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Elliptic Curves over the Perfect Closure of a
Function Field

Dragos Ghioca

Abstract. We prove that the group of rational points of a non-isotrivial elliptic curve defined over the

perfect closure of a function field in positive characteristic is finitely generated.

1 Introduction

For this paper we fix a prime number p and denote by Fp the finite field with p

elements. The perfect closure Kper of a field K of characteristic p is defined to be⋃
n≥1 K1/pn

.

The classical Lehmer conjecture (see [12, p. 476]) asserts that there is an absolute

constant C > 0 so that any algebraic number α that is not a root of unity satisfies the

following inequality for its logarithmic height:

h(α) ≥
C

[Q(α) : Q]
.

A partial result towards this conjecture is obtained in [3]. The analog of Lehmer’s

conjecture for elliptic curves and abelian varieties asks for a good lower bound for

the canonical height of a non-torsion point of the abelian variety. This question has

also been much studied (see [1, 2, 7, 11, 14, 20]). In Section 3, using a Lehmer-type

result for elliptic curves from [5], we prove the following.

Theorem 1.1 Let K be a function field of transcendence degree 1 over Fp (i.e., K is a

finite extension of Fp(t)). Let E be a non-isotrivial elliptic curve defined over K. Then

E(Kper) is finitely generated.

Using specializations we are able to extend the conclusion of Theorem 1.1 to the

perfect closure of any finitely generated field extension K of Fp (see Theorem 3.3).

Using completely different methods, Minhyong Kim studied the set of rational

points of non-isotrivial curves of genus at least two over the perfect closure of a func-

tion field in one variable over a finite field (see [8]).

Combining the result of Theorem 3.3 with the results obtained by the author and

Rahim Moosa in [4], one can prove the full Mordell–Lang conjecture for abelian

varieties A which are isogenous with a direct product of non-isotrivial elliptic curves

(where the full Mordell–Lang conjecture refers to the intersection of a subvariety of

A with the divisible hull of a finitely generated subgroup of A; see also the remark of

Thomas Scanlon at the end of [16]).
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2 Tame Modules

In this section we prove a technical result about tame modules which will be used in

the proof of Theorem 1.1.

Definition 2.1 Let R be an integral domain and let K be its field of fractions. If M

is an R-module, then by the rank of M, denoted rk(M), we mean the dimension of

the K-vector space M ⊗R K. We call M a tame module if every finite rank submodule

of M is finitely generated.

If R is a ring and M is an R-module, we denote by Mtor the set of torsion elements

of M.

Lemma 2.2 Let R be a Dedekind domain and let M be an R-module with Mtor finite.

Assume there exists a function h : M → R≥0 satisfying the following properties:

(i) (quasi-triangle inequality) h(x ± y) ≤ 2(h(x) + h(y)), for every x, y ∈ M.

(ii) if x ∈ Mtor, then h(x) = 0.

(iii) there exists c > 0 such that for each x /∈ Mtor, h(x) > c.

(iv) there exists a ∈ R\{0} such that R/aR is finite and for all x ∈ M, h(ax) ≥ 8h(x).

Then M is a tame R-module.

Proof By the definition of a tame module, it suffices to assume that M is a finite rank

R-module and conclude that it is finitely generated.

Let a ∈ R as in (iv) of Lemma 2.2. By [15, Lemma 3], M/aM is finite. The

following result is the key to the proof of Lemma 2.2.

Sublemma 2.3 For every D > 0, there exist only finitely many x ∈ M such that

h(x) ≤ D.

Proof of Sublemma 2.3 If we suppose Sublemma 2.3 is not true, then we can define

C = inf{D | there exists infinitely many x ∈ M such that h(x) ≤ D}.

Properties (ii) and (iii) and the finiteness of Mtor yield C ≥ c > 0. By the definition

of C , it must be that there exists an infinite sequence of elements zn of M such that

for every n, h(zn) < 3C
2

.
Because M/aM is finite, there exists a coset of aM in M containing infinitely many

zn from the above sequence.

But if k1 6= k2 and zk1
and zk2

are in the same coset of aM in M, then let y ∈ M be

such that ay = zk1
− zk2

. Using properties (iv) and (i), we get

h(y) ≤
h(zk1

− zk2
)

8
≤

h(zk1
) + h(zk2

)

4
<

3C

4
.

