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GEOMETRY OF SPACES
OF VECTOR-VALUED HARMONIC FUNCTIONS

PATRICK N. DOWLING, ZHIBAO HU AND MARK A. SMITH

ABSTRACT. It is shown that the space A”(D, X) has the Kadec-Klee property with
respect to pointwise norm convergence in the Banach space X if and only if X has the
Radon-Nikodym property and every point of the unit sphere of X is a denting point of
the unit ball of X. In addition, it is shown that #”(D, X) is locally uniformly rotund if
and only if X is locally uniformly rotund and has the Radon-Nikodym property.

1. Introduction. The space of real-valued harmonic functions on the open unit disc
in the complex plane has long been of interest and, more recently, spaces of vector-valued
harmonic functions have been the object of considerable study. In 1982, Bukhvalov and
Danilevich [B-D] showed that a Banach space X has the Radon-Nikodym property if
and only if every bounded X-valued harmonic function from the open unit disc, D, in
the complex plane has almost everywhere radial values in X. They also showed that X
has the Radon-Nikodym property if and only if every function in #”(D, X) (see Section 2
for the definition) has almost everywhere radial values in X for all p with 1 < p < oo.
Subsequently, in 1992, Dowling and Lennard [D-L] considered Kadec-Klee and uniform
Kadec-Klee-Huff properties of the space #”(D, X) for 1 < p < oo.

This paper is a continuation of the study of Kadec-Klee properties of the space
hP(D, X) for1 < p < o0o.The topology on h”(D, X) with which Dowling and Lennard [D-
L] worked exclusively is the so-called 3 topology, that is, the topology of norm uniform
convergence on compact subsets of D. In Section 2 of this paper, some natural generaliza-
tions of the 3 topology, namely the weak-{3 topology on 4#”(D, X) and the weak*-(3 topol-
ogy on h”(D, X*), are introduced. Then, in Section 3, characterizations of the Kadec-Klee
property with respect to these modes of convergence in #”(D, X) are given. In particular,
it is shown that if X is a Banach space and if 1 < p < 00, then the following assertions
are equivalent:

(D If {f,};2, and f are in the unit sphere of #”(D, X) and satisfy {f,(z)},° | converges
in norm in X to f(z) for all z in the unit disc D, then {f, }2° | converges in norm in #”(D, X)
tof.

(1) If {f,}22 | and f are in the unit sphere of #”(D, X) and satisfy {f,(z)}.°, converges
weakly in X to f(z) for all z in the unitdisc D, then {f, }3> | converges in norm in #”(D, X)
tof.
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(2) The space X has the Radon-Nikodym property and every point of the unit sphere
of X is a denting point of the unit ball of X.

The equivalence of (1) and (2) above solves a problem implicitly stated by Dowling
and Lennard [D-L]. Section 3 concludes with the result that #”(D, X) is locally uniformly
rotund if and only if the Banach space X is locally uniformly rotund and has the Radon-
Nikodym property.

2. Definitions and preliminaries. Throughout this paper X will denote a real Ba-
nach space and D will denote the open unit disc in the complex plane. A functionf: D —
X is said to be harmonic provided it is twice continuously differentiable and its Laplacian
is zero. Hensgen [He] showed that f: D — X is harmonic if and only if x*f: D — R is
harmonic for each x* in X*, the dual space of X. For 1 < p < 0o and a Banach space X,
let

(D, X) = {f: D — X | f is harmonic and ||f||, < oo},
where

2m o, d011/P
— ity 1p 22
Ul = sop | [ eyl

Let T denote the boundary of D; let ‘B denote the Borel o-algebra of subsets of T; and let
A denote the normalized Haar measure on T. For 1 < p < oo, the symbol L”(T, X) will
denote the usual Lebesgue-Bochner function space L7 (T, B, A, X); see [D-U].
The following is a list of some properties concerning the spaces L”(T, X) and h” (D, X)
that will be used in the sequel.
(2.1) The mapping I: L”(T,X) — h”’(D, X), given by

. i . di
1 = [P0~ (s

foreach 0 < r < l and 0 < § < 27, defines an isometric embedding, where
{P,}o<r<1 is the Poisson kernel given, for 0 < r < 1and 0 < u < 2, by

