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The effect of a uniform mean scalar gradient on the small scales of a passive scalar field
in statistically stationary homogeneous isotropic turbulence is investigated through the
transport equation for the scalar fluctuation. After some manipulation of the equation,
it is shown that the effect can be recast in the form S∗

θPe−1
λθ

(S∗
θ is the non-dimensional

scalar gradient, Peλθ is the turbulent Péclet number). This effect gradually disappears as
Peλθ becomes sufficiently large, implying a gradual approach towards local isotropy of the
passive scalar. It is further argued that, for a given S∗

θ , the normalized odd moments of
the scalar derivative tend towards isotropy as Pe−1

λθ
. This is supported by direct numerical

simulations data for the normalized odd moments of the scalar derivative at large Péclet
numbers. Further, the present derivation leads to the same prediction (∼Sc−0.45 where Sc
is the Schmidt number) as Buaria et al. (Phys. Rev. Lett., vol. 126, no. 3, 2021a, p. 034504)
and complements the derivation by the latter authors, which is based on dimensional
arguments and the introduction of a new diffusive length scale.

Key words: turbulence theory

1. Introduction

The skewness of the scalar derivative S3, defined as

Sm =

(
∂θ

∂x1

)m

(
∂θ

∂x1

)2m/2 , m = 3, (1.1)
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where θ is the scalar fluctuation and m is a positive integer, is generally of order 1 when
the Schmidt number Sc(≡ ν/κ , ν is the kinematic viscosity and κ is the diffusivity of
the scalar) is of order 1 in shear flows such as wakes, jets and homogeneous shear flows
(e.g. Mestayer et al. 1976; Gibson, Friehe & McConnell 1977). This has been interpreted
as evidence that local isotropy of the passive scalar field is violated (e.g. Mestayer et al.
1976; Sreenivasan & Antonia 1977; Sreenivasan, Antonia & Britz 1979; Sreenivasan &
Tavoularis 1980; Subramanian & Antonia 1982; Sreenivasan 1991; Holzer & Siggia 1994;
Pumir 1994; Tong & Warhaft 1994; Sreenivasan & Antonia 1997; Shraiman & Siggia
2000; Warhaft 2000; Yeung, Xu & Sreenivasan 2002; Yeung, Donzis & Sreenivasan 2005;
Monin & Yaglom 2007; Yeung & Sreenivasan 2014; Clay 2017; Sreenivasan 2019; Buaria
et al. 2021a; Shete et al. 2022). On the other hand, there is evidence that, as Sc increases
from approximately 10−3 to 103, |S3| along a direction parallel to the mean scalar gradient
first increases before decreasing with increasing Sc (e.g. Yeung et al. 2002; Antonia &
Orlandi 2003; Brethouwer, Hunt & Nieuwstadt 2003; Schumacher & Sreenivasan 2003;
Yeung et al. 2004; Donzis, Sreenivasan & Yeung 2005; Yasuda et al. 2020; Buaria et al.
2021a; Shete et al. 2022). In particular, using dimensional arguments, Sreenivasan (2019),
Buaria et al. (2021a) and Shete et al. (2022) derived relations for |S3|, |S5| and |S7|. Each
of these quantities was found to decrease with Sc as Sc−1/2 at a given Reλ. However,
this behaviour was not supported well by the direct numerical simulations (DNS) data
of Buaria et al. (2021a) at Reλ = 140 over a significant range Sc(= 1–512). Here, Reλ is

the Taylor microscale Reynolds number defined by u2
1

1/2
λ/ν, where λ is the longitudinal

Taylor microscale defined by λ = u2
1

1/2
/(∂u1/∂x1)21/2

and ui is the fluctuation velocity in
the xi direction. Further, Buaria et al. (2021a) introduced a new diffusive length scale in
their dimensional analysis and obtained ∼Sc−0.45, which is supported reasonably well by
their DNS data for Sc � 4. We recall that Obukhov (1949) and Corrsin (1951) assumed that
the small scales of a passive scalar introduced in a turbulent flow are isotropic in space and
stationary in time at sufficiently high Péclet numbers. In this paper, the turbulent Péclet
number Peλθ is defined as

Peλθ = u2
1

1/2
λθ

κ
, (1.2)

where λθ (≡ θ21/2
/(∂θ/∂x1)

