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ON KILLERS OF CABLE KNOT GROUPS
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Abstract

A killer of a group G is an element that normally generates G. We show that the group of a cable knot
contains infinitely many killers such that no two lie in the same automorphic orbit.
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1. Introduction

Let G be an arbitrary group and S ⊆ G. We define the normal closure 〈〈S 〉〉G of S as
the smallest normal subgroup of G containing S or, equivalently,

〈〈S 〉〉G =
{ k∏

i=1

uis
εi
i u−1

i | ui ∈ G, εi = ±1, si ∈ S , k ∈ N
}
.

Following [5], we call an element g ∈ G a killer if 〈〈g〉〉G = G. We say that two
killers g1, g2 ∈ G are equivalent if there exists an automorphism φ : G→ G such that
φ(g1) = g2.

Let k be a knot in S 3 and V(k) a regular neighbourhood of k. Denote by

X(k) = S 3 − Int(V(k))

the knot manifold of k and by G(k) = π1(X(k)) its group. A meridian of k is an element
of G(k) which can be represented by a simple closed curve on ∂V(k) that is contractible
in V(k) but not contractible in ∂V(k). Thus, a meridian is well defined up to conjugacy
and inversion.

From a Wirtinger presentation of G(k), we see that the meridian is a killer. In
[6, Theorem 3.11], the author exhibits a knot for which there exists a killer that is
not equivalent to the meridian. Silver et al. [4, Corollary 1.3] showed that if k is a
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hyperbolic 2-bridge knot or a torus knot or a hyperbolic knot with unknotting number
one, then its group contains infinitely many pairwise inequivalent killers.

In [4, Conjecture 3.3], it is conjectured that the group of any nontrivial knot has
infinitely many inequivalent killers. See also [1, Question 7.1.8]. In this paper we
show the following result.

Theorem 1.1. Let k be a cable knot about a nontrivial knot k1. Then its group contains
infinitely many pairwise inequivalent killers.

Moreover, we show that having infinitely many inequivalent killers is preserved
under connected sums. As a corollary, we show that the group of any nontrivial knot
whose exterior is a graph manifold contains infinitely many inequivalent killers.

2. Proof of Theorem 1

Let m, n be coprime integers with n ≥ 2. The cable space CS (m, n) is defined as
follows: let D2 = {z ∈ C | ‖z‖ ≤ 1} and let ρ : D2 → D2 be a rotation through an angle
of 2π(m/n) about the origin. Choose a disk δ ⊂ Int(D2) such that ρi(δ) ∩ ρ j(δ) = ∅ for
1 ≤ i , j ≤ n and denote by D2

n the space

D2 − Int
( n⋃

i=1

ρi(δ)
)
.

Then ρ induces a homeomorphism ρ0 := ρ|D2
n

: D2
n → D2

n. We define CS (m, n) as the
mapping torus of ρ0, that is,

CS (m, n) := D2
n × I/(z, 0) ∼ (ρ0(z), 1).

Note that CS (m, n) has the structure of a Seifert fibred space. Each fibre is the image
of {ρi(z) | 1 ≤ i ≤ n} × I under the quotient map, where z ∈ D2

n. There is exactly one
exceptional fibre, namely the image C0 of the arc 0 × I.

In order to compute the fundamental group A of CS (m, n), denote the free
generators of π1(D2

n) corresponding to the boundary paths of the removed disks
ρ0(δ), . . . , ρn

0(δ) by x1, . . . , xn, respectively. From the definition of CS (m, n), we see
that we can write A as the semi-direct product F(x1, . . . , xn) o Z, where the action of
Z = 〈t〉 on π1(D2

n) = F(x1, . . . , xn) is given by

txit−1 = xσ(i) for 1 ≤ i ≤ n.

The element t is represented by the exceptional fibre of CS (m, n) and the permutation
σ : {1, . . . , n} → {1, . . . , n} is given by i 7→ i + m mod n. Thus,

A = 〈x1, . . . , xn, t | txit−1 = xσ(i) for 1 ≤ i ≤ n〉.

We finally remark that any element a ∈ A is uniquely written as w · tz for some
w ∈ F(x1, . . . , xn) and z ∈ Z.

We next define cable knots. Let V0 be the solid torus D2 × I/(z,0) ∼ (ρ(z),1) and, for
some z0 ∈ Int(D2) − 0, let k0 be the image of {ρi(z0) | 1 ≤ i ≤ n} × I under the quotient
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map. Note that k0 is a simple closed curve contained in the interior of V0. Let k1 be
a nontrivial knot in S 3 and V(k1) a regular neighbourhood of k1 in S 3. Further, let
h : V0 → V(k1) be a homeomorphism which maps the meridian ∂D2 × 1 of V0 to a
meridian of k1. The knot k := h(k0) is called an (m, n)-cable knot about k1.

