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NON-ABELIAN TORSION THEORIES 

MICHAEL BARR 

Torsion theories have proved a very useful tool in the theory of abelian 
categories; for example, in one proof of Mitchell 's embedding theorem (Bucur 
and Deleanu [3]) and in ring theory (Lambek [5]). I t is the purpose of this 
paper to init iate an analogous theory for non-abelian categories. Originally 
we had hoped to prove the non-abelian analogue of Mitchell 's theorem this 
way (Barr, [2, Theorem I I I (1.3)]), bu t so far this had not been possible. 
Nonetheless an interesting var ie ty of examples fit into this theory. 

In an abelian category se, a torsion theory is given by an idempotent sub-
functor N of the ident i ty functor. This means t h a t there is a na tura l embedding 
€ : N —>s/ ( h e r e s e is also used to denote its ident i ty functor; a similar con­
vention applies to objects and functors) such t h a t Ne : iV2 —> N is an iso­
morphism; this follows from e • Ne = e • eN (by na tura l i ty ) and the fact t h a t 
Ne = eN. T h u s taking ô = (Ne)"1, it is clear t h a t (N, e, d) is an idempotent 
cotriple on s/. Intui t ively, NA m a y be thought of as the set of "almost-nul l 
e lements" of A. In the familiar torsion theory on the category séb of abelian 
groups, NA consists of the torsion elements of A. There is a torsion theory on 
any category of S$b valued presheaves for which NA consists of those sections 
which vanish identically on some cover. In t h a t case the torsion free objects 
are the separated presheaves, while the torsion free divisible objects are the 
sheaves. 

When one comes to generalize from abelian to non-abelian contexts, there is 
always the problem of wha t to do with exact sequences. In abelian torsion 
theories a central role is played by the exact sequence 

0 -> NA -> A -> A/NA -> 0. 

From the examples above it seems t h a t the quot ient A/NA is the more 
impor tan t construct ion: once we have it, we may then define the notions of 
torsion free (separated) and torsion free divisible (sheaf) objects. F rom this 
point of view NA, the set of quasi-null things, is replaced by the kernel pair 
of A —* A/NA which m a y be though t of as the set of pairs of elements of A 
which are quasi-equal (e.g. differ by a torsion element or which become equal 
on a covering). 

T h e functor SA = A/NA comes equipped with a na tura l epimorphism 
-q : sé —» S. One always supposes t h a t NS = 0, which implies t h a t rjS is an 
isomorphism. As above, rjS = St], so t h a t taking /x = (TJS)-1, (S, rj, n) is an 
idempotent triple o n j / . 
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NON-ABELIAN TORSION T H E O R I E S 1225 

An important property of abelian torsion theories is that when A C A\ 
A C\ NA' = NA. This is readily seen to be equivalent to the fact that A C A' 
implies SA CSA'. 

A word on notation. We will use the arrows -» and >-> to denote epimor-
phisms and regular monomorphisms respectively. These are often used pre-
dicatively so that the "X -*> SX", appearing in (1.1) below, is read "the 
morphism X —» SX is an epimorphism". The assumptions we will be usually 
making suffice to guarantee that these two classes give a factorization system. 

It will be a standing hypothesis that the category will have whatever finite 
limits and colimits are required in the proofs. For example, in the main 
theorem these are equalizers and pushouts. 

1. Definitions. 
(1.1) Let<3T be a category. A torsion theory on 9f is an idempotent triple 

S = (S, y, fx) on 2f such that 
(i) for all X £ Stf, r)X : X -» SX, and 

(ii) for all X ~ X', SX >-» SX'. 
(1.2) Let f b e a category. A semi-topology is an idempotent triple 0 = 

(<2, a, v) on<3T such that whenever X' —» X _> X" is a coexact sequence in 9f 
(that is both an equalizer and a cokernel pair), then 

QX' -*QXZX QX" 

is an equalizer in «ST. 0 is called a topology if it preserves all finite inverse limits. 
(1.3) Let 2£ be a category and X £ 2f. An infective effacement of X is a 

morphism X >-> 7 such that every diagram 

X> >I 

F> > F ' 

can be completed to a commutative square by a map F ' —> J. «ST &as infective 
effacements if each object of $T has one. 