21/2
) is the Corrsin microscale. However, it is not clear

whether the influence of large-scale forcing, such as that due to the action of the mean
scalar gradient on the small-scale anisotropy, is negligible when the Péclet number is not
sufficiently large. A knowledge of how and at what rate the small scales of a passive scalar
approach isotropy with increasing Peλθ is of significant importance. For example, local
isotropy can significantly simplify the modelling of small scales since one component is
generally sufficient to represent all other components. Therefore, the main objective of
this paper is to examine how small-scale anisotropy evolves as Peλθ increases. We first
examine how large-scale forcing associated with the mean scalar gradient affects the local
anisotropy of the passive scalar and how this anisotropy evolves with Peλθ . Then, the
available data for |S3|, |S5| and |S7| in the literature are interpreted in the light of the
present results. In particular, the relations for |S3|, |S5| and |S7|, i.e. ∼Sc−0.45, proposed
by Buaria et al. (2021a), will be compared with the present results.

This paper is structured as follows. In § 2, we derive and test the relations between the
large-scale forcing associated with the mean scalar gradient and the local anisotropy of
the passive scalar. A comparison between the dependence of |S3|, |S5| and |S7| on Sc, viz.
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The −1 decay law

∼Sc−0.45 proposed by Buaria et al. (2021a), and the present results is discussed in § 3.
Conclusions are given in § 4.

2. Theoretical considerations and discussions

The dynamical equation for the scalar fluctuation θ is given by Corrsin (1952) as

∂θ

∂t
+ Ūj

∂θ

∂xj
+ uj

∂Θ

∂xj
+ uj

∂θ

∂xj
− uj

∂θ

∂xj
= κ

∂

∂xj

∂θ

∂xj
, (2.1)

where Θ is the mean scalar; Ūi is the mean velocity in the xi direction. Sreenivasan &
Tavoularis (1980) derived a transport equation for (∂θ/∂x1)3 in a steady, homogeneous
shear flow with uniform mean velocity and scalar gradients in the x2 direction (∂Ū1/∂x2 =
const. and ∂Θ/∂x2 = const.). Using a similar procedure as Sreenivasan & Tavoularis
(1980), we first differentiate (2.1) with respect to xα (α = 1, 2, 3), then multiply the
resulting equation by (∂θ/∂xα)n and finally take the average to obtain

(
∂θ

∂xα

)n
∂

∂xα

∂θ

∂t
+ ∂Ūj

∂xα

(
∂θ

∂xα

)n
∂θ

∂xj
+ Ūj

(
∂θ

∂xα

)n
∂

∂xα

∂θ

∂xj

+
(

∂θ

∂xα

)n ∂uj

∂xα

∂Θ

∂xj
+

(
∂θ

∂xα

)n

uj
∂

∂xα

∂Θ

∂xj
+

(
∂θ

∂xα

)n ∂uj

∂xα

∂θ

∂xj

+
(

∂θ

∂xα

)n

uj
∂

∂xα

∂θ

∂xj
−

(
∂θ

∂xα

)n
∂

∂xα

uj
∂θ

∂xj
= κ

(
∂θ

∂xα

)n
∂

∂xα

∂

∂xj

∂θ

∂xj
. (2.2)

Since we consider only the statistically stationary case, we have

(
∂θ

∂xα

)n
∂

∂xα

∂θ

∂t
=

(
∂θ

∂xα

)n
∂

∂t
∂θ

∂xα

= 1
n + 1

∂

∂t

(
∂θ

∂xα

)n+1

= 0. (2.3)

In this paper, we focus on the passive scalar field convected by statistically stationary
homogeneous isotropic turbulence under a uniform mean scalar gradient in the x1 direction
(∂Θ/∂x1). Therefore, the last two terms on the first line and the second term on the second
line of (2.2) can be ignored. Further, since the flow is homogeneous, we have

(
∂θ

∂xα

)n

uj
∂

∂xα

∂θ

∂xj
= 1

n + 1
∂

∂xj
uj

(
∂θ

∂xα

)n+1

= 0, (2.4)

(
∂θ

∂xα

)n
∂

∂xα

uj
∂θ

∂xj
=

(
∂θ

∂xα

)n
∂

∂xα

∂ujθ

∂xj
= 0. (2.5)

Finally, (2.2) reduces to
(

∂θ

∂xα

)n
∂u1

∂xα

∂Θ

∂x1
= −

(
∂θ

∂xα

)n ∂uj

∂xα

∂θ

∂xj
+ κ

(
∂θ

∂xα

)n
∂

∂xα

∂

∂xj

∂θ

∂xj
. (2.6)

