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Abstract

Preservation of stochastic orders through the system signature has captured the attention
of researchers in recent years. Signature-based comparisons have been made for the
usual stochastic order, hazard rate order, and likelihood ratio orders. However, for the
mean residual life (MRL) order, it has recently been proved that the preservation result
does not hold true in general, but rather holds for a particular class of distributions.
In this paper, we study whether or not a similar preservation result holds for the mean
inactivity time (MIT) order. We prove that the MIT order is not preserved from signatures
to system lifetimes with independent and identically distributed (i.i.d.) components, but
holds for special classes of distributions. The relationship between these classes and
the order statistics is also highlighted. Furthermore, the distribution-free comparison of
the performance of coherent systems with dependent and identically distributed (d.i.d.)
components is studied under the MIT ordering, using diagonal-dependent copulas and
distorted distributions.
Keywords: Coherent systems; copula; distorted distribution; mean inactivity time;
stochastic orders; system signature
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1. Introduction

The notion of the system signature, introduced by Samaniego [27], is a useful tool for study-
ing coherent systems (see Barlow and Proschan [1] for a definition). For a coherent system with
independent and identically distributed (i.i.d.) component lifetimes X1, . . . , Xn, having distri-
bution function F, the system signature s = (s1, . . . , sn) is an n-dimensional probability vector
such that si = P(T = Xi:n), where T is the system lifetime, and X1:n, . . . , Xn:n, are the order
statistics of the component lifetimes. The system’s life distribution FT (t) = P(T ≤ t) can be
represented explicitly as a function of the component life distribution F using the signature as
follows:

FT (t) =
n∑

j=1

( j∑
i=1

si

)(
n

j

)
Fj(t)F

n−j
(t), t ≥ 0. (1.1)
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Preservation of MIT ordering 667

Since the system signature is only equipped to deal with systems with a single type of compo-
nent, Coolen and Coolen-Maturi [8] and Samaniego and Navarro [29] extended the concept
of the system signature to that of the survival signature and the failure signature, respec-
tively, to deal with real-world systems having multiple types of components. The system
signature s = (s1, . . . , sn) has the following relationship to the failure signature (denoted by
b = (b1, . . . , bn)) and survival signature (denoted by b = (b1, . . . , bn

)
) of an n-component

coherent system with i.i.d. components (see Lindqvist et al. [15]):

bj =
j∑

i=1

si, j = 1, . . . , n, (1.2)

bj =
n∑

i=n−j+1

si, j = 1, . . . , n. (1.3)

Preservation of stochastic orders using the system signature was first studied in Kocher
et al. [11]. For s1 and s2 denoting the signatures of two systems whose lifetimes are T1 and
T2, respectively, they showed that if s1 ≤∗ s2, then T1 ≤∗ T2, where ∗ represents the st, hr, or
lr order (defined in Section 2); a similar preservation for the rh order (defined in Section 2) is
in Navarro and Rubio [22]. Problems related to stochastic orderings under different conditions
have been studied using signatures by various researchers (see Block et al. [6], Boland and
Samaniego [7], Li and Zhang [14], Navarro et al. [23], and Zhang [31]). Using (1.3), Lindqvist
et al. [15] proved that the mean residual life (MRL) ordering is not preserved from system
signatures to system lifetimes for mixed coherent systems with i.i.d. components. They defined
classes of distribution functions

Fn =
{

F :

(
n

j

) ∫ ∞

0
F

j
(u)Fn−j(u) du, is decreasing on j = 1, . . . , n

}
, n ≥ 2.

Using the stochastic ordering relation between the system signature and survival signature,
Lindqvist et al. [15, Lemma 5] proved that for mixed coherent systems with i.i.d. components,
if the component life distribution F ∈Fn, n ≥ 2, then the MRL ordering is preserved. This
gave us the motivation to check whether or not the mean inactivity time (MIT) ordering is
preserved for coherent systems with i.i.d. components, as the study of the MIT ordering is
equally important in reliability theory (see Kayid and Ahmad [9] and Kayid et al. [10]). Thus,
we make use of (1.2) to prove that the MIT ordering is not preserved, in general; rather, if the
component life distribution F ∈Fn or F̃n, n ≥ 2, then the MIT ordering is preserved for mixed
coherent systems with i.i.d. components, where

Fn =
{

F :

(
n

j

) ∫ ∞

0
Fj(u)F

n−j
(u) du is decreasing in j = 1, . . . , n

}
, (1.4)

and

F̃n =
{

F :

(
n

j

) ∫ 1

0

wj(1 − w)n−j

f (F−1(w))
dw is decreasing in j = 1, . . . , n, f = F′

}
. (1.5)

After studying coherent systems with i.i.d. components, it is natural to study MIT com-
parison results for coherent systems with dependent and identically distributed (d.i.d.) com-
ponents. The study of comparisons of coherent systems composed of d.i.d. components is of
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668 T. V. RAO AND S. NAQVI

practical importance in reliability theory, since the assumption of dependent components is
more intuitive (for example, the lifetimes of components in electronic devices, which are
often manufactured by the same firm or produced in the same environment, tend to be d.i.d.).
In the literature, several studies have been conducted to incorporate dependency among the
components. For instance, Navarro et al. [18] studied comparisons of coherent systems with
identically distributed components under different stochastic criteria (st, hr, rh, and lr orders)
using domination functions. Furthermore, Navarro et al. [19] studied the preservation of differ-
ent stochastic orders (st, hr, and rh) under the formation of generalized distorted distributions,
and these results can be applied to coherent systems with identically distributed components.
Navarro and Gomis [21] studied comparisons of coherent systems with identically distributed
components with respect to the MRL ordering by representing the system reliability function
as a dual distorted distribution. However, to the best of our knowledge, no study exists on
stochastic comparisons of coherent systems with d.i.d. components with respect to the MIT
ordering. Thus, to fill this gap in the literature, we make comparisons among coherent sys-
tems with 1–3 d.i.d. components using distorted distributions, when the underlying copula is a
diagonal-dependent (DD) copula. The comparison results obtained are based on the structure
of the system and on the properties of the underlying copula (Clayton–Oakes and Gumbel–
Hougaard copulas). These comparisons are distribution-free with respect to the component life
distribution. Note that these comparison results can also be applied to coherent systems with
i.i.d. components.

The paper is organized as follows. In Section 2, we present preliminaries which will be
helpful in proving the main results. The results on preservation of the MIT ordering for mixed
coherent systems with i.i.d. components, as well as their connection with order statistics, are
presented in Section 3. In Section 4, we present the MIT ordering comparisons for coher-
ent systems with 1–3 d.i.d. components, and we discuss the connection between underlying
copula properties and the MIT ordering properties of coherent systems with 1–3 d.i.d. com-
ponents. Finally, we conclude the study with a discussion on coherent systems with 1–4 d.i.d.
components.

2. Preliminaries

In this section, we first present the definition of the MIT, then define some stochastic
orderings which we will use in the sequel. The support of the random variables, unless
specified otherwise, is (0, ∞). Throughout the sequel, whenever we say a function is increas-
ing (decreasing), it means the function is non-decreasing (non-increasing), and we assume
C/0 = ∞ for C > 0, 00 = 0, and 0/0 is not defined.

Definition 2.1. Let X be the lifetime of a unit, which could be a living organism or a mechani-
cal component, with distribution function F. Ruiz and Navarro [27] defined the inactivity time
of the random variable X by a conditional random variable Xt = (t − X|X ≤ t), which is the
time elapsed from the failure of the component given that its lifetime is less than or equal to
t. The conditional random variable Xt may also be called the reversed residual life. The mean
inactivity time (MIT) of X is

E(Xt) =E(t − X|X ≤ t) =

∫ t

0
F(u)du

F(t)
, t > 0.

We now present the definitions of various stochastic orders, which are useful tools in
comparing system lifetimes.
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Preservation of MIT ordering 669

Definition 2.2. Let X and Y be two random variables with survival functions FX and FY ,
distribution functions FX and FY , and Lebesgue probability density functions fX and fY ,
respectively.