Py — 1—7
) = 1 —2rcosu+r?
(2.2) A Banach space X has the Radon-Nikodym property if and only if the mapping
I, given in (2.1), is surjective; see [B-D].
23) If 1 < p, g < oo with % + é = 1, then LY(T, X)* is isometrically isomorphic to
hP(D, X*); see [Do]. In the sequel, a reference to the weak™ topology on 4”(D, X*)
will mean the isomorphic image in #”(D, X*) of the weak™ topology on L/(T, X)*.
(2.4) Let j: X — X* be the natural inclusion mapping. Then, for I < p < oo, the
mapping J: ki’ (D, X) — h’(D, X**), defined by J(f)(z) :j(f(z)) for z in D, is an
isometric embedding.
Dowling and Lennard [D-L] introduced the notion of 3 convergence; a sequence
{fu}22, in A’ (D, X) is said to converge in the (3 topology to f in hP(D, X) provided

lim(sup{|[fu(z) = f(2)|| : z € K} = 0
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for all compact subsets K of D. As in the scalar-valued case (that is, the case X = R),
it can be shown that a bounded sequence {f,}>2, in #”(D, X) converges in the 3 topol-
ogy to f in AP(D,X) if and only if {f,(2)}2°, converges in norm in X to f(z) for all z
in D. Consequently, it is natural to define weak-3 convergence as follows: A sequence
{fa}22, in WP(D, X) is said to converge in the weak-3 topology to f in h*(D, X) provided
{f(2)}2, converges weakly in X to f(z) for all z in D. The notion of weak™-3 conver-
gence of a sequence in #’(D, X*) is defined in an analogous manner.

The symbol By will denote the closed unit ball of X and Sy will denote the unit sphere
of X. Let 7 be a topological vector space topology on X which is weaker than the norm
topology on X. Then X is said to have the Kadec-Klee property with respect to T conver-
gence provided that whenever {x, }>>, and x are in Sx and satisfy {x, }3> | converges in
the 7 topology to x, it follows that {x, }3° | converges in norm to x.

A point x in By is called an extreme point of By provided x is not the midpoint of
any non-trivial line segment lying in Bx. A Banach space X is said to be strictly convex
provided every x in Sy is an extreme point of By. The following is a list of various well-
known types of extreme points; the list is given in order of increasing strength.

(i) A pointx in By is called a strongly extreme point of By provided that whenever
{x,}2°, isa sequence in X withlim,, ||x+x,|| = 1 and lim, ||x—x,|| = 1, itfollows
that lim,, ||x,|| = 0. A Banach space X is said to be midpoint locally uniformly
rotund provided every x in Sy is a strongly extreme point of By.

(ii) A point x in By is called a denting point of Bx provided x is not an element of
the closed convex hull of {y € Bx : ||y — x|| > ¢} for each ¢ > 0. A Banach
space X is said to have property (G) provided every x in Sy is a denting point
of Bx. A dual space X is said to have property (G*) provided every x* in Sy. is
a weak™ denting point of Bx-, where a weak™ denting point is defined as above
for a denting point but with the closed convex hull replaced by the weak* closed
convex hull.

(iii) A point x in By is called a locally uniformly rotund point of By provided that
whenever {x,}°, is a sequence in By with lim, ||x + x,|| = 2, it follows that
lim, ||x — x,|| = 0. A Banach space X is said to be locally uniformly rotund
provided every x in Sy is a locally rotund point of By.

3. Kadec-Klee properties of #7(D, X). The main results in this section are charac-
terizations of various Kadec-Klee properties of the space #”(D, X) for 1 < p < oo. The
first proposition is due to Dowling and Lennard [D-L]; it is stated here for both the sake
of completeness and subsequent reference.

PROPOSITION 3.1. Let 1 < p < 00 and let X be a Banach space. If i’ (D, X) has
the Kadec-Klee property with respect to (3 convergence, then X has the Radon-Nikodym
property and is strictly convex.