The left-hand side term is the (large-scale) mean scalar-gradient production. The two terms
on the right side are the small-scale terms, which can be interpreted as representing the

production and destruction of (∂θ/∂xα)n+1 respectively. Note that, when ∂Θ/∂x1 = 0 and

977 A15-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

98
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.983


S.L. Tang, R.A. Antonia and L. Djenidi

n = 1, (2.6) is the stationary form of the equation for (∂θ/∂xα)2 first written by Corrsin
(1953). The equation, which contained both mean velocity and mean scalar-gradient
terms, was tested by Abe, Antonia & Kawamura (2009) in a turbulent channel flow at
different Reynolds numbers. Wyngaard (1971) considered (2.6) with n = 1. He interpreted
the first term on the right side of (2.6) as the production rate of (∂θ/∂xα)2 due to the
stretching of the temperature field by the turbulent strain field, which is balanced by the
molecular smoothing of the gradient temperature field. Since (2.6) contains both large- and
small-scale terms, it can be used to quantify the effect of the large-scale forcing associated
with the mean scalar gradient on small-scale quantities. When n is even and α = 2 or 3,
the first term in (2.6) is zero if local isotropy is satisfied since all combinations of the
indices in (∂θ/∂xα)n(∂u1/∂xα) will lead to the Kronecker delta δ1α (α = 2 or 3) under the
assumption of local isotropy. As an example, the first term in (2.6) for α = 2 and n = 2
can be written as

∂u1

∂x2

∂θ

∂x2

∂θ

∂x2

∂Θ

∂x1
= 3

4

(
δ12δ22 + δ12δ22 − 2

3
δ12δ22

)
∂u1

∂x1

(
∂θ

∂x1

)2
∂Θ

∂x1
= 0, (2.7)

after using the isotropic form of a single-point fourth-order velocity derivative tensor
(∂ui/∂xj)(∂θ/∂xn)(∂θ/∂xm) (e.g. Antonia & Browne 1983; Wyngaard 2010). When
n is odd and α = 2 or 3, the first term in (2.6) is also zero if local isotropy is
satisfied since all combinations of the indices in (∂θ/∂xα)n(∂u1/∂xα) will lead to the
Kronecker delta δ1α (α = 2 or 3) or the permutation symbol ε1αα or εααα under the
assumption of local isotropy. Therefore, in (2.6), we only consider the subscript α =
1, which represents the direction of the mean scalar gradient. After normalization by

(∂θ/∂x1)
2(n+1)/2

(∂u1/∂x1)
21/2

, the first term in (2.6) becomes

(
∂θ

∂x1

)n
∂u1

∂x1

∂Θ

∂x1

(∂θ/∂x1)
2(n+1)/2

(∂u1/∂x1)
21/2 =

(
∂θ

∂x1

)n
∂u1

∂x1

∂Θ

∂x1

(∂θ/∂x1)
2n/2

(∂u1/∂x1)
21/2

(∂θ/∂x1)
21/2

Rn
∂Θ

∂x1

(∂θ/∂x1)
21/2 =

Rn6κθ21/2
u2

1

1/2 ∂Θ

∂x1

(
∂θ

∂x1

)21/2

θ21/2
u2

1

1/2
6κ(∂θ/∂x1)

2
= 6RnS∗

θ

Peλθ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2.8)

where Peλθ is defined in (1.2); S∗
θ is defined as

S∗
θ =

θ21/2
u2

1

1/2 ∂Θ

∂x1
ε̄θ

, (2.9)

with ε̄θ = 6κ(∂θ/∂x1)
2; for convenience, we refer to S∗

θ as the non-dimensional scalar
gradient. Here, Rn is the normalized correlation involving the streamwise derivative of θ

and u1, defined as

Rn =

(
∂θ

∂x1

)n
∂u1

∂x1

(∂θ/∂x1)
2n/2

(∂u1/∂x1)
21/2 . (2.10)
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The −1 decay law

Finally, after normalization by (∂θ/∂x1)
2(n+1)/2

(∂u1/∂x1)
21/2

, (2.6) for α = 1 can be
rewritten as

6RnS∗
θ

Peλθ
= An, (2.11)

where An is defined as

An =
−

(
∂θ

∂x1

)n ∂uj

∂x1

∂θ

∂xj
+ κ

(
∂θ

∂x1

)n
∂

∂x1

∂

∂xj

∂θ

∂xj

(∂θ/∂x1)
2(n+1)/2

(∂u1/∂x1)
21/2 . (2.12)