(i) We say that X is smaller than Y in the usual stochastic order (denoted by X ≤st Y) if,
and only if, FX(t) ≥ FY (t), for t ∈ (0, ∞).

(ii) We say that X is smaller than Y in the hazard rate order (denoted by X ≤hr Y) if, and

only if,
FX(t)

FY (t)
is decreasing in t ∈ (0, ∞).

(iii) We say that X is smaller than Y in the reversed hazard rate order (denoted by X ≤rh Y)

if, and only if,
FX(t)

FY (t)
is decreasing in t ∈ (0, ∞).

(iv) We say that X is smaller than Y in the mean residual life order (denoted by X ≤mrl Y) if,

and only if,

∫ ∞

t
FX(u)du∫ ∞

t
FY (u)du

is decreasing in t ∈ (0, ∞).

(v) We say that X is smaller than Y in the mean inactivity time order (denoted by X ≤mit Y)
if, and only if,∫ t

0
FX(u)du∫ t

0
FY (u)du

is decreasing in t ∈ (0, ∞).

(vi) We say that X is smaller than Y in the likelihood ratio order (denoted by X ≤lr Y) if, and

only if,
fX(t)

fY (t)
is decreasing in t ∈ (0, ∞).

It is well known that

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤mrlY, and X ≤hr Y =⇒ X ≤st Y;

X ≤lr Y =⇒ X ≤rh Y =⇒ X ≤mitY, and X ≤rh Y =⇒ X ≤st Y .

For a comprehensive discussion of these orders, one may refer to Belzunce et al. [4], Belzunce
et al. [3], Lai and Xie [12], Li and Li [13], Mosler and Scarsini [16], and Shaked and
Shanthikumar [30].

The stochastic orders given above, in Definition 2.2, can also be used to compare the signa-
tures of coherent systems (Kochar et al. [11]). One may refer to Navarro et al. [23], Navarro
[17], and Samaniego [28] for a comprehensive treatment of the subject.

Definition 2.3. Let s1 = (s11, . . . , s1n) and s2 = (s21, . . . , s2n) be the signatures of two mixed
n-systems having components with i.i.d. lifetimes, and let b1 = (b11, . . . , b1n) and b2 =
(b21, . . . , b2n), respectively, be their failure signatures.

(i) The signature s1 is said to be smaller than s2 in the usual stochastic order
(denoted by s1 ≤st s2) if, and only if, b1j ≥ b2j for j = 1, . . . , n.
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(ii) The signature s1 is said to be smaller than s2 in the hazard rate order

(denoted by s1 ≤hr s2) if, and only if,
1 − b2n−j

1 − b1n−j
is decreasing in j = 1, . . . , n.

(iii) The signature s1 is said to be smaller than s2 in the reversed hazard rate order

(denoted by s1 ≤rh s2) if, and only if,
b1j

b2j
is decreasing in j = 1, . . . , n.

(iv) The signature s1 is said to be smaller than s2 in the mean residual lifetime order

(denoted by s1 ≤mrl s2) if, and only if,

∑j
i=1 (1 − b2n−i)∑j
i=1 (1 − b1n−i)

is decreasing in j = 1, . . . , n.

(v) The signature s1 is said to be smaller than s2 in the mean inactivity time order

(denoted by s1 ≤mit s2) if, and only if,

∑j
i=1 b1i∑j
i=1 b2i

is decreasing in j = 1, . . . , n.

(vi) The signature s1 is said to be smaller than s2 in the likelihood ratio order

(denoted by s1 ≤lr s2) if, and only if,
b1j − b1j−1

b2j − b2j−1
is decreasing in j = 1, . . . , n; with

b10 = b20 = 0.

The following implications hold:

s1 ≤lr s2 =⇒ s1 ≤hr s2 =⇒ s1 ≤mrl s2, and s1 ≤hr s2 =⇒ s1 ≤st s2;

s1 ≤lr s2 =⇒ s1 ≤rh s2 =⇒ s1 ≤mit s2, and s1 ≤rh s2 =⇒ s1 ≤st s2.

In addition, we know from the literature (Kocher et al. [11], Navarro and Rubio [22],
Samaniego [28]) that s1 ≤∗ s2 =⇒ T1 ≤∗ T2, where T1 and T2 are the lifetimes of two mixed
systems and ∗ may represent st, hr, or even mrl for a specific class of distribution (see Lindqvist
et al. [15]). Now, our interest is in seeing whether a similar implication can be obtained for the
MIT ordering, i.e., whether

s1 ≤mit s2 =⇒ T1 ≤mit T2. (2.1)

We know that whenever s1 ≤rh s2 (and hence s1 ≤mit s2), we have T1 ≤rh T2, which further
implies T1 ≤mit T2. This shows that (2.1) holds true when s1 ≤rh s2. However, the interesting
case will be to verify (2.1), when s1 ≤mit s2 but s1 �rh s2. The following example illustrates
this scenario.

Example 2.1. Consider the signatures

s1 =
(

1

4
, 0,

3

4

)
and s2 =

(
1

8
,

2

8
,

5

8

)
.

It can be seen that

s1 ≤mit s2, but s1 �rh s2.

Let the common component life distribution of the corresponding mixed systems be

F(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t < 0,

p if 0 ≤ t < 1, 0 < p < 1,

1 if t ≥ 1.
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Here the system lifetimes T1 and T2 can take values 0 and 1. Now, T1 ≤mit T2 if and only if

E(t0 − T1|T1 ≤ t0) ≥E (t0 − T2|T2 ≤ t0) for t0 > 0. (2.2)

If t0 < 1, (2.2) holds true, and if t0 ≥ 1, (2.2) is equivalent to

P(T1 ≤ 0) ≥ P(T2 ≤ 0). (2.3)

Taking r = p

1 − p
and using (1.1), (2.3) can be rewritten as

1

4
r + 1

4
r2 ≥ 1

8
r + 3

8
r2,

which on simplification gives r ≤ 1. Hence, T1 ≤mit T2 if, and only if, p ≤ 1

2
, and T1 �mit T2,

for p >
1

2
.

Thus, from the above example, it can be concluded that (2.1) does not hold true in general,
but may hold true for some specific class of distributions. We search for this specific class in
the section below.

3. Preservation of MIT ordering for coherent systems with i.i.d. components

Consider a mixed coherent system of order n whose system signature and failure signature
are s = (s1, . . . , sn) and b = (b1, . . . , bn), respectively. Using the failure signature, the system
life distribution (Equation (1.1)) can be rewritten as follows:

FT (t) = P(T ≤ t) =
n∑

j=1

bj

(
n

j

)
Fj(t)F

n−j
(t), t ≥ 0. (3.1)

Using (3.1), we give below a necessary and sufficient condition for two system lifetimes
to be ordered with respect to the MIT ordering. The proof is omitted as it follows from
Definition 2.2(v) and (3.1).

Lemma 3.1. Let b1 = (b11, . . . , b1n) and b2 = (b21, . . . , b2n) be the failure signatures of two
mixed coherent systems of order n. Let T1 and T2 be their respective lifetimes, and F be the
components’ life distribution. Then T1 ≤mit T2 if, and only if,

I(t) =

n∑
j=1

b1j

(
n

j

) ∫ t

0
Fj(u)F

n−j
(u) du

n∑
j=1

b2j

(
n

j

) ∫ t

0
Fj(u)F

n−j
(u) du

is decreasing in t ∈ (0, ∞).

In proving the main result of this section, we will make use of the following lemmas. To
begin with, let us reconsider the class of distributions Fn defined in (1.4):

Fn =
{

F :

(
n

j

) ∫ ∞

0
Fj(u)F

n−j
(u) du is decreasing in j = 1, . . . , n

}
.
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That is, for a given n ( ∈N) ≥ 2, Fn contains all the distribution functions F such that F(x) = 0
for x < 0 and(

n

j

) ∫ ∞

0
Fj(u)F

n−j
(u) du ≥

(
n

j + 1

) ∫ ∞

0
Fj+1(u)F

n−j−1
(u) du, j = 1, . . . , n − 1.