THEOREM 3.2. Let 1 < p < 00 and let X be a Banach space. Then h”(D,X") has
the Kadec-Klee property with respect to weak* -3 convergence if and only if X* has prop-
erty (G*). -
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PROOF.  Suppose A”(D,X*) has the Kadec-Klee property with respect to weak*-3
convergence. It follows immediately from the definition that #’(D, X*) has the Kadec-
Klee property with respect to 5-convergence, and so, by Proposition 3.1, the space X* is
strictly convex. By considering the constant X*-valued harmonic functions, it is easily
seen that X* has the Kadec-Klee property with respect to weak™ convergence. Hu and
Lin [H-L1] proved that X* is strictly convex and has the Kadec-Klee property with re-
spect to weak™ convergence if and only if X* has property (G*). Consequently, X* has
property (G*) whenever h”(D, X*) has the Kadec-Klee property with respect to weak*-3
convergence.

Conversely, suppose X* has property (G*). Note that the weak™ topology (see (2.3))
and the weak*-(3 topology on Bj»(p x) are equivalent since they are comparable com-
pact Hausdorff topologies. Thus #”(D, X*) has the Kadec-Klee property with respect to
weak -3 convergence if and only if h”(D, X*) has the Kadec-Klee property with respect
to weak® convergence. Since X* has property (G*), it follows that X* has the Radon-
Nikodym property (see [H-L1]), and hence, by (2.3), the space h”(D, X*) is isometri-
cally isomorphic to L7(T,X*). So A”(D, X*) has the Kadec-Klee property with respect
to weak* convergence whenever L”(T, X*) has the Kadec-Klee property with respect to
weak” convergence. However, Hu and Lin [H-L3] proved that LP(T, X*) has property
(G*), and hence the Kadec-Klee property with respect to weak* convergence, whenever
X* has property (G*). This completes the proof.

LEMMA 3.3.  Ifxisin By and x is not a denting point of By, then there exist a sequence
{fu}o2, in Biyvxy and € > 0 such that ||f, —f||, > € for each n in N, where f = xxvy, and
{fu}o2, converges in the o-topology to f, where 0 = a(L”(]T,X), L"(]T,X*)) and 1 < p,

cp L1
q<OOWlthE+:[ = 1.

PROOF. Since x is not a denting point of By, there exists ¢ > 0 such that x is in
E(Bx \ B(x, 5)), where B(x,e) = {y € X : ||y — x|| < &}. Therefore, for each n in N,
there exist m, in N with m,, > 2 and a finite set {x{ }}" in By \ B(x, ¢) such that

1 1
=<5

My =1

Fornin N, let M,, = mymy - - - m,, and define, for 1 <j < M,

; . 2m(— 1) 27j
E ={": ——= <1< —}.
" {e M, st< ,,}

Now, let [, = {Ef,, : 1 <j < M,} foreach n in N. Clearly, each I], is a partition of T
and the o-algebra generated by (> I1, is B. For each n in N, define

M, .
fn = ZXZ"U)X[;{'v
j=1

where 1 < r,(j) < my, and r,(j) = j (mod m,). Note that {f,}°°, is a sequence in the
closed unit ball of L?(T, X). For each ¢ in T, it is easily seen that ||f,(f) — f(?)|| > € and
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hence ||f, — f||, > € foreach n in N. Now for each k in N and x* in X*, it is the case that,
for each E in []; and n > k,

[ xm g =P =| [ (0 — ) dxo)| < ]

Since LY(T,X*) is the closed linear span of {x*xg : E € U> [k and x* € X*}, the
calculation above shows that {f, }2°, converges in the o topology to f. This completes
the proof.

REMARK. Using arguments similar to those in the proof of Lemma 3.3, it can be
shown that if (€2, %, ) is an atom-free measure space and f is a U’(Lp (€, X), L1, X*))
pointof sequential continuity of B;y(q x), then f is a denting point of Bj(q x,; this strength-
ens a result of Hu and Lin [H-L2] which concludes that such an f is a strongly extreme
point of By x)-

THEOREM 3.4. Let 1 < p < oo and let X be a Banach space. Then h"(D, X) has
the Kadec-Klee property with respect to weak-$3 convergence if and only if X has the
Radon-Nikodym property and property (G).