The numerator of An is simply the right-hand side of (2.6) with α = 1. In that respect, An

represents the normalized sum of the production and destruction of (∂θ/∂x1)
n+1. Some

remarks are warranted on the use of (∂θ/∂x1)
2, which is one of the three components in

the full scalar dissipation rate defined as 2κ(∂θ/∂xi)
2, in equations (2.11) and (2.9). The

values of (∂θ/∂xi)
2 along the directions perpendicular to the mean scalar gradient, i.e. the

x2 and x3 directions, should be equal because of the symmetry. On the other hand, Yeung
et al. (2002) showed that the ratio of parallel-to-perpendicular scalar-gradient variances
(i.e. (∂θ/∂x1)

2/(∂θ/∂x2)
2 and (∂θ/∂x1)

2/(∂θ/∂x3)
2) is close to unity (their table III or

figure 11a). In particular, this ratio is equal to 1.05 at Sc = 1 and Reλ = 140 and 240,
respectively (their table III). This implies that local isotropy is satisfied adequately in
the context of the ratio of parallel-to-perpendicular scalar-gradient variances in this flow
and justifies the use of (∂θ/∂x1)

2 in (2.11) and (2.9). It is worth mentioning that local
isotropy does not require R2, R4 and R6 in (2.11) to be zero. For example, R2, the mixed
velocity-scalar derivative skewness, represents the production of ε̄θ generated by stretching
of the scalar field as a result of the turbulent strain rate. Further, for n = 2, 4, 6 and when
local isotropy is satisfied, any combination of the indices in A2, A4 and A6 will lead to
a term involving the permutation symbols ε111, ε11j or ε1jj, which are zero. Based on the
above analysis, it can be concluded from (2.11) that, due to the presence of the mean shear,
A2, A4 and A6 may not be 0 at finite Peλθ and thus the flow is anisotropic in the context
of A2, A4 and A6. Therefore, (2.11) provides a relation between the mean scalar gradient
and the local anisotropy. Namely, since, regardless of whether local isotropy is satisfied,
the large-scale production term (the term on left-hand side of (2.11)) is non-zero and the
corresponding small-scale terms (A2, A4 and A6 in (2.11)) are zero when local isotropy
is assumed, we can use (2.11) to quantify the effect of the large-scale forcing caused by
the mean shear on the degree of isotropy of the small scales. Specifically, the relation
shows how the level of local anisotropy depends on the magnitudes of S∗

θ , Peλθ and Rn
for n = 2, 4 and 6. If RnS∗

θ for n = 2, 4, 6 does not increase as rapidly as Peλθ , A2, A4 and
A6 should then go to zero when Peλθ is sufficiently large, irrespective of the magnitude
of S∗

θ . In particular, for a given S∗
θ , if Rn for n = 2, 4, 6 are constant, An will behave as

Pe−1
λθ

in statistically stationary homogeneous isotropic turbulence with a uniform mean
scalar gradient. Figure 1(a) shows the distributions of S∗

θ and R2 in statistically stationary
homogeneous isotropic turbulence with a uniform mean scalar gradient at Reλ = 38. We
can observe that the magnitude of R2 decreases slightly as Sc increases for Sc � 10 and
appears to be approximately constant for Sc � 10. Similarly, the magnitude of S∗

θ increases
as Sc increases for Sc � 10 and also becomes approximately constant for Sc � 10. We
thus can conclude that A2 should behave as Pe−1

λθ
for Sc � 10. It is worth mentioning
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that the values of R4 and R6 in this flow are not available. However, R2, R4 and R6 can
be related to the normalized high-order moments of scalar derivatives via the following
Cauchy–Schwarz inequalities:

∣∣∣∣∣
(

∂θ

∂x1

)2
∂u1

∂x1

∣∣∣∣∣ ≤
(

∂θ

∂x1

)41/2(
∂u1

∂x1

)21/2

⇒ |R2| ≤ (∂θ/∂x1)
41/2

(∂θ/∂x1)
2

= F1/2
‖4 , (2.13a)

∣∣∣∣∣
(

∂θ

∂x1

)4
∣∣∣∣∣
∂u1

∂x1
≤

(
∂θ

∂x1

)81/2(
∂u1

∂x1

)21/2

⇒ |R4| ≤ (∂θ/∂x1)
81/2

(∂θ/∂x1)
22 = F1/2

‖8 , (2.13b)