Lemma 3.2. For any distribution F and n ≥ 2,

(i) F ∈Fn if, and only if,

(
n

j

) ∫ t

0
Fj(u)F

n−j
(u)du is decreasing in j = 1, . . . , n, for 0 ≤

t < ∞;

(ii)

∫ s

0
Fj(u)F

n−j
(u) du∫ t

0
Fj(u)F

n−j
(u) du

is decreasing in j = 1, . . . , n, for 0 ≤ s ≤ t < ∞.

The proof of Lemma 3.2 is omitted as it can be obtained similarly to the proofs of Lemmas 1
and 2 of Lindqvist et al. [15]. The next lemma establishes stochastic ordering relations between
system signatures and the corresponding failure signatures. Recall that Lindqvist et al. [15,
Lemma 5] obtained a similar result where X ≤hr Y if, and only if, s1 ≤mrl s2, such that the
probability mass functions of the random variables X and Y are expressed in terms of survival
signatures. Here, we express the probability mass functions of the random variables X and Y
in terms of failure signatures and obtain corresponding results for the rh and lr orderings.

Lemma 3.3. Let s1 and s2 be the signatures of two mixed coherent systems of order n, and let
b1 = (b11, . . . , b1n) and b2 = (b21, . . . , b2n) be their respective failure signatures. Let X and
Y be two discrete random variables which take values from the set {1, . . . , n}, and P(X = j) =

b1j∑n
i=1 b1i

, P(Y = j) = b2j∑n
i=1 b2i

, for j = 1, . . . , n. Then

(i) X ≤rh Y if, and only if, s1 ≤mit s2;

(ii) X ≤lr Y if, and only if, s1 ≤rh s2.

Proof. (i) From Definition 2.2(iii), X ≤rh Y if, and only if,∑l
k=1 b1k∑l
k=1 b2k

.

∑n
i=1 b2i∑n
i=1 b1i

is decreasing in l = 1, . . . , n

⇐⇒
∑l

k=1 b1k∑l
k=1 b2k

is decreasing in l = 1, . . . , n

⇐⇒ s1 ≤mit s2, from Definition 2.3(v).

(ii) The proof is omitted as it can be obtained similarly to that of (i). �
The following example illustrates the applicability of Lemma 3.3.

Example 3.1.

(i) Consider signatures s1 = (1/3, 2/3, 0, 0) and s2 = (1/6, 2/3, 1/6, 0). Then the
corresponding failure signatures are b1 = (b11, b12, b13, b14) = (1/3, 1, 1, 1) and
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b2 = (b21, b22, b23, b24) = (1/6, 5/6, 1, 1). Note that s1 ≤mit s2. Define the discrete

random variables X and Y sothat P(X = j) = b1j∑4
i=1 b1i

and

P(Y = j) = b2j∑4
i=1 b2i

, for j = 1, 2, 3, 4, i.e.,

P(X = j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/10 if j = 1,

3/10 if j = 2, 3, 4,

0 otherwise,

P(Y = j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1/18 if j = 1,

5/18 if j = 2,

1/3 if j = 3, 4,

0, otherwise.

It can be seen that X ≤rh Y , and the same can be inferred directly from Lemma 3.3(i).

(ii) Consider signatures s1 = (1/2, 1/2, 0, 0) and s2 = (1/3, 1/3, 1/3, 0). Then the cor-
responding failure signatures are b1 = (b11, b12, b13, b14) = (1/2, 1, 1, 1) and b2 =
(b21, b22, b23, b24) = (1/3, 2/3, 1, 1). Note that s1 ≤rh s2. Define the discrete random

variables X and Y so that P(X = j) = b1j∑4
i=1 b1i

and

P(Y = j) = b2j∑4
i=1 b2i

, for j = 1, 2, 3, 4, i.e.,

P(X = j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/7 if j = 1,

2/7 if j = 2, 3, 4,

0 otherwise,

P(Y = j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1/9 if j = 1,

2/9 if j = 2,

1/3 if j = 3, 4,

0 otherwise.

It can be seen that X ≤lr Y , and the same can be inferred directly from Lemma 3.3(ii).

To state our next lemma for discrete positive distributions, we employ Theorem 1.B.50 of
Shaked and Shanthikumar [30].

Lemma 3.4. Let X and Y be random variables as defined in Lemma 3.3, such that X ≤rh Y. Let

α(j) and β(j), for j = 1, . . . , n, be numbers such that β(j) is positive, and
α(j)

β(j)
and β(j) are

decreasing in j = 1, . . . , n. Then∑n
j=1 α(j)b2j∑n
j=1 β(j)b2j

≤
∑n

j=1 α(j)b1j∑n
j=1 β(j)b1j

. (3.2)

Now we are ready to prove our main result. We show that, if the component life distribution
of mixed systems belongs to Fn, n ≥ 2, then the MIT order is preserved from signatures to sys-
tem lifetimes (i.e., (2.1) holds true). Also, we prove that these classes of distribution functions
Fn, n ≥ 2, are strictly nested and have a nonempty intersection.

Theorem 3.1.

(i) Let s1 and s2 be the signatures of two mixed systems of order n, and let b1 =
(b11, . . . , b1n) and b2 = (b21, . . . , b2n) be their respective failure signatures. Let T1
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and T2 be the lifetimes of these systems, respectively. If the component life distribution
F ∈Fn, n ≥ 2, and s1 ≤mit s2, then T1 ≤mit T2.

(ii) The classes of distribution functions Fn are such that Fn ⊂Fn−1, n ≥ 3, and ∩Fn �= φ,
n ≥ 2.

Proof.

(i) Assume F ∈Fn and s1 ≤mit s2. For j = 1, . . . , n, define

α(j) =
(

n

j

) ∫ s

0
Fj(u)F

n−j
(u) du, and

β(j) =
(

n

j

) ∫ t

0
Fj(u)F

n−j
(u) du.

Using Lemma 3.2(i), it can be seen that β(j) is decreasing in j = 1, . . . , n, and using

Lemma 3.2(ii), it follows that
α(j)

β(j)
is decreasing in j = 1, . . . , n, for 0 ≤ s ≤ t < ∞.

Since X ≤rh Y by Lemma 3.3(i), it follows that conditions of Lemma 3.4 are satisfied.
Thus, on substituting α(j) and β(j) in (3.2), we get

n∑
j=1

b2j

(
n

j

) ∫ s

0
Fj(u)F

n−j
(u) du

n∑
j=1

b2j

(
n

j

) ∫ t

0
Fj(u)F

n−j
(u) du

≤

n∑
j=1

b1j

(
n

j

) ∫ s

0
Fj(u)F

n−j
(u) du

n∑
j=1

b1j

(
n

j

) ∫ t

0
Fj(u)F

n−j
(u) du

,

which implies T1 ≤mit T2, from Lemma 3.1.

(ii) Suppose F ∈Fn. Let

dn−1,j =
(

n − 1

j

) ∫ ∞

0
Fj(u)F

n−j−1
(u) du.

Multiplying by dn−1,j on both sides of the identity F(u) + F(u) = 1, we get

dn−1,j =
(

n − 1

j

) ∫ ∞

0
Fj+1(u) F

n−j−1
(u)du +

(
n − 1

j

) ∫ ∞

0
Fj(u) F

n−j
(u)du

= j + 1

n
dn,j+1 + n − j

n
dn,j.

Now, in order to show that F ∈Fn−1, it suffices to show that dn−1,j+1 − dn−1,j ≤ 0, for
j = 1, . . . , n − 2. Here,

dn−1,j+1 − dn−1,j = j + 2

n
dn,j+2 + n − j − 1

n
dn,j+1 − j + 1

n
dn,j+1 − n − j

n
dn,j,

= j + 2

n

(
dn,j+2 − dn,j+1

)+ j + 1

n

(
dn,j+1 − dn,j

)
,

≤ 0,

since F ∈Fn. Thus, F ∈Fn−1 also, implying that Fn ⊆Fn−1, n ≥ 3.
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Now, in order to show that Fn is strictly contained in Fn−1, let us consider

F(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if u < 0,

p if 0 ≤ u < 1, 0 < p < 1,

1 if u ≥ 1.