(1.4) Let S = (S, 7j, jit) be a torsion theory on<âT. An object X G «âT is called 
torsion free (TF) if 77X : X —» 5X is an isomorphism. It is called torsion free and 
divisible (TFD) if it is TF and if every regular mono to another T F object is a 
regular mono in the full subcategory of T F objects. This means that for every 
X >-> X' where X' is TF, there is a T F object X" and maps such that 

X -» X' ZX X" 
is an equalizer. 

2. The main theorem. 

(2.1) THEOREM. Let 2£ be a category with finite limits and colimits and infec­
tive effacements. Then there is a one-one correspondence between torsion theories 
on ££ and semi-topologies on 3f. 
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The essential idea is to associate to each torsion theory the full subcategory 
of T F D objects. W e show tha t subcategory is coreflective ( the inclusion has a 
left adjoint) and the resul tant triple is a semi-topology. T o go the other way, 
given a semi-topology, i.e. a coreflector with a certain proper ty , we m a y form 
the corresponding epi-coreflector (Kennison [4]), where coreflectors are called 
reflectors) and show t h a t this is a torsion theory. 

At this point we prove some prel iminary propositions. 

(2.2) P R O P O S I T I O N . If the square 

h 
X> >X' 

g\ Jg' 
Y> > Y 

f 

is a pushout, then f is a regular monomorphism. 

Proof. Le t 

k 

be an injective effacement and choose / : X' —» I with I - h = k . g. T h e existence 
of such an I is guaranteed by the definition of injective effacement. There then 
results a m a p (k, I) : Y' —» I with (k, 1) • / = k, (k, I) • g = I. In part icular , 
f being an initial factor of the regular monomorphism k, is again one. 

(2.3) P R O P O S I T I O N . Every morphism in <3T has a factorization, unique up to 
isomorphism, of the form • - » • > - > • . 

Proof. For a proof, see [2, I, (2.3)]. 

(2.4) P R O P O S I T I O N . LetStf be any category. There is a one-one correspondence 
between natural equivalence classes of idempotent triples on 9ff and full replete 
coreflective subcategories of 3f which associates to a triple the category of algebras 
and to a coreflective subcategory the corresponding triple. 

Proof. Le t T = (7", 77, JJL) be an idempotent triple. If (X, x) is an algebra, 
then x - rjX = X, so t h a t x is a split epimorphism. If it were not a monomor­
phism, neither would TyX • y\X • x = T(rjX • x) • Tr)X = TrjX • Tx • TK)X = 
Tr\X be, which contradicts the fact t h a t TrjX = JJLX~1 is an isomorphism. Hence 
x is both a split epimorphism and a monomorphism and thus an isomorphism. 
Together with x • rjX = X, this implies t h a t y]X is an isomorphism and x = 
rjX~1. T h u s every algebra is of the form (X, r]X~1)1 where rjX is an isomor­
phism. Conversely, if r]X is an isomorphism, the equat ions 7]X~X • y\X = X 
and 7)X~l - TrjX~l = y]X~l • \xX imply t h a t (X, y)X~x) is an algebra. Finally, 
the na tura l i ty of 77 implies t ha t for all / : X —» F, 77 Y • / = Tf • t)X, and t h a t 
when rjX, rj Y are isomorphisms, / • r]X~l = 77 Y~l • Tf, and so / is an algebra 

https://doi.org/10.4153/CJM-1973-130-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-130-4


NON-ABELIAN TORSION THEORIES 1227 

morphism. Thus<3T is the full subcategory of 9£ consisting of those objects X 
for which r)X is an isomorphism. Such a subcategory is obviously replete 
(closed under isomorphism). Conversely, given a full replete coreflective sub­
category 

what, 

the triple associated to J —« I is easily seen to be idempotent, since F G ®/ 
implies J Y ^ F. 

3. Semi-topologies to torsion theories. Let 0 = ((?, «, *>) be a semi-
topology on 2£ and let ^ be the category of Q-algebras. Let 3? be the full 
subcategory whose objects are regular subobjects of objects of ^ . 

