-almost all u in Q, 

yields norm convergence of {fn } ^ x t o / in If (£2, X) precisely whenever X has the Kadec-

Klee property with respect to weak convergence. That is, mimicking the language used 

in this paper, it can be said that LP(Q X) always has the Kadec-Klee property with respect 

to almost everywhere convergence, whereas LP(Q, X) has the Kadec-Klee property with 

respect to weak almost everywhere convergence if and only if X has the Kadec-Klee 

property with respect to weak convergence. 

The final result of this paper gives a very pleasing characterization of local uniform 

in rotundity in hp(D, X). 

THEOREM 3.8. Let 1 < p < oo and letX be a Banach space. Then hp(D, X) is locally 

uniformly rotund if and only ifX is locally uniformly rotund and has the Radon-Nikodym 

property. 

PROOF. Suppose hp(D,X) is locally uniformly rotund. Then it follows at once that 

X is locally uniformly rotund. To show that X has the Radon-Nikodym property, it suf­

fices to show that the mapping I:LP(J,X) —• hp(D,X), defined in (2.1), is surjective. 
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Toward this end, le t / be in hp{D,X) with \\f\\p = 1. Then J(f) is a norm-one function 
in hp(D,X**). It is known (see [H-L3]) that Z?z/(T,x) *S weak* dense in BLqrj^y, w n e r e 

- + - = 1, and so, since BLqcj,x*y can be identified with BhPi.D^**) by (2.3), there ex­
ists a net {/A}AGA in #LP(T,X) such that {/(/(/A)) }A A converges in the weak* topology in 

Buw to J{f). Thus {|/(/(/À)) +J(f)\\p}XeA c o n v e r ê e s t 0 2 a n d s o
 {II7(/A) +/IIP}AEA 

converges to 2. Now, since /^(D, X) is locally uniformly rotund, it follows that {/(/A)}AGA 

converges in norm to / . Hence/ is an element of /(LP(T,X)), since /(LP(T,X)) is closed 
in hp(D,X). This shows that / is surjective. 

Conversely, suppose X is locally uniformly rotund and has the Radon-Nikodym prop­
erty. Since X is locally uniformly rotund, the space LP(J,X) is locally uniformly rotund 
by a result of Smith and Turett [S-T] and, since X has the Radon-Nikodym property, it 
follows from (2.2) that hp(D,X) is isometrically isomorphic to LP(J,X). Hence hp(D,X) 
is locally uniformly rotund and the proof is complete. 

REMARK. For 1 < p < oo, the space hp(D, R) is uniformly convex and therefore is 
locally uniformly rotund. Rainwater [R] showed that if CQ is equipped with Day's norm 
HI • |||, then (co, ||| • |||)is locally uniformly rotund. However, hp(D, (co, IIHII)) is not locally 
uniformly rotund, by Theorem 3.8, since CQ fails to have the Radon-Nikodym property. In 
fact, more can be said. No equivalent norm on hp(D, CQ) is locally uniformly rotund since 
hp(D, co) contains an isomorphic copy of £°° and £°° has no equivalent locally uniformly 
rotund norm by a result of Lindenstrauss [L]. It is unknown, at the moment, whether X 
has the Radon-Nikodym property whenever hp(D, X) has an equivalent locally uniformly 
rotund norm. An affirmative answer to this question would be an improvement of the 
main result of Daher [Da] which is that X has the Radon-Nikodym property whenever 
hp(D,X) is separable. 
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