We can do this for any two elements of the sequence that lie in the same coset of

aM in M. Because there are infinitely many of them lying in the same coset, we can

construct infinitely many elements z ∈ M such that h(z) < 3C
4

, contradicting the

minimality of C .
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From this point on, our proof of Lemma 2.2 follows the classical descent argument

in the Mordell–Weil theorem (see [17]).

Take coset representatives y1, . . . , yk for aM in M. Define then

B = max
i∈{1,...,k}

h(yi).

Consider the set Z = {x ∈ M | h(x) ≤ B}, which is finite according to Sub-

lemma 2.3. Let N be the finitely generated R-submodule of M which is spanned

by Z.

We claim that M = N. If we suppose this is not the case, then by Sublemma 2.3

we can pick y ∈ M − N which minimizes h(y). Because N contains all the coset

representatives of aM in M, we can find i ∈ {1, . . . , k} such that y − yi ∈ aM. Let

x ∈ M be such that y − yi = ax. Then x /∈ N because otherwise it would follow that

y ∈ N (we already know yi ∈ N). By our choice of y and by properties (iv) and (i),

we have

h(y) ≤ h(x) ≤
h(y − yi)

8
≤

h(y) + h(yi)

4
≤

h(y) + B

4
.

This means that h(y) ≤ B
3

< B. This contradicts the fact that y /∈ N because N

contains all the elements z ∈ M such that h(z) ≤ B. This contradiction shows that

indeed M = N and so, M is finitely generated.

3 Elliptic Curves

Unless otherwise stated, the setting is the following: K is a finitely generated field of

transcendence degree 1 over Fp where p is a prime as always. We fix an algebraic

closure Kalg of K. We denote by F
alg
p the algebraic closure of Fp inside Kalg.

Let E be a non-isotrivial elliptic curve (i.e. , j(E) /∈ F
alg
p ) defined over K. Let Kper

be the perfect closure of K inside Kalg. Theorem 1.1, which we are going to prove in

this section, says that E(Kper) is finitely generated.

For every finite extension L of K we denote by ML the set of discrete valuations v

on L, normalized so that the value group of v is Z. For each v ∈ ML we denote by fv

the degree of the residue field of v over Fp. If P ∈ E(L) and m ∈ Z, mP represents the

point on the elliptic curve obtained using the group law on E. We define a notion of

height for the point P ∈ E(L) with respect to the field K

hK (P) =
−1

[L : K]

∑

v∈ML

fv min{0, v(x(P))}

(see [18, Chapter VIII] and [19, Chapter III]). Then we define the canonical height

of P with respect to K as

ĥE/K (P) =
1

2
lim

n→∞

hK (2nP)

4n
.

We also denote by ∆E/K the divisor which is the minimal discriminant of E with

respect to the field K (see [18, Chapter VIII]). By deg(∆E/K ) we denote the degree of
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the divisor ∆E/K (computed with respect to Fp). We denote by gK the genus of the

function field K.

The following result is proved in [5] (see their Theorem 7, which extends a similar

result of Hindry and Silverman [6] valid for function fields of characteristic 0).

Theorem 3.1 (Goldfeld–Szpiro) Let E be an elliptic curve over a function field K of

one variable over a field in any characteristic. Let ĥE/K denote the canonical height on E

and let ∆E/K be the minimal discriminant of E, both computed with respect to K. Then

for every point P ∈ E(K) that is not a torsion point:

ĥE/K (P) ≥ 10−13 deg(∆E/K ) if deg(∆E/K ) ≥ 24(gK − 1) ,

and

ĥE/K (P) ≥ 10−13−23g deg(∆E/K ) if deg(∆E/K ) < 24(gK − 1).

We are ready to prove our first result.

Proof of Theorem 1.1. We first observe that replacing K by a finite extension does

not affect the conclusion of the theorem. Thus, at the expense of replacing K by a

finite extension, we may assume E is semi-stable over K (the existence of such a finite

extension is guaranteed by [18, Chapter VII, Proposition 5.4(c)]; see also Corollary

1.4 from [18, Appendix A, Corollary 1.4]).

As before, we let ĥE/K and ∆E/K be the canonical height on E and the minimal

discriminant of E, respectively, computed with respect to K.