PROOE.  Suppose #7(D, X) has the Kadec-Klee property with respect to weak-3 con-
vergence. It follows immediately from the definition that #”(D, X) has the Kadec-Klee
property with respect to 3 convergence, and so, by Proposition 3.1, the space X has
the Radon-Nikodym property. To obtain a contradiction, suppose X fails to have prop-
erty (G). Then there exists a point x in Sy which is not a denting point of By. By
Lemma 3.3, there exist a sequence {f, }>°, in By, x) and ¢ > 0 such that ||f, — f||, > ¢
for each n in N, where f = xxt, and {f,}2°, converges in the o topology to f. Let
I: I7(T,X) — hP(D,X) be the isometric embedding defined in (2.1). For z = re? in D
and x* in X*,

2 . d 2 : d
(100@) = ([P0 = 0fi(en ) = [ (PO~ 0", fileh) 3

and

¥ (1)@) = [ PO — f(ei’));—;.

Since {f, }>°, converges in the o topology to f, it follows from the calculation above that
{I(f,) }2°, converges in the weak-3 topology to I(f). Now, since || - ||, is a weak-3 lower
semicontinuous function on A”(D,X), since {f,}>°, is in By, x), and since ||I(f)[|, =
Ifll, = 1, it follows that lim, [[I(f,)|[, = [[I()[, = 1. So the hypothesis that
K (D, X) has the Kadec-Klee property with respect to weak-3 convergence yields that
lim,, |[1(f,) — I(f)||, = 0 and hence lim, ||f, — f||, = 0. This contradicts the fact that
IIfs —fllp > e, for each n in N, and hence this portion of the proof is complete.
Conversely, suppose X has the Radon-Nikodym property and property (G). Let
{f1}52, be a sequence of norm-one functions in A”(D, X) which converges in the weak-
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3 topology to the norm-one function f in #”(D, X). Then, for each z in D, it follows
that {fn(z)}f,‘;l converges weakly in X to f(z), and hence { j(f,,(z)) 2, converges in the
weak”™ topology in X** to j(f(z)), where j: X — X** is the natural inclusion mapping.
Thus {J(f,)(z)}3>, converges in the weak™ topology in X** to J(f)(z) for each z in D,
where J is the mapping defined in (2.4); that is, {J(f,)}>°, converges in the weak*-3
topology in A”(D, X**) to J(f). As was noted in the proof of Theorem 3.2, this is equiv-
alent to saying {J(f,)}32, converges in the weak™ topology (see (2.3)) in A”(D,X**) to
J(f). Since J is an isometry, it follows that J(f,), for each n in N, and J(f) are norm-one
functions in A”(D, X**). But h(D, X**) is isometrically isomorphic to L(T, X*)*, where
5+ 3 = 1,and thus {J(£,)};2, may be considered as a sequence of norm-one functions
in LY(T, X*)* which converges in the weak* topology in L4(T, X*)* to the norm-one func-
tion J(f). Now, if J(f) were a weak™ denting point of Byt x)+, then it would follow that
lim, [|J(f,) — J(f)||, = 0 and so lim, ||f, — f]|, = 0, which would complete the proof. To
see that this is the case, note that, since X has the Radon-Nikodym property, the space
(D, X) is isometrically isomorphic to L”(T, X) by (2.2) and, since X has property (G),
the space L7(T, X) also has property (G) by a result of Lin and Lin [L-L]. Hence, by
considering f as an element of LP(T, X), it is the case that f is a denting point of Byt x)-
Notice that the natural embedding of L7(T, X) into L(T, X*)* sends f to J(f). Finally, Hu
and Lin [H-L3] proved that J(f) is a weak™ denting point of Byt x-)» Whenever f is a
denting point of Byt x). This completes the proof.

The next goal is to characterize the Banach spaces X such that #”(D, X) has the Kadec-
Klee property with respect to 3 convergence. To accomplish this, the following notion
will be used: For 1 < p < oo and X a Banach space, a point x in Sy is said to be a
strong hP-point provided that whenever {f, }>° | is a sequence in #”(D, X) with {f,(0)}°
converging in norm in X to x and lim, ||f,||, = 1, it follows that lim, ||f, —x||, = 0, where
the symbol x in ||, — x||, is to be interpreted as the constant function in A”(D, X) with
value x. It is easy to show that if x in Sy is a strong A”-point, then x is a strongly extreme
point of Bx.

PROPOSITION 3.5. Let 1 < p < oo and let X be a Banach space. If W (D, X) has the
Kadec-Klee property with respect to 3 convergence, then every point in the unit sphere
of X is a strong h”-point.

