GENERALISATION OF AN INTEGRAL
DUE TO HARDY
by FOUAD M. RAGAB
(Received 30th April, 1951)
§ 1. Introductory. The integral

j:Kn 0K, (IZ)) Q=K gy (fB), weveeereeeeerereeeeeseer e (1)

where >0, was given by Hardy (1). It was proved by applying Mellin’s inversion formula.
An alternative proof, based on the differential equation

22 +ay (P +nB)y =0 ..o 2)

satisfied by K, (x), has been given by the author (2).
In § 2, a generalisation of this formula, namely
b.

tils e by

p—1 o
Hj&wwwm&(

) LK (DY), oo, 3)
8=1J0

where b>0, p=2, 3, 4, ..., will be established.
The following formulae will be required in the proof :

j:Am—l K,() dA=2n2T (’" . ”) r (’" - ”) e, 4)
where B (m+n)>0 (8); and
reyr (z +%> ...T (z +1n_7_n—-_1> =2m)Intmi=m2 [(mz), .oviveeenineniinnnn, (5)

where m is a positive integer (4).
In § 3 a similar formula, involving Bessel Functions of the First Kind, will be obtained.
§ 2. Proof of the Formula. If the L.1.s. of (3) is denoted by F (), then

p-1 [ ] b o1
Frb)=11 [ K., (t,)t2»-1dt, K,,'( )

a1 0 by oo ty—y) iy o by o
and
Proy=TI Kt K< b ) !
e=1Jo " ° ST Nty ety ) (Btaaity 1)
Then, from (2),
p-1 fo
BRF"(b)=IT | K,(t,)t2/"1di,
§=1J0
5 () ) ) ()]
x| - K, + +n? K ‘
[ tita- by s ttaty 1) \ifaoty s J S\t by,
= ~bF' (b) +n? F(b) +L,
where

p—1 o , b
L=t | K, (1)t 2203 d, K, (———> .

w1do tilg e by y
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In this multiple integral change the order of integration so that the first integral becomes
the last and replace t, by b/(Myts ... t,_,), where A is the new variable ; then

iy H K n(bs) £ 2523 8,

§=2

b 2/p—3 b b d)\
* J.O Ead (Atz tzz—l) Ko (Atz ) Aty ..

p—1 rxo .
=b2r I ,Kaltd t,2(s-Dip=1 ¢
8=

N J "R, ()01 g <—b—) ar.
0 )‘tzts ty1
Here write ¢, _; for ¢, and £, for A: then
L=b2r F(b);
8o that
b2F" (b) +bF” (b) — (b2/? +n?) F (b) =0.
Now, in (2) put b = (z/p)?, and it becomes

d?y dy ‘
b? dbz b - (b%? +n¥/pPy=0:

and therefore
F(b)=AK,, (pb'?) + BI,, (pb'/»).

Here let b—>o0 and it is seen that B must be zero. (For the purpose of the proof it may be

assumed for the time being that n=0.)
In order to determine 4 the equation may be put in the form

p=1 o

emtgy T [ b\ _ b
£1 .[0 Kot t2ee=t 2 sin nar lI_n <t1 ty 1) I <t1 t,,_)}
{I—pn (pbllp) :on (pbllp)}-

Now multiply by 4" and let b0 ; then
p=1 (o 20 (bt ... by g)? 7w (2[p)rn 1
2s/p—1 12 p—1)" _
£1 0 Knlt) b, dt"2 sinnmr  I'(1 —n) 4 2 sin (pnw) (1 - pn)’
or, from (4),
"IT onsaein-2 I'n +s/p I(s/p)2"—1 I'(n) =4 2971 p~#n [(pn).
8=1
Hence, from (5) and from (5) with 1/m in place of z,
2-Dn—{p-+n—-1(D7)kw—t pi-2n [(pn) (2m)ir—t p—t = 4 2on-1 p~on I'(pn).
Therefore, A=zr1,
Thus formula (3) has been established.
§ 3. A Multiple Integral involving Bessel Functions of the First Kind. The formula to be

proved is

2 sin (pmr

p—1 o

I j T o (t,) t207-1d8, J, (—b—> =T pn(PEYP), e, (6)
0 bt tpy :

&=1

where >0, R (n)> % 2 . For the particular case, when p =2,

f : 7,07, (?) I A N )

where b>0, R(n)> —1}, see Watson’s Bessel Functions (5).
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The proof depends on the differential equation

227 tay (@2 -n) Y =0, (8)
satisfied by J, (x) and J_, ().

The formula
f:J,,()\)Am—ld/\=2m—1F(me)/F(l +’—‘—‘2—1") ................. e (9)

where B (n +m)>0, R(m)<< g , is required (8).

Denoting the r.1.5. of (6) by ¢(b), we have, a,é in § 2, if R(n)>g -
b2%¢” (b) = — b4’ (b) +n*p (b) - L,

Wi

where
. p—1 o b .
L=b2II | J,(t,)t2e/2-3dt, J, (—————) .
=14 0 Lty oiity y
On proceeding as in § 2, it is found that
| L=l g b),
so that
b’ (b) +bg’ (b) + (627 —n?) $(b) =0.

Now, in (8), put b =(z/p)® and it becomes

d? d n2
b2 d—gﬁ +b 3%4. (bzlp __1_05) y =0.
Therefore
¢ (b) = AJ ,,, (pb1'?) + BJ _,, (0b*/7).

Here multiply by b” and let 5—>0 ; then clearly B must be zero.
Again, to determine 4, multiply by b—" and let 5—~0 ; then

T ("7 ¢y t0stwn-1g ! 4.
B | It e = A S P n 1)

But, from (9), the L.&.8. is equal to

71 8 p—s 1 2-n(p=1 (27)ir—t p—t
2a/p—n—1 (S _ )

sI=11 SR (p) r (n * P ) % 20 P(n +1) 27 n(27)t2—t pt-2n [(pn)

Hence 4 =1, so that (6) has been proved. By applying analytical continuation the restriction

R(n)>§ ~2 can be altered to R(n)>1 _2
2 p P

2
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