We let F be the usual Frobenius. For every n ≥ 1, we denote by E(pn) the elliptic

curve obtained by raising to power pn the coefficients of a Weierstrass equation for

E. Thus

(3.1) Fn : E(K1/pn

) → E(pn)(K)

is a bijection. Moreover, for every P ∈ E
(
K1/p

)
,

pP = (V F)(P) ∈ V
(

E(p)(K)
)
⊂ E(K)

where V is the Verschiebung. Similarly, we get that

(3.2) pnE
(

K1/pn)
⊂ E(K) for every n ≥ 1.

Thus E(Kper) lies in the p-division hull of the Z-module E(K). Because E(K) is finitely

generated (by the Mordell–Weil theorem), we conclude that E(Kper), as a Z-module,

has finite rank.

We will show next that the height function ĥE/K and p2 ∈ Z satisfy the properties

(i)–(iv) of Lemma 2.2 corresponding to the Z-module E(Kper).

Property (ii) is well known for ĥE/K . Property (i) follows from the quadraticity of

ĥ: ĥ(P + Q) + ĥ(P − Q) = 2 ĥ(P) + 2 ĥ(Q) (see [17, p. 40, Section 3.6]) for all points

P, Q ∈ E. Hence ĥ(P ± Q) ≤ 2(ĥ(P) + ĥ(Q)). We also have the formula

ĥE/K (p2P) = p4 ĥE/K (P) ≥ 8 ĥ(P) for every P ∈ E(Kalg),
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(see [18, Chapter VIII]), which proves that property (iv) of Lemma 2.2 holds. Now

we prove that property (iii) also holds (here we will use Theorem 3.1). Let P be a

non-torsion point of E(Kper). Then P ∈ E(K1/pn

) for some n ≥ 0. Because K1/pn

is

isomorphic to K, they have the same genus, which we call g. We denote by ĥE/K1/pn

and ∆E/K1/pn the canonical height on E and the minimal discriminant of E, respec-

tively, computed with respect to K1/pn

. Using Theorem 3.1, we conclude

ĥE/K1/pn (P) ≥ 10−13−23g deg(∆E/K1/pn ).

We have ĥE/K1/pn (P) = [K1/pn

: K] ĥE/K (P) = pn ĥE/K (P). Now, using the proof

of Proposition 5.4(b) from Chapter VII of [18], and the fact that E has semi-stable

reduction over K, we conclude that E/K1/pn

has the same minimal discriminant as

E/K. However, the degree of the minimal discriminant changes by a factor of pn,

because each place of K1/pn

is ramified of degree pn over K. Thus

deg(∆E/K1/pn ) = pn deg(∆E/K ).

We conclude that for every non-torsion P ∈ E(Kper),

ĥE/K (P) ≥ 10−13−23g deg(∆E/K ).

Because E is non-isotrivial, ∆E/K 6= 0 and so, deg(∆E/K ) ≥ 1. We conclude

(3.3) ĥE/K (P) ≥ 10−13−23g .

Inequality (3.3) shows that property (iii) of Lemma 2.2 holds for ĥE/K . Thus prop-

erties (i)-(iv) of Lemma 2.2 hold for ĥE/K and p2 ∈ Z relative to the Z-module

E(Kper).

We show that Etor(Kper) is finite. Equation (3.2) shows that the prime-to-p-torsion

of E(Kper) equals the prime-to-p-torsion of E(K); thus the prime-to-p-torsion of

E(Kper) is finite. If there exists infinite p-power torsion in E (Kper), equation (3.1)

yields that we have arbitrarily large p-power torsion in the family of elliptic curves

E(pn) over K. But this contradicts standard results on uniform boundedness for the

torsion of elliptic curves over function fields, as established in [13] (actually, [13]

proves a uniform boundedness of the entire torsion of elliptic curves over a fixed

function field; thus including the prime-to-p-torsion). Hence Etor(Kper) is finite.

Because all the hypotheses of Lemma 2.2 hold, we conclude that E(Kper) is tame.

Because rk (E(Kper)) is finite, we conclude that E(Kper) is finitely generated.

Remark 3.2. It is absolutely crucial in Theorem 1.1 that E is non-isotrivial. Theo-

rem 1.1 fails in the isotrivial case, i.e., there exists no n ≥ 0 such that E(Kper) =

E(K1/pn

). Indeed, if E is defined by y2
= x3 + x (p > 2), K = Fp(t, (t3 + t)

1
2 ) and

P = (t, (t3 + t)
1
2 ), then F−nP ∈ E(K1/pn

) \ E(K1/pn−1

), for every n ≥ 1. So, E(Kper) is

not finitely generated in this case (and we can get a similar example also for the case

p = 2).
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We extend now the result of Theorem 1.1 to elliptic curves defined over arbitrary

function fields in characteristic p.