∣∣∣∣∣
(

∂θ

∂x1

)6
∂u1

∂x1

∣∣∣∣∣ ≤
(

∂θ

∂x1

)121/2(
∂u1

∂x1

)21/2

⇒ |R6| ≤ (∂θ/∂x1)
121/2

(∂θ/∂x1)
23 = F1/2

‖12, (2.13c)

where F‖4, F‖8 and F‖12 are the normalized 4th, 8th and 12th moments of scalar derivatives
along the direction parallel to the mean gradient. The inequalities in (2.13) imply that the
magnitudes of R2, R4 and R6 should not exceed those of F‖4, F‖8 and F‖12. Figure 11(c)
of Yeung et al. (2002) (Sc = 0.25–64) shows that the flatness of scalar derivatives along
directions parallel (F‖4) and perpendicular (F⊥4) to the mean gradient are approximately
constant for Sc > 10 at Reλ = 38. Also, at a higher Reλ(= 140), figure 8 of Buaria et al.
(2021a) (Sc = 1–512) shows that the normalized 4th, 6th and 8th moments of scalar
derivatives along directions parallel (F‖4, F‖6 and F‖8) and perpendicular (F⊥4, F⊥6 and
F⊥8) to the mean gradient approach each other and become independent of Sc for Sc � 8.
Based on this information, for the normalized moments of the scalar derivatives and the
inequalities in (2.13), it seems reasonable to assume that R4 and R6 become independent
of Sc, like R2 (figure 1a), for Sc > 10. In this situation, we can conclude that A4 and A6,
like A2, should behave as Pe−1

λθ
for Sc � 10.

We recall that |S3|, |S5| and |S7| are frequently used to test local isotropy of a passive
scalar. In this context, it is interesting to examine whether |S3|, |S5| and |S7| will follow
the prediction (2.11), equivalently whether |S3|, |S5| and |S7| will follow An ∼ Pe−1

λθ
for

n = 2, 4, 6 for Sc � 10. Although An and |Sm| are different small-scale quantities, they
have some features in common. For example, they both are strongly affected by the uniform
mean scalar gradient; they both quantify the degree of local anisotropy of the passive
scalar. Figure 1(b) shows the distributions of |S3|, |S5| and |S7| vs Peλθ , using the data
of Yeung et al. (2002). In order to obtain the values of Peλθ , we have used the following
relation:

Peλθ
Reλ

=
(

6ScRθ

5

)1/2

, (2.14)

where the time scale ratio Rθ can be rewritten as

Rθ = θ2/ε̄θ

q2/ε̄
= θ2ε̄

3u2
1ε̄θ

=

ε̄L

u2
1

3/2

3ε̄θL

u2
1

1/2
θ2

= Cε

3Cεθ

, (2.15)
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0 10 40

Sc Peλθ
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|S7|

Sθ∗

6020 30 50 70
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1.0

1.5

2.0

2.5
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101 102
10–1

100

101

102

103

104

(b)(a)

Figure 1. (a) Dependence of S∗
θ (� , blue) and R2 (•, red) on Sc for Reλ = 38. (b) Dependence of |S3| (•, blue),

|S5| (�, red) and |S7| (�) at Reλ = 38. Lines: ∼Pe−1
λθ

. The horizontal arrows in (a) and (b) indicate the region
in which R2 ≈ const and S∗

θ ≈ const. To plot (a) and (b), we have used the DNS data of Yeung et al. (2002);
see text for details.

where L is the integral length scale. The parameters Cε and Cεθ at Reλ=38 and Sc =
0.25–64 are calculated from table 1 of Donzis et al. (2005). Note that, at Peλθ = 121 (or
equivalently Sc = 16), there are two values of |Sm| at each m (=3,5,7) (see figure 12 of
Yeung et al. 2002), corresponding to two simulations at different spatial resolutions, i.e.
kmaxηB = 1.48 and 2.95 (see table I of Yeung et al. (2002); here, kmax is the resolved
highest wavenumber and ηB is the Batchelor length scale). In figure 1(b), the values of
|Sm| at kmaxηB = 1.48 are not shown since small values of kmaxηB would result in an
underestimation of the magnitude of |Sm|; for example, this can be observed from table
III of Yeung et al. (2002) in the context of |S3| and |S4| at Sc = 16. We can observe from
figure 1(b) that |S3|, |S5| and |S7| exhibit a tendency to behave as Pe−1

λθ
for Sc > 10 (or

equivalently Peλθ > 91). Namely, the flow approaches local isotropy as Pe−1
λθ

in the context
of |S3|, |S5| and |S7|.