(3.1) PROPOSITION. Each of the inclusions ty C$f <Z.S£ is coreflective. 

Proof. The coreflector to <3/ C 3? is provided by the same Q (restricted to 
<&). As for % C &, let SX be defined by factoring aX as 

rjX TX 
X » SX > > QX. 

If Z G 2? and we choose Z >-> F with F G ^ , we apply Q to get the com­
mutative square 

Z > > F 

<2^ >QY 

from which we see that aZ : Z >-> QZ. ThusJ^T is the full subcategory of objects 
Z for which aZ is a regular monomorphism. Now if X —> F is any map with 
F G ^ , we have a commutative square 

X » SX > > QX 

Y >QY 

and the diagonal fill-in (possessed by any factorization system, see [2, I, (2.6)]) 
provides a map SX —» F which makes the diagram commute. The uniqueness 
comes from the fact that X -» SX. This shows adjointness. 

The functor 5 and the natural transformation TJ extend to an idempotent 
triple S = (S, 77, ju) on St. 

(3.2) PROPOSITION. The triple S is a torsion theory. 

Proof. It is an idempotent triple and obviously rjX : X -» SX for all X. 
We need only show that S preserves regular monomorphisms. But Q does (since 
it preserves equalizers in coexact sequences) and S is a regular subfunctor of Q. 

This process then gives the correspondence in one direction. 
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4. Torsion theories to semi-topologies. In the previous section we saw 
how to construct a torsion theory from a semi-topology. This construction 
used the existence of injective effacements at only one place and in a very 
minor way (i.e., it could have been replaced by a far weaker assumption). 
Here wTe will make much more serious use of the hypothesis to go in the other 
direction. 

Let S = (S, 77, jit) be a torsion theory on 3T and let 2? be the category of 
S algebras. E v i d e n t l y ^ is the full subcategory of T F objects. Let $/ be the 
full subcategory of TFD objects. We will show that *$/ is coreflective and the 
triple associated to the coreflector will be the desired one. 

Throughout this section the arrow >-> will be used for a map which is a 
regular monomorphism in 2£, regardless of whether it is one in «ST. 

(4.1) Definition. L e t / : Z >-> Z', where Z, Z' G â". We say that / is dense 
if / is an epimorphism in <2T. We say that / is closed if it is a regular mono­
morphism in<2T (not merely in«^T ). 

(4.2) PROPOSITION. Let f : Z >-> Z' in 3?. Then f has a factorization as 
Z >-> Z >-> Z'', where the first map is dense and the second closed. 

Proof. A closed map is a regular monomorphism in^T, so that any pushout 
of it is a regular monomorphism in «3T, hence at least a monomorphism in 2?. 
It follows from [2, I, 2.3] that every morphism in<2T has a factorization as an 
epimorphism followed by a map which is a regular monomorphism in 3f. 
Applying this to f : Z >-» Z', we g e t / = f2 - / i , where/i is an epimorphism in 
2? and/2 is a regular monomorphism in 3f. B u t / i is a first factor of a regular 
monomorphism in 2£ and thus is one itself, and so /x is dense. Evidently / 2 is 
closed. 

(4.3) PROPOSITION. Let Z be a TF object. Then Z has, in «3T, an injective 
effacement Z >-* I, with I also TF. 

Proof. Choose any injective effacement Z >-> I. Since 5 preserves regular 
monomorphisms, 

Z^SZ» SI. 

Now for any X —» Z and X >-> X', consider the diagram 

Z > > I > SI 

X> > X' 

where the map X' —• I exists because Z —» / is an injective effacement and the 
composite X' —> I —* SI gives the required commutative square. 

(4.4) PROPOSITION. Suppose Z >-> I is an injective effacement with Z and I TF. 
If the map is closed, then Z is TFD. 
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Proof. Suppose we are given Z >-» Z'. Consider the diagram 

Z> > I 

Z> >Z' 

with the indicated fill-in of Z' —> 7. Thus Z >-» Z' is a first factor of a regular 
monomorphism (in 3?) and hence is one itself. 