Here,

dn,j+1 − dn,j =
(

n

j + 1

)
pj+1(1 − p)n−j−1 −

(
n

j

)
pj(1 − p)n−j

=
(

n

j

)
pj(1 − p)n−j−1

j + 1

[
(n + 1)p − (j + 1)

]
,

which is less than or equal to zero if, and only if, p ≤ j + 1

n + 1
, for j = 1, . . . , n − 1. Hence,

F ∈Fn if, and only if, p ≤ 2

n + 1
(using (1.4)), and F ∈Fn−1 if, and only if, p ≤ 2

n
. So, if

2

n + 1
< p ≤ 2

n
, then F ∈Fn−1 but F /∈Fn, n ≥ 3. Thus, Fn ⊂Fn−1. Next, to show that ∩Fn �=

φ, consider

F(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if u < 0,

u3 if 0 ≤ u ≤ 1,

1 if u ≥ 1.

It is easy to see that

dn,j =
(

n

j

) ∫ ∞

0
Fj(u) F

n−j
(u) du = 1

3
.

n!
�(n + 2

3 )
.
�(j + 1

3 )

j!
is decreasing in j = 1, . . . , n, which implies F ∈Fn, n ≥ 2, using (1.4). �

The following example illustrates the applicability of Theorem 3.1(i).

Example 3.2.

(i) Let s1 = (3/8, 2/8, 3/8) and s2 = (2/8, 4/8, 2/8) be the signatures of two mixed sys-
tems. Let T1 and T2 be their respective lifetimes. It can be seen that s1 ≤mit s2 and s1 �rh

s2. Let the component life distribution be

F(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if u < 0,(u

2

)3
if 0 ≤ u ≤ 2,

1 if u ≥ 2.

Since

(
n

j

) ∫ ∞

0
Fj(u) F

n−j
(u) du is decreasing in j = 1, . . . , n, for n = 3, we see that

F ∈F3. Thus, the conditions of Theorem 3.1(i) are satisfied, and we conclude that
T1 ≤mit T2. The same can be inferred from Figure 1, which shows that I(u) (defined in
Lemma 3.1) is decreasing in u ∈ (0, 2) (see Lemma 3.1).
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FIGURE 1. Plot of I(u).

FIGURE 2. Plot of I(u).

(ii) Let s1 = (1/3, 0, 1/2, 1/6) and s2 = (1/6, 1/6, 2/3, 0) be the signatures of two mixed
coherent systems. Let T1 and T2 be their respective lifetimes. It can be seen that s1 ≤mit

s2 and s1 �rh s2. Let the component life distribution be

F(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for u < 0,

u for 0 ≤ u ≤ 1,

1 for u ≥ 1.

It is easy to verify that F ∈F4. Hence the conditions of Theorem 3.1(i) are satisfied, and
we can conclude that T1 ≤mit T2. The same can be inferred from Figure 2, which shows
that I(u) is decreasing in u ∈ (0, 1) (see Lemma 3.1).

Now, for the case when F is absolutely continuous, we consider the class of distributions
defined in (1.5):

F̃n =
{

F :

(
n

j

) ∫ 1

0

wj(1 − w)n−j

f (F−1(w))
dw is decreasing in j = 1, . . . , n, f = F′

}
.

That is, for a given n ( ∈N) ≥ 2, F̃n contains all the absolutely continuous distribution functions
F such that F(x) = 0 for x < 0 and(

n

j

) ∫ 1

0

wj(1 − w)n−j

f (F−1(w))
dw ≥

(
n

j + 1

) ∫ 1

0

wj+1(1 − w)n−j−1

f (F−1(w))
dw, j = 1, . . . , n − 1.
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Clearly, F̃n ⊆Fn, n ≥ 2. In order to provide the preservation result for the ≤mit ordering when
F ∈ F̃n, n ≥ 2, we begin with the following lemma, which is a special case of Lemma 3.1,
when F is absolutely continuous.

Lemma 3.5. Let b1 = (b11, . . . , b1n) and b2 = (b21, . . . , b2n) be the failure signatures of two
mixed coherent systems of order n. Let T1 and T2 be their respective lifetimes. Let F be an abso-
lutely continuous component life distribution, and let f denote its probability density function.
Then T1 ≤mit T2 if, and only if,

n∑
j=1

b1j

(
n

j

) ∫ s

0

(
wj(1 − w)n−j/f (F−1(w))

)
dw

n∑
j=1

b2j

(
n

j

) ∫ s

0

(
wj(1 − w)n−j/f (F−1(w))

)
dw

is decreasing in s ∈ (0, 1).

The proof follows immediately from Lemma 3.1 when we substitute F(u) = w in∫ t

0
Fj(u)F

n−j
(u) du.

Now we are ready to present the preservation result, which is another version of
Theorem 3.1, for the case when F is absolutely continuous.

Theorem 3.2.

(i) Let s1 and s2 be the signatures of two mixed systems of order n, and let b1 =
(b11, . . . , b1n) and b2 = (b21, . . . , b2n) be their respective failure signatures. Let T1 and
T2 be the respective lifetimes of these systems. If the absolutely continuous component
life distribution F ∈ F̃n and s1 ≤mit s2, then T1 ≤mit T2.

(ii) If F is an absolutely continuous distribution function whose probability density function
f is increasing, then F ∈ F̃n, n ≥ 2.

The proof of Theorem 3.2(i) follows from Theorem 3.1 and Lemma 3.5, and the proof of
Theorem 3.2(ii) follows similarly to the proof of Theorem 3 of Lindqvist et al. [15]; hence
these proofs are omitted.

Note that Theorem 3.2(ii) provides only a sufficient condition. To illustrate the applicability
of Theorem 3.2, we present the following example of a parametric family of distributions.

Example 3.3. Consider a random variable X following the power function distribution with
parameters α > 0 and θ > 0, having distribution function given by

F(t, α, θ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t ≤ 0,( t

θ

)α

if 0 ≤ t ≤ θ,

1 if t ≥ θ .

Note that, for α ≥ 1, the density function f (t, α, θ )
(
f (t, α, θ ) = F′(t, α, θ )

)
is increasing; hence

F(t, α, θ ) ∈ F̃n, n ≥ 2 (using Theorem 3.2(ii)). Moreover, the fact that F(t, α, θ ) ∈ F̃n, n ≥ 2,
is also evident from the fact that
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(
n

j

) ∫ 1

0

wj(1 − w)n−j

f (F−1(w))
dw

is decreasing in j = 1, . . . , n. Furthermore, for s1 = (2/3, 0, 0, 1/3) and s2 =
(1/6, 1/6, 2/3, 0), it is easy to verify that s1 ≤mit s2. Thus, using Theorem 3.2(i), we
can conclude that the corresponding system lifetimes T1 and T2 satisfy T1 ≤mit T2.

Remark 3.1. Note that the proposed class of distributions Fn, n ≥ 2, has a connection with
the theory of order statistics. It can be understood as follows: let X1, . . . , Xn be i.i.d. compo-
nent lifetimes of a mixed coherent system. Let F be the component life distribution, and let

X1:n, . . . , Xn:n be the order statistics of the Xi. One can see that Pt(j, n) =
(

n

j

)
Fj(t)F

n−j
(t) can

be interpreted as the probability that exactly n − j components are functioning at time t, and it
can be expressed in terms of the order statistics as

Pt(j, n) = P
(
Xj:n ≤ t < Xj+1:n

)
, n ≥ 2, j = 1, . . . , n − 1. (3.3)

Let

Dj, n = Xj+1:n − Xj:n, j = 1, . . . , n − 1.

Using (3.3), we have∫ ∞

0
Pt(j, n)dt =

∫ ∞

0
P
(
Xj:n ≤ t < Xj+1:n

)
dt

=
∫ ∞

0
P
(
Xj+1:n ≥ t

)
dt −

∫ ∞

0
P
(
Xj:n ≥ t

)
dt

=E(Xj+1:n) −E(Xj:n)

=E
(
Dj, n

)
, j = 1, . . . , n − 1. (3.4)

However, for the case when j = n,∫ ∞

0
Pt(n, n)dt =

∫ ∞

0
Fn(t)dt =

∫ ∞

0
P(Xn:n ≤ t)dt

cannot be expressed using the spacings of the order statistics of the Xi. Moreover, if the support

of the Xi is the interval (a, ∞), a ≥ 0, then
∫ ∞

0
Pt(n, n)dt diverges to +∞.

Based on the above remark, we have the following proposition.