We now examine whether the behaviours of |S3|, |S5| and |S7| follow the behaviours of
A2, A4 and A6 (or the prediction (2.11)) at Reλ = 140. Buaria et al. (2021b) show that
Cεθ decreases as Sc increases from 1 to 512 at Reλ = 140 (see their figure 2, which
was digitized to replot |S3|, |S5| and |S7| vs Peλθ ). Figure 2 shows the distributions of
|S3|, |S5| and |S7| of Buaria et al. (2021a) as a function of Peλθ . To replot the data
we used (2.14) and (2.15) with Cε = 0.46 (estimated using data in table 1 of Donzis
et al. (2005) at Reλ = 140) and the values of Cεθ , the distributions of |S3|, |S5| and
|S7| vs Sc for the data of Buaria et al. (2021a) are replotted in figure 2 as a function of
Peλθ . Figure 2 shows that |S3|, |S5| and |S7| follow approximately the behaviour Pe−1

λθ
for Sc > 10 (or equivalently Peλθ > 257). Namely, the flow approaches local isotropy
as Pe−1

λθ
in the context of |S3|, |S5| and |S7|. We can observe that the behaviour of

|S3|, |S5| and |S7| for Sc > 10 in figures 1(b) and 2 is consistent with the prediction
in (2.11).
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102 103

100
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104

Peλθ

Sc > 10

|S3|

|S5|

|S7|

Figure 2. Dependence of |S3| (•, blue), |S5| (�, red) and |S7| (�) on Peλθ for Reλ = 140. Lines: ∼Peλθ
−1. The

horizontal arrow indicates the region where Sc > 10, S∗
θ and |R2| are approximately constant and the normalized

4th, 6th and 8th moments of scalar derivatives along directions parallel and perpendicular to the mean gradient
are also approximately constant. The symbols correspond to the DNS data of Buaria et al. (2021a).

3. Discussion

Using dimensional analysis, Sreenivasan (2019), Buaria et al. (2021a) and Shete et al.
(2022) have derived relations for |S3|, |S5| and |S7|, i.e.

|Sm| ∼ Sc−1/2, (3.1)

(m = 3, 5, 7) at a given Reλ. On the other hand, using (2.14) and (2.15), (2.11) can be
rewritten as

An =
√

90
RnS∗

θ

Reλ

(
Cεθ

ScCε

)1/2

. (3.2)

We recall |Sm| ∼ An for Sc > 10 (figures 1b and 2). Equation (3.2) can be reduced to (3.1),
provided Rn, S∗

θ and Cεθ do not depend on Sc at a given Reλ. As shown in figure 1(a),
R2 and S∗

θ are approximately constant for Sc > 10. However, the available data indicate
that Cεθ decreases as Sc increases at a given Reλ (Buaria, Yeung & Sawford 2016; Buaria
et al. 2021b). In particular, Buaria et al. (2021b) showed that there is an empirical relation
for Cεθ vs Sc, i.e. Cεθ = 1/ log Sc. They further showed that the 1/ log Sc dependence
can be replaced by a weak power-law relation, i.e. ∼ Sc−0.1 (Buaria et al. 2021a). After
introducing a new diffusive length scale in their dimensional analysis, they obtained

|Sm| ∼ Sc−0.45. (3.3)

However, substituting Cεθ ∼ Sc−0.1 into (3.2), we obtain

An ∼ Sc−0.55, (3.4)

which should be tenable for Sc > 10. We now plot |Sm| (m = 3, 5, 7) vs Sc using the data
of Buaria et al. (2021a) in figure 3. Also shown are the predictions of (3.3) and (3.4), i.e.
∼Sc−0.45 and ∼Sc−0.55. Overall, (3.3) seems to be superior to (3.4) when the three data
points for Sc < 10 are included. However, since (3.4) only applies to the range Sc > 10,
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Sc > 10

Sc

|S5|

|S3|

|S7|

100 101 102 103

100

102

104

Figure 3. Dependence of |S3| (•, blue), |S5| (�, red) and |S7| (�) on Sc at Reλ = 140. Solid Lines: ∼Sc−0.55,
i.e. the prediction of (3.4). Dash-dotted lines: ∼Sc−0.45, i.e. the prediction of (3.3). The horizontal arrow
indicates the region where Sc > 10, S∗

θ and |R2| are approximately constant and the normalized 4th, 6th and
8th moments of scalar derivatives along directions parallel and perpendicular to the mean gradient are also
approximately constant. The symbols correspond to the DNS data of Buaria et al. (2021a).

we can conclude that both (3.3) and (3.4) provide similarly adequate descriptions of the
data when Sc > 10.