PROOE. Let x be a point in Sy. Suppose {f,}°, is a sequence in A”(D,X) with
{f2(0)}2°, converging in norm in X to x and lim, ||f,||, = 1. For each n in N, define
gn: D — X by gn(2) = f,(z") for each z in D and define g: D — X by g(z) = x for each z
in D. Clearly, each g, and g are elements of A”(D, X) with ||g,||, = [/fx]|, (by a compu-
tation similar to that given below), for each n in N, and ||g||, = 1. Also, since {g,}2°,
is a bounded sequence in h”(D, X), it follows that {g,(z)}2, converges in norm in X to
g(z) for each z in D. Hence, since h”(D, X) has the Kadec-Klee property with respect to

https://doi.org/10.4153/CJM-1994-012-1 Published online by Cambridge University Press


file:////Jifn
https://doi.org/10.4153/CJM-1994-012-1

280 P. N. DOWLING, Z. HU AND M. A. SMITH

3 convergence, it follows that lim, ||g, — g||, = 0. However,
2m ) do
len—glly = sup [ lgntre) =5

= sup/ ][f,,(r”e’"o) x|]”

0<r<l

2 . do
= sup | an(r"e'e)—xll”—Tr

0<r<l1*

up [ i) e 22

0<r<1
= [lfa — x]l}.

Thus lim, ||, —x||, = 0. This shows that x is a strong h”-point and the proof is complete.

Let K be a closed bounded convex subset of a Banach space X. A pointx in K is called
a very strong extreme point of K provided that for every sequence {x,}>°, of K-valued,
Bochner integrable functions on [0, 1] satisfying lim,, || f§ x,(t) dt — x|| = 0, it follows
that lim,, J3 ||x,(t) — x|| dt = 0. Lin, Lin and Troyanski [L-L-T] showed that x in K is a
very strong extreme point of K if and only if x is a denting point of K.

PROPOSITION 3.6. Let 1 < p < ooand let X be a Banach space. If x in Sy is a strong
hP-point, then x is a very strong extreme point of B (that is, x is a denting point of By ).

PROOF. Itisclear that in the definition of a very strong extreme point that [0, 1] with
Lebesgue measure can be replaced by T with its normalized Haar measure. Let x in Sy be

a strong hP-point. Suppose that {x,}2° | is a sequence of Bx-valued, Bochner integrable
functions on T with

. iy &0 _
h,f“”/o Xp(e ) x“ 0.
For each n in N, define f,: D — X by
iy _ [T B iy dt
futrey = |7 PO =@

foreach 0 < r < 1and 0 < 6 < 27. Clearly, f, is harmonic and, since x, is By-valued,
it follows that ||f,(z)|| < 1 for all n in N and all z in D. Thus each f, is an element of
h?(D,X) and ||f,||, < 1. Note that, for all nin N,

2T . d
fn(0) = /O xn(e”)z—:;

By the supposition concerning {x,}3>, above, it follows that {f,(0)}>°, converges in
norm in X to x and so lim, ||f,(0)|| = 1. Since f is harmonic, it follows that ||f,(0)|| <
[Ifall, < 1 and hence lim, ||f,||, = 1. Now, since x is a strong h”-point, it follows that
lim, ||f, — x||, = 0. But ||f, — x||, = ||x» — x|, and so

2m , dt
o Tt =2l 2= = o =2l < [l = allp = [y = 5l
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from which it follows that
271 . dt
: iy =
llr{n /0 |l%2 (") — x| 5 0.
This shows that x is a very strong extreme point of By and so the proof is complete.

THEOREM 3.7. Let 1 < p < 00 and let X be a Banach space. Then the following
assertions are equivalent:
(1) The space h’(D, X) has the Kadec-Klee property with respect to weak-3 conver-
gence;
(2) The space h’(D, X) has the Kadec-Klee property with respect to 3 convergence;
(3) The space X has the Radon-Nikodym property and property (G).

PROOF.  Assertion (1) implies (2) by definition; and (1) and (3) are equivalent by
Theorem 3.4. It remains to show (2) implies (3). So, suppose that #”(D, X) has the Kadec-
Klee property with respect to 3 convergence. Then X has the Radon-Nikodym property
by Proposition 3.1. Now, every point in Sy is a strong #”-point by Proposition 3.5 and
hence every point in Sy is a denting point of Bx by Proposition 3.6. Thus X has prop-
erty (G) and the proof is complete.