Thus, the knot manifold X(k) of an (m, n)-cable knot k decomposes as

X(k) = CS (m, n) ∪ X(k1)

with ∂X(k1) = CS (m, n) ∩ X(k1) an incompressible torus in X(k). It follows from the
theorem of Seifert and van Kampen that

G(k) = A ∗C B,

where B = G(k1) and C = π1(∂X(k1)). Denote by m1 the meridian of k1 and note that in
A we have m1 = x1 · . . . · xn. In turn, the meridian m ∈G(k) of k is written as m = x1 ∈ A.

The proof of Theorem 1.1 is divided into two steps. In Lemma 2.1, we exhibit
elements that normally generate the group of the cable knot and, next, in Lemma 2.2,
we prove that these killers are indeed inequivalent.

Choose s ∈ {1, . . . ,n − 1} such that σs(1) = 2. Since σs(i) = i + sm mod n, it follows
that σs = (1 2 3 . . . n − 1 n).

Lemma 2.1. Let k be an (m, n)-cable knot about a nontrivial knot k1. Then, for each
l ≥ 1, the element

gl := xl
1x−(l−1)

2 = xl
1 · (t

sx1t−s)−(l−1)

normally generates the group of k.

Proof. The first step of the proof is to show that the group of the companion knot is
contained in 〈〈gl〉〉G(k).

Claim 1. The meridian m1 = x1 · . . . · xn of k1 belongs to 〈〈gl〉〉G(k). Consequently,
B = 〈〈m1〉〉B = 〈〈m1〉〉G(k) ∩ B ⊆ 〈〈gl〉〉G(k).

Note that for 0 ≤ i ≤ n − 1, tisglt−is = xl
i+1x−(l−1)

i+2 , where indices are taken mod n.
Thus,

x1 · . . . · xn = x−(l−1)
1 (xl

1x2 · . . . · xnx−(l−1)
1 )xl−1

1

= x−(l−1)
1

( n−1∏
i=0

xl
i+1x−(l−1)

i+2

)
xl−1

1

= x−(l−1)
1

( n−1∏
i=0

tis · gl · t−is
)
xl−1

1

=

n−1∏
i=0

(x−(l−1)
n tis · gl · t−isxl−1

1 )

=

n−1∏
i=0

((x−(l−1)
1 tis) · gl · (x(−l−1)

1 tis)−1),

which implies that m1 ∈ 〈〈gl〉〉G(k). Thus, Claim 1 is proved.
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From Claim 1, it follows that the peripheral subgroup C = π1(∂X(k1)) of k1 is
contained in 〈〈gl〉〉G(k) since C ⊆ B and consequently

G(k)/〈〈gl〉〉G(k) = A ∗C B/〈〈gl〉〉G(k) � A/〈〈gl,C〉〉A.

Thus, we need to show that A/〈〈gl,C〉〉A = 1. It is easy to see that A/〈〈C〉〉A is cyclically
generated by π(x1), where π : A→ A/〈〈C〉〉A is the canonical projection. The result
now follows from the fact that π(gl) = π(xl

1 · t
sx(l−1)

1 t−s) = π(x1). �

Lemma 2.2. If k , l, then gk is not equivalent to gl.

Proof. Assume that φ : G(k)→ G(k) is an automorphism such that φ(gl) = gk and
let f : X(k) → X(k) be a homotopy equivalence inducing φ. From [3, Theorem
14.6], it follows that f can be deformed into f̂ : X(k)→ X(k) so that f̂ sends X(k1)
homeomorphically onto X(k1) and f̂ |CS (m,n) : CS (m, n) → CS (m, n) is a homotopy
equivalence. Thus, φ(A) is conjugated to A, that is, φ(A) = gAg−1 for some g ∈ G(k).
Since φ(gl) = gk, this implies that gk ∈ gAg−1. As gk is not conjugated (in A) to an
element of C, it follows that g ∈ A and so φ(A) = A. By [3, Proposition 28.4], we may
assume that f̂ |CS (m,n) is fibre preserving. Since CS (m, n) has exactly one exceptional
fibre, which represents t, we must have φ(t) = atηa−1 for some a = v · tz1 ∈ A and some
η ∈ {±1}.

The automorphism φ|A : A→ A induces an automorphism φ∗ on the factor group
A/〈tn〉 = 〈x1, t | tn = 1〉 = Z ∗ Zn such that φ∗(t) = atηa−1. It is a standard fact about
automorphisms of free products that we must have φ∗(x1) = ate0 xε1te1 a−1 for e0, e1 ∈ Z
and ε ∈ {±1}. Thus, for some d ∈ Z,

φ(x1) = ate0 xε1te1 a−1tdn = ate0 · x1te0+e1+dn · t−e0 a−1.