It is of interest to explain the difference between the predictions of (3.3) and (3.4), i.e.
∼Sc−0.45 and ∼Sc−0.55 for Sc < 10. We can observe from figure 1(a) that the variation of
|R2| in the range Sc = 1–10 is actually very small. However, the magnitude of S∗

θ increases
from 1.78 to 2.22 when Sc increases from 1 to 8 at Reλ = 38 (figure 1a); the magnitude
of S∗

θ appears to be independent of Reλ, at least for Sc = 1 (figure 4a). In order to take
into account the impact of the variation of S∗

θ at low Sc on (3.2), a power-law fit is used
to the data of S∗

θ at Reλ = 38, 140 and 240. This fit is S∗
θ = 1.79Sc0.1 (figure 4a). Note

that, here, we are mainly interested in the range Sc = 1–10. As discussed in the context
of figure 1(a), S∗

θ is approximately constant for Sc = 10–64 (see also the blue symbols in
figure 4a). Substituting Cεθ ∼ Sc−0.1 (see the discussion in the context of (3.3) or Buaria
et al. 2021a) and S∗

θ = 1.79Sc0.1 in (3.2), we obtain

An ∼ Sc−0.45, (3.5)

which is exactly the same as the prediction of (3.3), i.e. ∼Sc−0.45 proposed by Buaria
et al. (2021a). A possible reason why the approach of Buaria et al. (2021a) and the present
approach lead to the same prediction may be as follows. One of the key ingredients of the
present approach is the use of the turbulent Péclet number Peλθ , defined in (1.2), which
can be written as a function of Reλ, Sc, Cε and Cεθ (see (2.14) and (2.15)). Combining
(1.2), (2.14) and (2.15), we can obtain

Peλθ = u2
1

1/2
λθ

κ
= u2

1

1/2
λνλθ

κνλ
= ReλSc

λθ

λ
= Reλ

(
6ScRθ

5

)1/2

= Reλ

(
2ScCε

5Cεθ

)1/2

,

(3.6)
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|S5|

|S3|

|S7|
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4.5
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(b)(a)

Sθ∗

Figure 4. (a) Dependence of S∗
θ on Sc at Reλ = 38 (

�
, blue), 140 (�) and 240 (◦, red). Solid line: 1.79Sc0.1.

The symbols correspond to the DNS data of Yeung et al. (2002). (b) Dependence of |S3| (•, blue), |S5| (�, red)
and |S7| (�) on Sc at Reλ = 140. Solid lines: ∼Sc−0.45, i.e. the prediction of (3.5). The symbols correspond to
the DNS data of Buaria et al. (2021a).

which leads to

λθ

λ
=

(
2Cε

5ScCεθ

)1/2

≈
(

2Cε

5Sc0.69Sc−0.1

)1/2

=
(

2Cε

3.45

)1/2

Sc−0.45 = 0.52Sc−0.45.

(3.7)

The relations Cεθ ≈ 0.69Sc−0.1 (estimated from figure 2 of Buaria et al. 2021b) and Cε =
0.475 (Yeung & Zhou 1997) at Reλ = 140 have been used in (3.7). Equation (3.7) indicates
that λθ /λ should decrease as Sc increases. Further, substituting (3.7) into the fourth term
of (3.6) leads to Peλθ ≈ 0.52ReλSc0.55. Evidently, Peλθ is a function of Reλ and Sc; a large
Peλθ can be obtained either by increasing Sc at a fixed Reλ or by increasing Reλ at a fixed
Sc. The isotropic relation between λ and η is λ/η = 151/4Re1/2

λ . Using this relation, (3.7)
can be further written as

λθ ≈ 0.52Sc−0.45λ = Sc−0.45Re1/2
λ η. (3.8)

On the other hand, the key ingredient in Buaria et al. (2021a) is the introduction of a new
diffusive length scale, i.e. ηD = ηSc−0.45 (see their (4)). Therefore, λθ = ηD only when
Reλ = 1. However, it is interesting to note λθ ∼ ηD at any given Reλ; this is a possible
reason why both Buaria et al. (2021a) and the present approach lead to the same prediction.