Theorem 3.3 Let K be a finitely generated field extension of Fp. Let E be a non-

isotrivial elliptic curve defined over K. Then E(Kper) is a finitely generated group.

Proof At the expense of replacing K by a finite extension we may assume E[p] ⊂
E(K). Clearly, if we prove Theorem 3.3 for a finite extension of K, then our result

holds also for K. Therefore we assume from now on that E[p] ⊂ E(K).

Let j(E) be the j-invariant of E. Because E is non-isotrivial, then j(E) is transcen-

dental over Fp. Also, because E is defined over K, then j(E) ∈ K. Let F0 := Fp( j(E)).

We denote by F
alg
0 the algebraic closure of F0 inside a fixed algebraic closure Kalg of K.

Let d := trdegF0
K. If d = 0, then Theorem 1.1 yields the conclusion of Theo-

rem 3.3. Therefore, we assume from now on that d ≥ 1. Because d ≥ 1, we view

K as the function field of a parameter variety V defined over F0. Then we may view

E as the generic fiber of a family of elliptic curves π : E → V such that if η is the

generic point of V , then π−1(η) = Eη = E. The residue field of the generic fiber of π
is K, while for every closed point y ∈ V , the corresponding residue field is denoted

by F0(y). Note that for each closed point y, F0(y) is a function field of transcendence

degree 1 over Fp. Because the generic fiber of π is smooth (E is an elliptic curve),

there exists a non-empty Zariski dense set V0 ⊂ V , such that π is smooth over V0.

For each y ∈ V0(F
alg
0 ), we get the fiber Ey called the specialization of Eη over y. A ra-

tional point P ∈ Eη(K) corresponds to a rational section sP : V → E and for y ∈ V0,

we obtain a point sP(y) ∈ Ey(F0(y)). The map P → sP(y) induces the specialization

(group) homomorphism Eη(K) → Ey(F0(y)). Because dim V0 = d, then there exists

a non-empty Zariski open subset V1 ⊂ V0 which has a finite morphism into affine

space ψ : V1 → Ad. Moreover, the image of ψ contains a non-empty Zariski open

subset of Ad. We obtain the morphism ψ ◦ π : E → Ad whose generic fiber is again

E. Thus we may view our family of elliptic curves {Ey} as parametrized by Ad. By

[10, Theorem 7.2], there exists a Hilbert subset S ⊂ Ad(F0) such that for t ∈ S and

y ∈ V1(F
alg
0 ) with ψ(y) = t , the specialization morphism

(3.4) Eη(K) → Ey(F0(y))

is injective. In particular, because E[p] ⊂ E(K):

(3.5) E[p] injects through the specialization morphism.

By [9, Chapter 9, Theorem 4.2], F0 is a Hilbertian field. Hence, S is infinite (in partic-

ular, it is non-empty). Let y ∈ ψ−1(S) be fixed. The above specialization morphism

extends to a morphism E(K1/pn

) → Ey(F0(y)1/pn

) for every n ≥ 1. We are using the

fact that the valuation v on K corresponding to the specialization (3.4) has a unique

extension on K1/pn

, which we also call v. In addition, the residue field of v on K1/pn

is contained in F0(y)1/pn

, because F0(y) is the residue field of v on K. In particular,

we have a group homomorphism

(3.6) E(Kper) → Ey(F0(y)per),
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where F0(y)per is the perfect closure of F0(y) inside F
alg
0 . Using (3.5) in (3.6) we

conclude that

(3.7) E[p∞](Kper) injects through the specialization morphism.

We showed in (3.2) that E(Kper) is contained in the p-division hull of E(K). There-

fore (3.4) and (3.7) yield that (3.6) is also injective. Hence E(Kper) embeds into

Ey(F0(y)per). By construction, Ey is an elliptic curve of j-invariant equal to j(E)

(note that j(E) ∈ F0 and F0 is the constant field in our specialization). Thus Ey is

a non-isotrivial elliptic curve and F0(y) is a function field of transcendence degree

1 over Fp. By Theorem 1.1, Ey(F0(y)per) is finitely generated. Hence E(Kper) is also

finitely generated, as desired.
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