Proposition 3.1. For any distribution F, we say that F ∈Fn, n ≥ 2, if, and only if,

E
(
Dj+1, n

)≤E
(
Dj, n

)
for j = 1, . . . , n − 2, and

∫ ∞

0
Pt(n, n)dt ≤E(Dn−1,n).

The following example illustrates the applicability of Proposition 3.1.
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Example 3.4.

(i) Consider a random variable X following a binomial distribution Bin(2, 1/2) having
distribution function given by

F1(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if t < 0,

1/4 if 0 ≤ t < 1,

3/4 if 1 ≤ t < 2,

1 if t ≥ 2.

It can be seen that E
(
D1, 3

)=E
(
D2, 3

)= 9/16 and

∫ ∞

0
Pt(3, 3)dt =

∫ 2

0
F3

1(t)dt = 7/16.

Thus, ∫ ∞

0
Pt(3, 3)dt ≤E(D2,3) ≤E(D1,3).

Hence, F1(t) ∈F3 (using Proposition 3.1).

(ii) Consider a random variable X following a Pareto distribution with shape parameter α >

0 and scale parameter θ > 0, having distribution function given by

F2(t, α, θ ) =

⎧⎪⎨⎪⎩
0 if t ≤ θ,

1 −
(

θ

t

)α

if t ≥ θ .

It can be seen that when α = 2 and θ = 2, E
(
D1, 2

)= 2.67. However,∫ ∞

0
Pt(2, 2)dt =

∫ ∞

2
F2

2(t, 2, 2)dt

diverges to +∞. Thus, ∫ ∞

0
Pt(2, 2)dt �E(D1,2),

and consequently, F2(t, 2, 2) /∈F2 (using Proposition 3.1). This highlights the signifi-
cance of the condition ∫ ∞

0
Pt(n, n)dt ≤E(Dn−1,n), n ≥ 2,

in Proposition 3.1.
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(iii) Consider a random variable X having distribution function F3(t, α, β), α ≥ 1 and β > 0,
given by

F3(t, α, β) =

⎧⎪⎨⎪⎩
0 if t ≤ 0,

2
(

1 − e−tβ
)(2(1/α)) −

(
1 − e−tβ

)(3(1/α))
if t ≥ 0.

Note that F3(t, α, β) can be constructed using the distorted distribution q7(u) (see
Table 1 in Section 4) and the Gumbel–Hougaard copula (defined in Section 4), by replac-

ing u with 1 − e−tβ and θ with α, respectively, in q7(u). It can be seen that when α = 2
and β = 4, E

(
D1, 3

)= 0.200 and E
(
D2, 3

)= 0.198. However,∫ ∞

0
Pt(3, 3)dt =

∫ ∞

0
F3

3(t, 2, 4)dt

diverges to +∞. Thus, ∫ ∞

0
Pt(3, 3)dt �E(D2,3) ≤E

(
D1, 3

)
.

Hence, F3(t, 2, 4) /∈F3 (using Proposition 3.1), thereby signifying the need for the
condition ∫ ∞

0
Pt(n, n)dt ≤E(Dn−1,n), n ≥ 2,

in Proposition 3.1.

Note that Proposition 3.1 provides a necessary and sufficient condition for any distribution
function F to belong to Fn, n ≥ 2. One can also conclude from Proposition 3.1 that the distri-
bution function F of any random variable X whose support is (a, ∞), a ≥ 0, does not belong
to Fn, for n ≥ 2, i,e., F /∈Fn, n ≥ 2 (as shown in Example 3.4(ii)–(iii) above). Since F̃n ⊆Fn,

n ≥ 2, Proposition 3.1 also holds for absolutely continuous distribution functions F. Recall
that, in Theorem 3.2(ii), for a distribution F to belong to F̃n (n ≥ 2), the probability density
function f has to be increasing; however, this is only a sufficient condition. It will be interesting
to see whether F ∈ F̃n even when the probability density function f is not necessarily increas-
ing. To address this, we present some distributions which belong to F̃n (using Proposition 3.1),
but whose densities are not necessarily increasing.

Example 3.5.

(i) Consider a random variable X following the uniform distribution U(0, 1), having
distribution function given by

F4(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t ≤ 0,

t if 0 ≤ t ≤ 1,

1 if t ≥ 1.

It can be seen that E
(
D1, 2

)= 1/3 and∫ ∞

0
Pt(2, 2)dt =

∫ 1

0
F2

4(t)dt = 1/3.
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Thus, ∫ 1

0
Pt(2, 2)dt ≤E(D1,2).

Hence, F4(t) ∈F2, and consequently, F4(t) ∈ F̃2 (using Proposition 3.1). Furthermore,
it can also be seen that E

(
D1, 3

)= 1/4, E
(
D2, 3

)= 1/4, and∫ ∞

0
Pt(3, 3)dt = 1/4.

Hence, F4(t) ∈F3, and consequently, F4(t) ∈ F̃3. Note that the probability density func-
tion f4(t) corresponding to the distribution function F4(t) is constant in the interval
(0, 1).

(ii) Consider a random variable X having the distribution function F5(t, α), α ≥ 1, given by

F5(t, α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t ≤ 0,

2t(2
(1/α)) − t(3

(1/α)) if 0 ≤ t ≤ 1,

1 if t ≥ 1.

Note that F5(t, α) can be constructed using the distorted distribution q7(u) (see
Table 1 in Section 4) and the Gumbel–Hougaard copula (defined in Section 4), by
replacing u with t and θ with α, respectively, in q7(u). It can be seen that when α = 2,
E
(
D1, 4

)= 0.200, E
(
D2, 4

)= 0.188, E
(
D3, 4

)= 0.183, and∫ ∞

0
Pt(4, 4)dt =

∫ 1

0
F4

5(t, 2)dt = 0.181.

Thus, ∫ ∞

0
Pt(4, 4)dt ≤E(D3,4) ≤E(D2,4) ≤E(D1,4).

Hence, F5(t, 2) ∈F4, and consequently, F5(t, 2) ∈ F̃4 (using Proposition 3.1).
Furthermore, it can also be seen that when α = 2, E

(
D1, 5

)= 0.171, E
(
D2, 5

)= 0.159,
E
(
D3, 5

)= 0.154, E
(
D4, 5

)= 0.152, and∫ ∞

0
Pt(5, 5)dt =

∫ 1

0
F5

5(t, 2)dt = 0.151.

Thus, ∫ ∞

0
Pt(5, 5)dt ≤E(D4,5) ≤E(D3,5) ≤E(D2,5) ≤E(D1,5).

Hence, F5(t, 2) ∈F5, and as a consequence, F5(t, 2) ∈ F̃5.
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FIGURE 3. Plot of the density function f5(t, 2).

Figure 3 depicts the density function f5(t, 2) corresponding to the distribution function
F5(t, 2). It is evident that f5(t, 2) is not increasing on (0, 1) and is in fact unimodal; i.e., f5(t, 2)
is increasing on (0, t0) and decreasing on (t0, 1), where t0 ≈ 0.78 (see Basu and Dasgupta [2]).

Thus, the above example reflects that there exist parametric distributions which belong to
F̃n, n ≥ 2, even though their densities are unimodal and not necessarily increasing.

Remark 3.2. Lindqvist et al. [15, Proposition 4] established a connection between the decreas-
ing failure rate (DFR) class and Fn, n ≥ 2. Although we cannot establish a similar connection
between the increasing reversed failure rate (IRFR) class and Fn, n ≥ 2, as no distribution with
support (0, ∞) can have IRFR (see Block et al. [5]), we provide a characterization of Fn using
the reverse hazard rate (RH) function. We find that F ∈Fn, n ≥ 2, if and only if

E

(
1

(j + 1)r̃F
(
X(j+1):n

))≤E

(
1

jr̃F
(
Xj:n
))

for all j = 1, 2, . . . , n − 1, where r̃F is the RH function of F, given by r̃F(t) = f (t)

F(t)
, where

f = F′, and Xj:n is the jth order statistic among a random sample of size n.