(4.5) PROPOSITION. Let Z >-> I be an infective effacement where Z and I are TF. 
Then if Z >-* Z >-> I is its dense/closed factorization, Z >-* I is also an infective 
effacement. 

Proof. First consider a diagram 

IL h 
z>—>r 

where Z >-> V is an injective effacement. Observe that since Z >-* I is an 
injective effacement, there is a map k : V —> I with k • h • / = g • / . Now k • h 
and g : Z >-> 7 are maps between objects of 2? and / is an epimorphism in 2?, 
so k - h = g. The result now follows from consideration of the diagram 

z > — > r — > i 

X > > X' 

(4.6) PROPOSITION. Le/ Z >-> Z be a dense embedding into a TFD object. 
Then any map Z —> Y where Y is TFD extends to a unique map Z —» Y\ 

Proof. Consider a diagram 

Z> > Z 

F> > I 

where Y >-> 7 is an injective effacement and Z —•» 7 is any map making the 
square commute. Since Z >-> Z is dense and Y >-* I is closed, the usual diagonal 
fill-in provides a map Z —> Y which makes both triangles commute. The 
uniqueness follows from the fact that Z >-> Z is an epimorphism in 3f. 

(4.7) PROPOSITION. The category & of TFD objects is a coreflexive subcategory 
of 3? and hence of 2£. 
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Proof. The proof is trivial. 

Let 0 = ((?> Vi M) be the triple corresponding to the coreflector. Evidently 
QX is the closure of SX in any injective effacement SX >-> 7 such that 7 £ 2?. 

(4.8) PROPOSITION. Let Z >-> Z' >—> 7, where the second map is an injective 
effacement. Then so is the composite Z >-» 7. 

Proof. We have just to consider a diagram 

Z > Z' > I 

X > X' . 

(4.9) PROPOSITION. If X » X', then QX >-> QX'. 

Proof. We know that Y = SX ~ Y' = SX'. If Y' >-> 7 is an injective 
effacement, then so is Y >-» F ' >-> 7. Then we have 

F> > 77 

F • F 

7 ~^-> 7 

from which we see that QX = Y y-+ QX' = Y'. 

(4.10) PROPOSITION. Let 

X -> X' ZX X" 

be a coexact sequence in 2f. Then 

QX -> QX' ZX QX" 

is coexact in &. 

Proof. We know that QX >-» QX', and the nature of & is such that this is 
a regular monomorphism in ty as well. Hence it is the equalizer in & of its 
cokernel pair in &. The coreflector preserves colimits, so that the cokernel 
pair of QX —> QX' is QX' _> QX", and so the sequence is coexact in *%/. The 
inclusion preserves limits, so that the diagram is an equalizer in «ST. 

Combining these results, we have 

(4.11) THEOREM. Let S = (S, rj, /x) be a torsion theory on a category 2^ which 
has injective effacements. Then the full subcategory of TFD objects is cor effective; 
the triple associated with the coreflector is a semi-topology. 

https://doi.org/10.4153/CJM-1973-130-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-130-4


NON-ABELIAN TORSION T H E O R I E S 1231 

5. Proof of the main theorem. 

(5.1) PROPOSITION. Let Q = (Q, a, y) be a semi-topology on 2£ and S = 

(5, r]} jit) be the associated torsion theory. Then Q is the semi-topology associated 
toS. 

Proof. We mus t show t h a t an object is T F D if and only if it is a Q algebra. 
Suppose Y is T F D . Then Y^SY» QY, so t ha t aY : Y » QY. Since Y is 
T F D , there is an equalizer diagram 

Y^QYZX Y' 

in which Y' is T F . T h u s Y' —» QY', from which it follows readily t ha t 

Y^QYZXQY' 

is also an equalizer. Since a coreflective category is closed under inverse limits, 
if follows t h a t Y mus t be a 0 algebra as well. 

Conversely, let F be a Q-algebra. Then it is certainly an S-algebra, hence 
T F . If Y >-> Z with Z also T F , then Y >-> Z >-* QZ. This composite is a regular 
monomorphism m& ; hence it is one in^T , since 0 is a semi-topology; hence 
it is one in i£Ts, since <3TQ is a limit closed sub-category of <3TS; and hence, 
finally, the first factor is a regular monomorphism in <âTs. This shows t h a t 
Y is T F D . 