REMARK. Let (2, %, 1) be a measure space and let p be such that 1 < p < oo. Let
7 be a topological vector space topology on a Banach space X that is weaker than the
norm topology and is such that the norm on X is a 7 lower semicontinuous function. It
is interesting to compare the results of this section with the following result noted by
Besbes, Dilworth, Dowling and Lennard [B-D-D-L]: The space X has the Kadec-Klee
property with respect to 7 convergence if and only if whenever {f,}>°, and f are in
Sirx) and satisfy {f,(w)}>°, converges in the 7 topology to f(w) for p-almost all w in
Q, it follows that lim, ||, —f || ;7x) = 0. Thus, in the Sy, x) setting, norm convergence
of {fu(w)}22, to f(w) for y-almost all w in Q always yields norm convergence of {f,}° |
tof in L7 (€2, X), whereas weak convergence of {f,(w)}3, to f(w) for y-almost all w in Q
yields norm convergence of {f,, }5° | tof in L(€, X) precisely whenever X has the Kadec-
Klee property with respect to weak convergence. That is, mimicking the language used
in this paper, it can be said that L7 (£2, X) always has the Kadec-Klee property with respect
to almost everywhere convergence, whereas L7(€2, X) has the Kadec-Klee property with
respect to weak almost everywhere convergence if and only if X has the Kadec-Klee
property with respect to weak convergence.

The final result of this paper gives a very pleasing characterization of local uniform
in rotundity in #”(D, X).

THEOREM 3.8. Let 1 < p < ooand let X be a Banach space. Then h”(D, X) is locally
uniformly rotund if and only if X is locally uniformly rotund and has the Radon-Nikodym

property.

PROOF.  Suppose #”(D, X) is locally uniformly rotund. Then it follows at once that
X is locally uniformly rotund. To show that X has the Radon-Nikodym property, it suf-
fices to show that the mapping I: L?(T,X) — h”(D, X), defined in (2.1), is surjective.
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Toward this end, let f be in #”(D, X) with ||f||, = 1. Then J(f) is a norm-one function
in WP(D, X**). It is known (see [H-L3]) that B;,(1x, is weak™ dense in By x)-, Where
5+ 5 = 1, and so, since Byyrx-) can be identified with Byy(px-) by (2.3), there ex-
ists a net {f\ }rea in Bry(r.x) such that {J(I(fA)) },\e/\ converges in the weak™ topology in

Brax+y to J(f). Thus {HJ(I(fA)) + J(f)“p}/\e\ converges to 2 and so {||/(£\) +fll }rea
converges to 2. Now, since #”(D, X) is locally uniformly rotund, it follows that {/(f\) }rea
converges in norm to f. Hence f is an element of I(L”(]T, X)), since I(L”(TT,X)) is closed
in #’(D, X). This shows that / is surjective.

Conversely, suppose X is locally uniformly rotund and has the Radon-Nikodym prop-
erty. Since X is locally uniformly rotund, the space L7 (T, X) is locally uniformly rotund
by a result of Smith and Turett [S-T] and, since X has the Radon-Nikodym property, it
follows from (2.2) that h/”(D, X) is isometrically isomorphic to L” (T, X). Hence h”(D, X)
is locally uniformly rotund and the proof is complete.

REMARK. For | < p < o0, the space #”(D, R) is uniformly convex and therefore is
locally uniformly rotund. Rainwater [R] showed that if ¢y is equipped with Day’s norm
Il lll, then (co, ||| [Il) is locally uniformly rotund. However, h”(D, (cos ||| - [||)) is not locally
uniformly rotund, by Theorem 3.8, since ¢ fails to have the Radon-Nikodym property. In
fact, more can be said. No equivalent norm on #”(D, ¢y) is locally uniformly rotund since
h?(D, cp) contains an isomorphic copy of £ and £°° has no equivalent locally uniformly
rotund norm by a result of Lindenstrauss [L]. It is unknown, at the moment, whether X
has the Radon-Nikodym property whenever A7 (D, X) has an equivalent locally uniformly
rotund norm. An affirmative answer to this question would be an improvement of the
main result of Daher [Da] which is that X has the Radon-Nikodym property whenever
h’(D, X) is separable.
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