4. Comparisons of coherent systems with d.i.d. components

As the classical signature-based mixture representation, given by Samaniego [27] and stated
in (1.1), does not necessarily hold when the component lifetimes are d.i.d. (Navarro and Gomis
[21]), Navarro et al. [18] obtained a representation of the system life distribution FT as a
distorted function of the component life distribution F, i.e.,

FT (t) = q(F(t)), (4.1)

where q : [0, 1] → [0, 1] is an increasing and continuous distortion function such that q(0) = 0
and q(1) = 1. Similarly, for system reliability FT = 1 − FT , we have

FT (t) = q(F(t)), (4.2)

where q(u) = 1 − q(1 − u) is called the dual distortion function. Navarro and Gomis [21]
used the representation (4.2) to study the MRL comparisons of coherent systems with d.i.d.
components.
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To further study coherent systems with identical components, Navarro and Fernández [20]
utilized diagonal-dependent copulas. This is a wide class of copulas which includes both
exchangeable and some non-exchangeable copulas, and is defined as follows.

Definition 4.1. Let P ⊆ {1, . . . , n}, and let uP = (u1, . . . , un) be such that ui = u if i ∈ P, and
ui = 1 if i /∈ P, for i = 1, . . . , n. An n-dimensional copula C is said to be diagonal-dependent
(denoted by DD) if

C (uA) = C (uB) , for all A, B ⊆ {1, . . . , n}, whenever |A| = |B|.
Equivalently, C is DD if, and only if,

C (uA) = δm(u), for all A ⊆ {1, . . . , n}, whenever |A| = m,

for m = 1, . . . , n, where

δm(u) := C( u, . . . , u︸ ︷︷ ︸
m times

, 1, . . . , 1︸ ︷︷ ︸
(n−m) times

)

is the diagonal section for the copula of the marginal distribution of the first m variables.
Clearly, δn(u) = C( u, . . . , u︸ ︷︷ ︸

ntimes

) and δ1(u) = u, u ∈ [0, 1].

The following are some commonly used DD copulas which we will also be using in the
sequel (see Nelsen [24]):

• The Clayton–Oakes family of copulas:

C (u1, . . . , un) =
(

n∑
i=1

u1−θ
i − (n − 1)

)1/1−θ

, n ≥ 2, θ > 1.

• The Gumbel–Hougaard family of copulas:

C(u1, . . . , un) = exp

⎛⎝−
[

n∑
i=1

(− ln ui)
θ

]1/θ
⎞⎠ , n ≥ 2, θ ≥ 1.

In this section, we make use of the representation (4.1) and the concept of a DD copula to
study MIT comparisons of coherent systems with d.i.d. components. First we present a lemma,
involving distorted distributions, which will be helpful in obtaining the main result of this
section. We know that the following implications hold:

X ≤rh Y =⇒ X ≤mit Y,

X ≤hr Y =⇒ X ≤mrl Y .

However, in certain situations, ≤rh or ≤hr may not hold. To deal with such situations, Belzunce
et al. [4] provided sufficient conditions under which ≤mit (≤mrl) holds even though ≤rh (≤hr)
does not hold (see Theorem 2.3 and Theorem 5.1 in Belzunce et al. [4]). To further strengthen
these results, Navarro and Gomis [21] obtained sufficient conditions for ≤mrl in terms of dual
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distorted distributions, and Nooghabi et al. [25] obtained the following result for ≤mit in terms
of distorted distributions. For the sake of clarity, we provide the proof also.

Lemma 4.1. Consider two non-negative random variables X and Y with distributions FX and
FY, respectively, and distorted distribution functions qX and qY based on the same baseline
continuous distribution function F. Then the following conditions are equivalent:

(i) There exists a t0 ∈ (0, ∞) such that FY (t)/FX(t) is increasing on (0, t0) and decreasing
on (t0, ∞).

(ii) There exists a u0 ∈ (0, 1) such that qY (u)/qX(u) is increasing on (0, u0) and decreasing
on (u0, 1).

Proof. Assume (i) is true. Since F is non-decreasing, for 0 < u1 ≤ u2 ≤ u0 < 1, there
exist 0 < t1 ≤ t2 ≤ t0 < ∞ such that F(t0) = u0, F(t1) = u1, and F(t2) = u2. As FY (t)/FX(t) is
increasing on (0, t0), we have

FY (t1)

FX (t1)
= qY (u1)

qX (u1)
≤ qY (u2)

qX (u2)
= FY (t2)

FX (t2)
;

i.e.,
qY (u)

qX (u)
is increasing on (0, u0). Similarly, for 0 < u0 ≤ u1 ≤ u2 < 1, there exist 0 < t0 ≤

t1 ≤ t2 < ∞ such that F(t0) = u0, F(t1) = u1, and F(t2) = u2. As FY (t)/FX(t) is decreasing on
(t0, ∞), we have

FY (t1)

FX (t1)
= qY (u1)

qX (u1)
≥ qY (u2)

qX (u2)
= FY (t2)

FX (t2)
;

i.e.,
qY (u)

qX (u)
is decreasing on (u0, 1). Thus, (i) implies (ii). The proof of the converse is along

the same lines and hence is omitted. �
Recall that Belzunce et al. [4, Theorem 5.1] showed that if E(X) ≤E(Y) and Lemma 4.1(i)

holds true, then X ≤mit Y . Based on these observations, we have the following result, which
provides a sufficient condition for the MIT ordering to hold for coherent systems with d.i.d.
components. Note that a similar result for the ≤mrl ordering is given in Navarro and Gomis
[21, Theorem 2.3].

Theorem 4.1. Let S1 and S2 be lifetimes of two coherent systems with d.i.d. components such
that E(S1) ≤E(S2). Let q1(u) and q2(u) be the corresponding distorted distributions based

on the common component life distribution F. If there exists a u0 ∈ (0, 1) such that
q2(u)

q1(u)
is

increasing on (0, u0) and is decreasing on (u0, 1), then S1 ≤mit S2.

The proof is omitted, as it follows from utilizing Theorem 5.1 in Belzunce et al. [4] and
replacing qX (qY ) by q1 (q2) in Lemma 4.1 above. This result is significant because it provides
comparisons of coherent systems with d.i.d. components with respect to the ≤mit ordering even
when the ≤rh ordering does not hold, by utilizing the distorted distributions. Also note that if

the ratio
q2(u)

q1(u)
is increasing in u ∈ (0, 1), then S1 ≤rh S2 holds, and if the ratio

q2(u)

q1(u)
≤ ( ≥ ) 1,

u ∈ (0, 1), then S1 ≤st ( ≥st )S2 holds (see Navarro et al. [19, Proposition 2.2]). To illustrate the
applicability of Theorem 4.1, below we study coherent systems with 1–3 d.i.d. components
where the common underlying copula is a DD copula.

https://doi.org/10.1017/apr.2023.41 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.41


Preservation of MIT ordering 685

TABLE 1. Distorted distributions of coherent systems with 1–3 d.i.d. components.

N Lifetime �(X1, X2, X3) qN(u)

1 T1 X1:1 = X1 u
2 T2 X1:2 = min{X1, X2} 2u − C(u, u)
3 T3 X2:2 = max{X1, X2} C(u, u)
4 T4 X1:3 = min{X1, X2, X3} 3u − 3C(u, u, 1) + C(u, u, u)
5 T5 min{X1, max{X2, X3}} u + C(u, u, 1) − C(u, u, u)
6 T6 X2:3 (2-out-of-3) 3C(u, u, 1) − 2C(u, u, u)
7 T7 max{X1, min{X2, X3}} 2C(u, u, 1) − C(u, u, u)
8 T8 X3:3 = max{X1, X2, X3} C(u, u, u)

4.1. Comparisons of coherent systems with 1–3 d.i.d. components

First we list the distorted distributions of coherent systems with 1–3 d.i.d. components under
a common DD copula (see Table 1).