(5.2) PROPOSITION. Let S = (S, rj, p) be a torsion theory on Sfc and Q = 
(Qi a> l) oe the associated semi-topology. Then S is the torsion theory associated 
toQ. 

Proof. We mus t show tha t an object is T F if and only if aZ : Z >-> QZ. 
If Z is T F , QZ is the closure of Z in any injective effacement Z >—> / for which 
/ is T F . T h u s aZ : Z >-> QZ. Conversely, if t ha t condition is satisfied, apply S 
to get 

S > > ÇZ 

t]Z\ ^ 

SZ > > SQZ 

from which we see tha t 77Z, being an initial factor of a regular monomorphism, 
is one, and thus is an isomorphism. 

This completes the proof of the main theorem. We conclude this section with 
a theorem on the heredi tary property of injective effacements and injectives. 

(5.3) T H E O R E M . Let Q be a semi-topology on 9£. Then the category & of Q 
algebras has injective effacements. 

Proof. Le t 7 ^ and let Y >-> / be an injective effacement with / T F . 
Then it is clear t ha t Y >-» I >-> QI is an injective effacement in &. 
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The interesting question of existence of injective effacements will be the 
subject of forthcoming papers. It will be shown that in the presence of co-
generators a necessary and sufficient condition can be given in terms of 
exactness. 

6. When is 0 a topology? 

(6.1) In the abelian case the answer to the above question is "always" — 
provided 5 is additive. Here we show that under certain conditions on<3T this 
will happen if and only if 5 preserves finite products. If we suppose that in 3£ 
a product of epimorphisms is an epimorphism, then it easily follows that if Q 
preserves finite products, so does S. What is interesting is that we give a 
condition on ££ which guarantees that any functor which preserves finite 
products and regular monomorphisms preserves all finite limits. 

(6.2) Definition. Let<3T be a category such that for any object X, the class 
of subobjects is a lattice. Then $£ is said to have effective unions if for any 
object X and any two regular subobjects A, B >-» X, the diagram 

A Ç\ B > > A 

B > > A\J B 

is a pushout, and moreover A \J B is a regular subobject of X. 

(6.3) Note that in a coregular category the intersection A C\ B will auto­
matically be a regular subobject of X. (See this by using the composite map 
A C\B ̂ >A >-*X.) 

It is trivial to see that any abelian category has effective unions. 

(6.4) PROPOSITION. Any topos has effective unions. 

Proof. The union of two subobjects A and B of X is the coequalizer of 

{A +B) XX(A + 5)=U +B. 

Since sums are universal, (A + B) Xx (A + B) ^ A Xx A + A Xx B + B 
XxA+BXxB^A+Ar\B+B(^A+B. Hence 

d° 
(*) A+AnB + BDA+BZ^A+B-^AUB 

d1 

is a coequalizer. Here the map d° is on the four summands, respectively: the 
inclusion A-+A+B; the injection AC\B-^A, followed by inclusion 
A —» A + B\ the similar map B C\ A —> J3 —> A + B; and the inclusion 
B —> A + B. The map dl has the same action on the first and last summand 
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and reverses the action on the middle ones. One easily sees that (*) is a co-
equalizer if and only if 

A r\BZXA + B-^A \J B 

is. But that being a coequalizer is equivalent to the union being effective. 

(6.5) This argument shows that universal sums imply effective unions. 
Abelian categories, however, do not have universal sums, so the assumption 
of universal sums is a stronger condition. 

(6.6) PROPOSITION. Let & have finite limits and the functor U :& -*& 
preserve finite products and equalizers of split monomorphisms. Then U preserves 
finite limits. 

Proof. The diagram 

d ^° 

is an equalizer if and only if 

d (Xf, do) 
X > X' \ X' X X" 

(X', d{) 

is. The maps (X\ d0) and (X', di) are monos, each split by the product pro­
jection. From this one easily sees that U preserves equalizers and then all 
finite limits. 