We conclude this section by examining the data of Shete et al. (2022) at much higher
Reλ(= 633) and Sc = 0.1, 0.7, 1 and 7. Since the maximum value of Sc(= 7) is relatively
low, we here only test the prediction of (3.5) which includes the variation of S∗

θ at low
Sc. It can be observed from figure 5(a) that (3.5) is satisfied approximately for Sc � 0.7.
As was discussed in the context of figure 4(b), the prediction of (3.3) is the same as that
of (3.5). It is worth mentioning that Buaria & Sreenivasan (2023) further examined the
prediction of (3.3) in the context of |S3|, i.e. |S3| ∼ Sc−0.45, at Reλ = 140, 390 and 633
and found that |S3| ∼ Sc−0.45 is satisfied approximately for Sc � 3 at all Reλ (see their
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|S3|

(b)(a)

10–1 100 101
10–1

100

101

102 103
10–1

100

101

Sc Peλθ
Figure 5. (a) Dependence of |S3| on Sc for Reλ = 633. Line: 1.46Sc−0.45, i.e. the prediction of (3.5).
(b) Dependence of |S3| on Peλθ at Reλ = 633. Line: 175Pe−0.82

λθ
, i.e. the prediction of (3.10). The symbols

in (a, b) correspond to the DNS data of Shete et al. (2022).

figure 1). Further, substituting S∗
θ = 1.79Sc0.1 into (2.11) leads to

An = 6RnS∗
θ

Peλθ
= 6Rn1.79Sc0.1

Peλθ
≈ 6Rn1.79

Peλθ

(
Peλθ

0.52Reλ

)0.1/0.55

≈ 12.1Rn

Re0.18
λ

Pe−0.82
λθ

. (3.9)

We have used the relation Peλθ ≈ 0.52ReλSc0.55 (see the discussion in the context of (3.6)
and (3.7)) in the third step of (3.9). At any given Reλ, (3.9) can be simplified as

An ∼ Pe−0.82
λθ

. (3.10)

Figure 5(b) shows that (3.10) is satisfied adequately for Peλθ � 300 (or equivalently for
Sc � 0.7). It should be pointed out that all the data we used for our study were digitized
from figures presented in Yeung et al. (2002), Buaria et al. (2021a) and Shete et al. (2022).
Since all the DNS data reported here have already been published, the reader can find
detailed descriptions of the simulation such as the spatial resolution in the original papers.
We stress that the present paper focuses only on the Peλθ variation with Sc at several fixed
Reλ, as shown in figure 1(b) (Reλ = 38), figure 2 (Reλ = 144) and figure 5(b) (Reλ = 633).
We do not assess any variation of small-scale quantities with Reλ at fixed Sc; this merits
further investigation.

4. Conclusions

Starting with the scalar transport equation for statistically stationary homogeneous
isotropic turbulence with a uniform mean scalar gradient, we derived an expression for
describing the relationship between the large-scale forcing associated with the mean scalar
gradient and small-scale anisotropy reflected in the sum of the production and destruction

of (∂θ/∂x1)
n+1; this sum is denoted An for convenience (see (2.12)). The departure of the

scalar field from local isotropy due to the (large-scale) production arising from the mean
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scalar gradient (whose normalized expression is denoted S∗
θ ) can be quantified through

(2.11). The effect of S∗
θ on local anisotropy can be recast in the form RnS∗

θ /Pe−1
λθ

for
n = 2, 4, 6. Since the available data show R2, S∗

θ and the normalized 4th, 6th and 8th
moments of scalar derivatives are approximately constant for Sc � 10, it is expected that,
in the context of A2, A4 and A6, the small scales of the passive scalar field will approach
isotropy as rapidly as Pe−1

λθ
approaches zero. This is fully consistent with the DNS data

for |S3|, |S5| and |S7| vs Peλθ for Sc > 10. This −1 power-law decay for the normalized
odd moments of the scalar derivative |S3|, |S5| and |S7| can be rewritten as a function
of Sc, i.e. (3.4). Since |Sm| ∼ An for Sc > 10 (figures 1b and 2), it is found that both
(3.3) and (3.4) provide similarly adequate descriptions of |Sm| (m = 3, 5, 7) when Sc > 10
(figure 3). When the variation of S∗

θ , mainly in the range Sc = 1–10, is taken into account,
the resulting prediction (∼Sc−0.45, or (3.5)) is the same as that of Buaria et al. (2021a)
(∼Sc−0.45, or (3.3)). Further, the present approach complements that of Buaria et al.
(2021a) who used dimensional arguments and introduced a new diffusive length scale.
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