It is easy to show how qN(u) for N = 1, . . . , 8 is obtained using a DD copula. For instance,
consider T6 = X2:3. The minimal cut sets of the corresponding system are {1, 2}, {1, 3}, and
{2, 3}. Let F be the joint distribution of (X1, X2, X3), let C be the underlying DD copula, and
let F be the common component life distribution. Hence, the system life distribution

FT6 (t) = P
({

X{1,2} < t
}∪ {X{1,3} < t

}∪ {X{2,3} < t
})

= P
(
X{1,2} < t

)+ P
(
X{1,3} < t

)+ P
(
X{2,3} < t

)− 2P
(
X{1,2,3} < t

)
= F(t, t, ∞) + F(t, ∞, t) + F(∞, t, t) − 2F(t, t, t)

= 3C(F(t), F(t), 1) − 2C(F(t), F(t), F(t)) = q6(F(t)),

and q6(u) = 3C(u, u, 1) − 2C(u, u, u), u ∈ (0, 1). Under the Gumbel–Hougaard dependence
model when θ = 2, it can be seen that the ratio of the distorted distributions of T6 to T1,
given by

q6(u)

q1(u)
= 3u

√
2 − 2u

√
3

u
,

is increasing on the interval (0, u0) and is decreasing on the interval (u0, 1), where u0 ≈ 0.6.
Hence, on applying Theorem 4.1, it follows that T1 ≤mit T6 under the Gumbel–Hougaard
dependence model when θ = 2, for any distribution F, such that E(T1) ≤E(T6). In a simi-
lar way, we compare all the systems listed in Table 1 with respect to the MIT order, when
the common underlying copula is a Clayton–Oakes copula (see Theorem 4.2) or a Gumbel–
Hougaard copula (see Theorem 4.3). Note that these comparison results hold true whenever
the dependency parameter θ ≥ 2.

Theorem 4.2. Let T1, . . . , T8 be the lifetimes of the coherent systems given in Table 1. If the
underlying copula is a Clayton–Oakes copula (θ ≥ 2), then

(i) T4 ≤mit T2 ≤mit T1 ≤mit T5 ≤mit T6 ≤mit T7 ≤mit T3 ≤mit T8, and
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(ii) T4 ≤rh T2 ≤rh T1 ≤mit T5 ≤rh T6 ≤rh T7 ≤rh T3 ≤rh T8,

provided that their means exist and are ordered in the same way.

Proof. On comparing (i) and (ii), it is evident that, except for T1 ≤mit T5, the rest of the
≤mit orderings in (i) can be strengthened to the ≤rh ordering in (ii). Thus, we first show that

T1 ≤mit T5 holds but T1 �rh T5. To prove T1 ≤mit T5, it suffices to show that
q5(u)

q1(u)
is increasing

on (0, u0) and is decreasing on (u0, 1). Consider

q5(u)

q1(u)
= u + (2u1−θ − 1)

1
1−θ − (3u1−θ − 2)

1
1−θ

u
, u ∈ (0, 1),

which on differentiating yields(
q5(u)

q1(u)

)′
= 2(θ − 1)uθ−2 · (3 − 2uθ−1

) 1
1−θ

−1

1 − θ
− (θ − 1)uθ−2 · (2 − uθ−1

) 1
1−θ

−1

1 − θ
. (4.3)

On equating (4.3) to 0, we obtain

u0 =
(

3.2
1
θ − 4

2.2
1
θ − 2

) 1
θ−1

< 1.

Thus, T1 ≤mit T5, for all θ ≥ 2, and T1 �rh T5. Now, to establish T4 ≤mit T2, it suffices to show
that T4 ≤rh T2. Consider

q2(u)

q4(u)
= 2u − (2u1−θ − 1)1/1−θ

3u − 3(2u1−θ − 1)1/1−θ + (3u1−θ − 2)1/1−θ
, u ∈ (0, 1),

which on differentiating and simplification shows that
q2(u)

q4(u)
is increasing in u ∈ (0, 1), for all

θ ≥ 2. In a similar way, it can be proved that T2 ≤rh T1 and T5 ≤rh T6 ≤rh T7 ≤rh T3 ≤rh T8, for
θ ≥ 2. �

It is worth mentioning here that the above result can be stated for the ≤mrl ordering; i.e.,
under the same assumptions as in Theorem 4.2,

T4 ≤mrl T2 ≤mrl T5 ≤mrl T6 ≤mrl T7 ≤mrl T1 ≤mrl T3 ≤mrl T8 (4.4)

and
T4 ≤hr T2 ≤hr T5 ≤hr T6 ≤hr T7 ≤mrl T1 ≤hr T3 ≤hr T8, (4.5)

provided that their means exist and are ordered in the same way. Note that Navarro and Gomis
[21, Theorem 4.1] established (4.4) and (4.5) when θ = 2. However, we strengthen their result
by establishing it for a general θ (θ ≥ 2).

Below, we present a result where the dependency among the components is established
using a Gumbel–Hougaard copula. The proof is omitted as it similar to that of Theorem 4.2.

Theorem 4.3. Let T1, . . . , T8 be the lifetimes of the coherent systems given in Table 1. If the
underlying copula is a Gumbel–Hougaard copula (θ ≥ 2), then

(i) T4 ≤mit T2 ≤mit T1 ≤mit T5 ≤mit T6 ≤mit T7 ≤mit T3 ≤mit T8, and

(ii) T4 ≤rh T2 ≤rh T1 ≤mit T5 ≤rh T6 ≤rh T7 ≤rh T3 ≤rh T8,

provided that their means exist and are ordered in the same way.
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FIGURE 4. MIT (or RH) ordering properties of coherent systems with 1–3 d.i.d. components.

The ≤mit (or ≤rh) ordering relations among coherent systems with 1–3 d.i.d. components
when the underlying copula is a Clayton–Oakes copula (θ ≥ 2) or a Gumbel–Hougaard cop-
ula (θ ≥ 2) are given in Figure 4, where the arrows represent the ≤rh ordering, and the lines
represent the ≤mit ordering such that the respective means are ordered.

Now that we have studied the special DD copulas (Theorems 4.2 and 4.3), it is intuitive to
ask whether similar results hold true for a general DD copula. To answer this, we present our
next result.

Theorem 4.4. Let C be a DD copula.

(i) If there exists u0 ∈ (0, 1) such that
C(u, u)

u
is increasing on (0, u0) and is decreasing on

(u0, 1) , then T2 ≤mit T1 ≤mit T3.

(ii) If there exists u0 ∈ (0, 1) such that
u + C(u, u, 1) − C(u, u, u)

3u − 3C(u, u, 1) + C(u, u, u)
is increasing on (0, u0)

and is decreasing on (u0, 1) , then T4 ≤mit T5.

(iii) If there exists u0 ∈ (0, 1) such that
C(u, u, u)

C(u, u, 1)
is increasing on (0, u0) and is decreasing

on (u0, 1) , and E(T6) ≤E(T7) ≤E(T8), then T6 ≤mit T7 ≤mit T8.

Proof.

(i) Consider the ratio of distorted distributions

q2(u)

q1(u)
= 2 − C(u, u)

u
and

q3(u)

q1(u)
= C(u, u)

u
.

Clearly, if
C(u, u)

u
is increasing on (0, u0) and is decreasing on (u0, 1), then both

q1(u)

q2(u)

and
q3(u)

q1(u)
are increasing on (0, u0) and are decreasing on (u0, 1). Hence T2 ≤mit T1 ≤mit

T3 from Theorem 4.1, since E(T2) ≤E(T1) ≤E(T3).

(ii) The proof follows from Theorem 4.1 by taking the ratio of distorted distributions of T5
to T4 since E(T4) ≤E(T5) for any component life distribution F.

(iii) The proof is omitted as it is along similar lines to that of (i). �
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FIGURE 5. Ratio of distorted distributions of T6 to T1.