Since t has nonzero homology in H1(X(k)), it follows that e0 + e1 + dn = 0.
Consequently, φ(x1) = b · xε1 · b

−1, where b = ate0 = v · tz2 ∈ A and z2 = z1 + e0.
Hence,

φ(gl)= φ(xl
1x−(l−1)

2 )

= φ(xl
1 · t

sx−(l−1)
1 t−s)

= bxεl
1 b−1 · atηsa−1 · bx−ε(l−1)

1 b−1 · at−ηsa−1

= vtz2 xεl
1 t−z2 v−1 · vtz1 tηst−z1 v−1 · vtz2 x−ε(l−1)

1 t−z2 v−1 · vtz1 t−ηst−z1 v−1

= vxεl
i x−ε(l−1)

j v−1,

where i = σz2 (1) and j = σz2+ηs(1). Note that i , j since σs(1) = 2 and σ−s(1) = n.
Hence, φ(gl) = gk implies that

v(xεl
i · x

−ε(l−1)
j )v−1 = xk

1 · x
−(k−1)
2

in F(x1, . . . , xn). Thus, in the abelianisation of F(x1, . . . , xn),

ε[lxi + (1 − l)x j] = kx1 + (1 − k)x2,

which implies that {i, j} = {1, 2}. If (i, j) = (1, 2), then εl = k and so k = |k| = |εl| = l.
If (i, j) = (2, 1), then εl = k − 1 and ε(1 − l) = k. Consequently, ε = 1 and l + k = 1,
which is impossible since k, l ≥ 1. �
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3. Connected sums and killers
In this section we show that having infinitely many inequivalent killers is preserved

under connected sums of knots. This fact, Theorem 1.1 and [4, Corollary 1.3] imply
that the group of knots whose exterior is a graph manifold have infinitely many
inequivalent killers.

Let k be a knot and k1, . . . , kn its prime factors, that is, k = k1] . . . ]kn and each ki
is a nontrivial prime knot. Assume that x ∈ G(ki) is a killer of G(ki). It is well
known that G(ki) ≤ G(k) and 〈m〉 ≤ G(ki) for all i, where m denotes the meridian of
k. From this, we immediately see that m ∈ 〈〈x〉〉G(ki) ⊆ 〈〈x〉〉G(k), which implies that
G(k) = 〈〈m〉〉G(k) ⊆ 〈〈x〉〉G(k), that is, x is a killer of G(k).

Now suppose that x, y ∈ G(ki) are killers of G(ki) and that there exists an
automorphism φ of G(k) such that φ(x) = y. Then φ is induced by a homotopy
equivalence f : X(k) → X(k). From [3, Theorem 14.6], it follows that f can be
deformed into f̂ : X(k)→ X(k) so that:

(1) f̂ |V : V → V is a homotopy equivalence, where V = S 1 × (n-punctured disk) is
the peripheral component of the characteristic submanifold of X(k);

(2) f̂ |X(k)−V : X(k) − V → X(k) − V is a homeomorphism.

Note that X(k) − V = X(k1) ∪̇ · · · ∪̇X(kn). Since f̂ |X(k)−V is a homeomorphism, it follows
that f̂ sends X(ki) homeomorphically onto X(kτ(i)) for some permutation τ of {1, . . . , n}.
Consequently, there exists g′ ∈ G(k) such that

φ(G(ki)) = g′G(kτ(i))g′
−1.

If τ(i) = i and g′ ∈ G(ki), then φ induces an automorphism ψ := φ|G(ki) of G(ki) such
that ψ(x) = y, that is, x and y are equivalent in G(ki). If τ(i) , i or g′ < G(kτ(i)),
then it is not hard to see that y is conjugated (in G(ki)) to an element of 〈m〉 since
y = φ(x) ∈ G(ki) ∩ g′G(kτ(i))g′−1. As 〈〈mk〉〉 , G(k) for |k| ≥ 2 and y normally generates
G(k), we conclude that y is conjugated (in G(ki))) to m±1. The same argument applied
to φ−1 shows that x is conjugated (in G(ki))) to m±1.

Therefore, if the group of one of the prime factors of k has infinitely many
inequivalent killers, then so does the group of k. As a corollary of Theorem 1.1 and the
remark made above, we obtain the following result.

Corollary 3.1. If k is a knot such that X(k) is a graph manifold, then G(k) contains
infinitely many pairwise inequivalent killers.

Proof. From [2], it follows that the only Seifert-fibred manifolds that can be embedded
into a knot manifold with incompressible boundary are torus knot complements,
composing spaces and cable spaces. Thus, if X(k) is a graph manifold, then one of
the following holds:

(1) k is a torus knot;
(2) k is a cable knot;
(3) k = k1] . . . ]kn, where each ki is either a torus knot or a cable knot.

Now the result follows from Theorem 1.1 and [4, Corollary 1.3]. �
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