(6.7) PROPOSITION. Let «ST have finite limits and colimits and effective unions. 
If the functor U : 2£ — » ^ preserves finite products, regular monomorphisms, and 
cokernel pairs, it preserves all finite limits. 

Proof. Consider an equalizer diagram 

d ^° 
X-%X'Z1X" 

di 

in which d0 and d± are split—in particular regular—monomorphisms. Then the 
cokernel pair X' +x X' is a regular subobject of X" and we have 

x > x' \ x' +x x' 

x > xf > x" 
in which the top row is coexact. If we apply U, we get 

ux —> uxf — \ ux' +ux uxf 

UX > UX' \ UX" 
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Since UX —> UX'', the top row continues to be coexact and the bottom row is 
then easily seen to be an equalizer. 

This shows when a semi-topology 0 preserves products, it is a topology. We 
wish to show that if S preserves products, so does 0 , f° r o n e often knows S 
quite explicitly and wishes to deduce properties of Q. 

(6.8) PROPOSITION. Let & be a category with effective unions. LetS = (S, 77, \x) 
be a torsion theory on9Z and Q = (Q, a, 7) be the associated semi-topology. Then 
if S preserves products, so does Q and Q is a topology. 

Proof. Let Zi, Z2 G 3?, the category of T F objects. Then Zi >-> QZi and 
Z2 >-> QZ2 are dense maps and QZ\ X QZ2 is also TFD. If we know that 
ZiX Z2» QZi X QZ2 is dense, then Q(Zi X Z2) = QZX X QZ2. Since the 
composite of dense maps is dense, it suffices to show, e.g., that Zx X Z2 >-» 
Z\ X QZ2 is dense. Now 

z2~<2Z2it<2Z2+Z2<2Z2 

is an equalizer of split monomorphisms. This means that Z2 is the intersection 
of the two regular embeddings of QZ2 into the cokernel pair. Then 

Z1XZ2-^Z1X QZ2 Zt Zi X (QZ2 +Z2 QZ2) 

is again an intersection of two regular embeddings, so that 

(Zi X QZ2) +z lXz2(Zx X QZ2) »ZXX (QZ2 +Z2 QZ2), 

and if we apply 5, 

S(Z1 X QZ2) +ZlXZ2 5(Zi X QZ2) » SZ, X (SQZ2 +Z2 SQZ2) = Z, X QZ2, 

which means that the two maps 

Zx X QZ2ZX (Zx X QZ2) +ZlXZ2 (Zi X QZ2) 

become equal when S is applied and hence that Z\X Z2>-+ QZ2 is dense. 

7. Examples. 

(7.1) Abelian groups. The category of abelian groups has the usual torsion 
theory. The torsion free objects are the usual torsion free groups, while the 
torsion free divisible objects are again the usual ones. The category of TFD 
modules is the category of Q-modules and the coreflector is 0 ® — • More 
generally, we could consider the category of i^-modules and all the possible 
torsion theories on it. See [5] for many examples as well as references to many 
others. 

(7.2) Set-valued sheaves. We begin with a small category ^ and a topology 
o n ^ # . We use the "classical" definition of a topology as given in [1]. That is, 
we are given for each object M G ^ the knowledge of which sieves {Mt —» M\ 
are covers. These are to be closed under pullback and composition and should 

https://doi.org/10.4153/CJM-1973-130-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-130-4


NON-ABELIAN TORSION THEORIES 1235 

include each identi ty sieve M —> M. Then a presheaf is a functor F :s$r°p-^9p. 
We define a torsion theory on the functor category (^op, y) by saying t ha t 
F is T F if for each cover {Mt —> M], the map 

FM>-> UFMi. 

T h e reflection SF can be described by SFM as FM modulo the equivalence 
relation x ~ x' in FM if there is a cover {Tkf* —> ikf} for which #|Af* = xf\Mt 

for all i. (This notat ion means tha t if /* : Af * —> ikf is the given map, then 
Fft(x) = Ffi(x').) T h e T F D objects are easily seen to be exactly the sheaves, 
those F such t ha t given any cover {Mt —> M}, the sequence 

FM -> IlFMt ZX ÏÏF(Mt XM M,) 

is an equalizer. One easily checks, using the definition of a topology, t ha t S 
preserves products and hence tha t 0 is a topology. 