It is important to note that since these stochastic orderings are partial orderings, we cannot
combine (i), (ii), and (iii) in Theorem 4.4 to reach conclusions as in (i) and (ii) of Theorems
4.2 and 4.3. However, the conditions of Theorem 4.4 are applicable to all the DD copulas
and are easier to check. Furthermore, note that the Clayton–Oakes copula (θ ≥ 2) and the
Gumbel–Hougaard copula (θ ≥ 2) satisfy the conditions mentioned in Theorem 4.4.

Till now, our focus has been on applications of Theorem 4.1 to DD copulas. However, it
makes sense to see whether Theorem 4.1 is applicable to non-DD copulas also. To see this, let
us consider the Farlie–Gumbel–Morgenstern (FGM) copula as given below.

Example 4.1. Consider the systems whose lifetimes are T6 = X2:3 and T1 = X1:1 composed of
d.i.d. component lifetimes with underlying FGM copula given by

C(u1, u2, u3) = u1u2u3(1 + θ1(1 − u1)(1 − u2) + θ2(1 − u1)(1 − u3)

+ θ3(1 − u2)(1 − u3) + θ4(1 − u1)(1 − u2)(1 − u3)),

for |θi| ≤ 1, i = 1, 2, 3, 4, and assume that θi �= θj for i �= j.
The minimal cut sets of the system (with lifetime T6) are {1, 2}, {1, 3}, and {2, 3}. Hence

the system life distribution FT6 (t) is given by

C(F(t), F(t), 1) + C(F(t), 1, F(t)) + C(1, F(t), F(t)) − 2C(F(t), F(t), F(t)),

where its distorted distribution is

q6(u) = C(u, u, 1) + C(u, 1, u) + C(1, u, u) − 2C(u, u, u), and q1(u) = u.

Then, using the FGM copula, we obtain

q6(u) = u2

[
3∑

i=1

(
1 + θi(1 − u)2

)]
− 2u3

[
1 +

3∑
i=1

θi(1 − u)2 + θ4(1 − u)3

]
.

The ratio of distorted distributions of T6 to T1 for different sets of (θ1, θ2, θ3, θ4) are shown in
Figure 5.

The curves plotted in Figure 5 have an inverted bathtub shape, and hence T1 ≤mit T6
whenever E(T1) ≤E(T6). Furthermore, if the common component life distribution F is
uniform (U (0, 1)), then E(T1) = 0.5 and E(T6) = 0.505 (for θ1 = 0.1, θ2 = 0.2, θ3 = 0.3,
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θ4 = 0.4), E(T6) = 0.508 (for θ1 = 0.3, θ2 = 0.4, θ3 = 0.5, θ4 = 0.6), and E(T6) = 0.511 (for
θ1 = 0.5, θ2 = 0.6, θ3 = 0.7, θ4 = 0.8). Therefore, T1 ≤mit T6 for the given sets of θi values.
However, T1 �rh T6 and T1 �st T6, since q6(u)/q1(u) is not increasing on u ∈ (0, 1) and since
q6(u)/q1(u) takes values bigger than 1 and smaller than 1 as well.

Recall that Navarro and Gomis [21, Example 4.4] considered a non-exchangeable copula
and studied the system T5 for different values of the dependency parameter θ to establish the
≤mrl ordering. In a similar way, in Example 4.1 we considered a non-DD copula to establish
the ≤mit ordering between T1 and T6.

5. Discussion and conclusions

In this article, we used the notion of the failure signature (see Samaniego and Navarro [29])
to prove that the MIT order is not preserved in general. However, if the component lifetimes
of mixed coherent systems of order n belong to Fn or F̃n, n ≥ 2, then

s1 ≤mit s2 =⇒ T1 ≤mit T2.

This result is significant as it concerns the preservation of the ≤mit ordering even when the ≤rh

ordering does not hold. We believe that similar studies can be conducted for other stochastic
orderings which involve distribution functions, such as the increasing concave order, by using
the notion of the failure signature. In the article, we also provide various examples from para-
metric families, as well as the relationship between the proposed results and the concept of
order statistics. A natural extension from the i.i.d. case is to consider systems with exchange-
able components. It is known from the literature that most of the results in the i.i.d. case can be
extended to the case where components lifetimes are exchangeable. To see this, one may refer
to Navarro and Rubio [22, Theorem 2.3(i)–(ii)], where it is shown that

T1 ≤rh T2 if s1 ≤rh s2 and X1:n ≤rh . . . ≤rh Xn:n, and

T1 ≤mit T2 if s1 ≤rh s2 and X1:n ≤mit . . . ≤mit Xn:n,

where X1, . . . , Xn, are exchangeable component lifetimes, and Xi:n is the ith order statistic of
X1, . . . , Xn, for i = 1, . . . , n. Based on these observations, it is intuitive to believe that our
results can be extended to components with exchangeable lifetimes.

Moreover, it is known that in the real world, component lifetimes are not always i.i.d. or
exchangeable. In fact, they are usually dependent. Thus, to incorporate dependence, we employ
DD copulas and distorted functions to obtain stochastic comparisons between the lifetimes
T1 and T2 with respect to the ≤mit ordering. We consider coherent systems with 1–3 d.i.d.
components having Clayton–Oakes and Gumbel–Hougaard copula dependency structures, and
we show how these systems are ordered with respect to the ≤mit ordering for dependency
parameter θ ≥ 2. It will be interesting to see whether similar results can be established for
coherent systems with 1–4 d.i.d. components. To see this, we present a result for the Gumbel–
Hougaard copula when the dependency parameter θ = 2.

Theorem 5.1. Let T1, . . . , T28 be the lifetimes of coherent systems with 1–4 d.i.d. components
(see the second column of Table I in Navarro et al. [18]). Then

T9 ≤mit T4 ≤mit T10 ≤mit T2 ≤mit T1 ≤mit T13 ≤mit T5 ≤mit T12 ≤mit T11 ≤mit T14

≤mit T15 ≤mit T17 =st T16 ≤mit T24 ≤mit T6 =st T18 =st T19 ≤mit T7 ≤mit T20

=st T21 ≤mit T3 ≤mit T25 ≤mit T22 ≤mit T23 ≤mit T26 ≤mit T27 ≤mit T8 ≤mit T28,

provided that their means are ordered in the same way.
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FIGURE 6. MIT (or RH) ordering properties of coherent systems with 1–4 d.i.d. components.

The proof is immediate from Theorem 4.1 upon taking the ratios of the distorted distribu-
tions. In a similar way, we have the following orderings:

T9 ≤rh T4 ≤rh T10 ≤mit T2 ≤rh T1 ≤mit T13 ≤mit T5 ≤mit T12 ≤mit T11 ≤rh T14

≤rh T15 ≤rh T17 =st T16 ≤rh T24 ≤mit T6 =st T18 =st T19 ≤rh T7 ≤mit T20

=st T21 ≤rh T3 ≤mit T25 ≤rh T22 ≤rh T23 ≤rh T26 ≤rh T27 ≤rh T8 ≤rh T28.

The ordering relationships among coherent systems with 1–4 d.i.d. components when the
underlying copula is a Gumbel–Hougaard copula (θ = 2) are shown in Figure 6, where

i −→ j means Ti ≤rh Tj, and i ��� j means Ti ≤mit Tj.

Although in Theorem 5.1 we have been able to establish the ≤mit ordering for a specific
dependency parameter θ (= 2), it provides food for thought to consider whether the result can
be strengthened to a general θ (as done in Theorems 4.2 and 4.3). Note that not all the ≤mit

ordering comparisons can be strengthened to the ≤rh ordering. Recall that Navarro and Gomis
[21, Theorem 3.2] made similar comparisons for coherent systems with 1–4 i.i.d. components,
with respect to the ≤mrl and ≤hr orderings, using the product copula. Thus, in Theorem 5.1, we
consider a much more general situation by considering d.i.d. components with the underlying
Gumbel–Hougaard copula.

Finally, we would also like to point out that sufficient conditions for the preservation of
the ≤st, ≤hr, and ≤rh orderings when the component lifetimes are non-identical have been
addressed in the literature (see Navarro et al. [19]). However, the preservation of the ≤mit

ordering in a similar set-up still remains an open problem.
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