(7.3) Let S£ be complete, cocomplete, coregular, and co-wellpowered. Let 
J? be a class of injectives. The idea of this example is to let SX be the regular 
image of the natura l map 

This makes sense only w h e n ^ is a set (in which case we can drop the co-well-
powered-ness hypothesis) . When f is large, we mus t work harder. Consider 
each epimorphic image X - » Xk for which Xk is a regular subobject of a 
product of things i n ^ / . There is only a set of such Xk, so for each one choose 
a m a p Xk >-* TIi(:IkJi. Then let I be the disjoint union of the Ik. There is a 
na tura l m a p X —> HieiJi whose regular image we call SX. We see from the 
diagonal fill-in in the diagram 

X » SX 

I l*-i£lJi 

Xk> > Lli£IkJi 

t h a t SX is initial among those epimorphic images of X which are embeddable 
in products of J ' s . Now let X —-> X'. In the definition of SX we have complete 
la t i tude in choosing / so long as it is sufficiently large. Let ^ 0 be the swhset 
of f consisting of all the objects used to embed both SX and SX'. Then in 
fact SX is the image of X in YlJe/0J^x,J) and similarly for X''. We have induced 

(Xf, J) - * (X, J), J<X'J) - > / ( * ' . ' ) 

for each / Ç ̂ /0t and then 

n/c*'j)-»iycx/,J). 
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Then the diagonal fill-in in the diagram 

X »SX 

X' Uj^x J) 

SX'> > Iij^x'J) 

makes S a functor. It is easily idempotent, for SX is evidently maximal among 
those of its quotients which are regularly embeddable in a product of J 's . 
Finally X >-> X' gives, since the Ts are injective, (X', / ) -» (X, J) and then 
j(x,j) >_> j(x>,j)^ from which it readily follows that SX >-> SX'. Thus S gives 
a torsion theory S. The T F objects are the regular subobjects of products of 
Ts. The TFD objects are not so readily identifiable. The TFD reflector always 
exists, however, since any J" and product of J ' s is TF, and an object which is 
T F and injective is always TFD. 

In [6] this situation is studied in greater detail. We give examples to show 
that S may or may not preserve products. 

(7.4) LetcâT = S^0, where G is a group. Then<âT is a topos whose subobject 
classifier is 2 with trivial G-action. If f is taken to be {2} alone, then powers 
of 2 are all discrete and subobjects of those are discrete as well. Evidently 
the T F objects are discrete G-sets and they are all TFD. The coreflector 
S = Q is the set of orbits functor, and a moment's reflection shows that £ 
does not preserve products; e.g., SG = 1, while S(G X G) is a discrete set 
with #(G) elements. 

(7.5) If, on the other hand, we let<3T be any topos and let^X be any class of 
injectives closed under internal exponentiation, the resultant 6* will preserve 
finite products. To see this, note that exponentiation, being a right adjoint, 
commutes with products and monomorphisms. Thus if Z is TF, say Z >-» Y\ju 

then for any X, 

zx>^Y\jl
x 

shows that Zx is TF . Now for any X, X' £ St, both SX X SX' and S(X X X') 
are TF . Then for any T F object Z, we have 

(S(X X X'), Z) ^ (X X X', Z) ^ (X', Zx) ^ (SX', Zx) 

^ (X X SX', Z) ^ (X, Zsx') ^ (SX, Zsx') ^ (SX X SX', Z). 

Thus S(X X X') ^SX X SX', and by following the above chain of iso­
morphisms, we see that it is induced by the natural map. 

Note that the resultant coreflector being exact implies that the category of 
TFD objects is again a topos. This example can be modified to work for 
elementary toposes as well. 
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I would like to thank the referee for calling my attention to [7] in which 
related questions are considered, although with the hypothesis of existence of 
injective envelopes. Note that the example (7.4) provides a counterexample to 
the statement of Proposition 3, p. 305, of [7]. 
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