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A macroscopic model for perfect-slip flow in porous media is derived in this
work, starting from the pore-scale flow problem and making use of an upscaling
technique based on the adjoint method and Green’s formula. It is shown that the
averaged momentum equation has a Darcy form in which the permeability tensor,
Kps, is obtained from an associated adjoint (closure) problem that is to be solved
on a (periodic) unit cell representative of the structure. Similarly to the classical
permeability tensor, K , in the no-slip regime, Kps is intrinsic to the porous medium
under consideration and is shown to be symmetric and positive. Integral relationships
between Kps, the partial-slip flow permeability tensor, K s, and K are derived. Numerical
simulations carried out on two-dimensional model porous structures, together with an
approximate analytical solution and an empirical correlation for a particular configuration,
confirm the validity of the macroscopic model and the relationship between Kps
and K .
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1. Introduction

Slip flow induced by nano- or micro-rough patterned surfaces is of interest for many
applications in microfluidics, flow of polymers as encountered in composite manufacturing
(Trochu et al. 2006) or measurements of polymer phase properties (Yang 1998).
Typically, slip can be conceived as the result of the interaction of the flowing fluid and

† Email address for correspondence: didier.lasseux@cnrs.fr

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 997 A65-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:didier.lasseux@cnrs.fr
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.587&domain=pdf
https://doi.org/10.1017/jfm.2024.587


D. Lasseux and F.J. Valdés-Parada

a heterogeneous surface composed of patches where perfect slip (i.e. when the fluid
experiences no shear at the interface) can be reasonably assumed whereas no slip occurs
in the complementary part of the surface (Lauga & Stone 2003; Lauga, Brenner & Stone
2007; Asmolov & Vinogradova 2012). The perfect-slip zones result, for instance, from
gas trapping due to capillary effects when a liquid flows over the surface, whereas no-slip
zones correspond to the region where solid–liquid contact occurs. This is typically the
mechanism at play on the so-called superhydrophobic surfaces (Vinogradova 1999) that
are of major interest in interfacially driven flows in engineering applications, in particular
for electro-osmosis (Bocquet & Barrat 2007). Evidently, the overall shear exerted on the
flowing fluid is expected to be a decreasing function of the perfect-slip surface fraction
down to the limit where this fraction tends to unity.

Implication of these mechanisms in the process of polymer injection in a fibrous
preform during liquid composite moulding, for instance, is of major concern as close
to perfect slip conditions would ease polymer infusion in the porous material (Trochu
et al. 2006). In another context, the analysis of He superfluid flow in porous media would
also imply considering a perfect-slip flow condition for the superfluid component (Allain
et al. 2010). Whereas partial- and no-slip flows in porous media have been thoroughly
analysed, sometimes in a different context involving Knudsen effects (see e.g. Lasseux,
Valdés-Parada & Porter 2016), the perfect-slip limit has not been addressed from a formal
upscaling point of view. Recently, Geoffre et al. (2021) performed a series of numerical
flow experiments in the transverse direction of two-dimensional random arrays of circular
obstacles and proposed an empirical relationship between the permeability corresponding
to partial slip and those for perfect- and no-slip conditions. This relationship generalises
the one that can be formally obtained in the case of mono-disperse parallel cylinders of
circular cross-section in the limit of large enough porosity. However, at the moment, it is
unclear whether a Darcy-like model is applicable to the perfect-slip flow situation and, if
this is the case, there are no direct means for predicting the perfect-slip permeability for
an arbitrary given structure.

The purpose of this work is to address the above fundamental questions by deriving
the macroscopic momentum balance equation starting from the pore-scale problem for
Newtonian creeping flow with a zero-shear condition at the solid–fluid interface. To this
end, the work is organised as follows. The perfect-slip flow problem statement at the pore
scale as well as the starting assumptions are presented in § 2. Section 3 is dedicated to
the upscaling process that is performed by proposing an adjoint problem, followed by the
use of Green’s formula. The result of upscaling is a Darcy-like model for perfect slip in
which the corresponding permeability tensor is determined by the solution of the adjoint
problem in a periodic unit cell representative of the structure. This tensor is shown to be
intrinsic, i.e. to depend only on the porous structure, and to be symmetric positive (see
Appendix A). Relationships between the perfect-slip, partial-slip and no-slip permeability
tensors are reported in § 4, showing that the perfect-slip permeability corresponds to the
limit of the partial one in the limit of infinite slip length. This is in agreement with the
analysis reported in Mácha & Tichý (2014) at the pore scale. In § 5, the macroscopic model
is validated through direct numerical simulations and an approximate analytical solution
is proposed for sufficiently large porosity values in a simple geometrical configuration,
which appropriately reproduces the numerical results. In addition, the role played by the
geometry is examined by comparing the results of the transition from no slip to perfect
slip in three unit cell configurations. Finally, the corresponding conclusions are provided
in § 6.
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From no-slip to perfect-slip flow in porous media

2. Pore-scale flow formulation

Consider a homogeneous porous medium whose skeleton is composed of a
non-deformable solid phase σ , the pores, of characteristic size �β , being saturated by a
fluid phase β having a constant dynamic viscosity μ. In the absence of body forces, the
pore-scale incompressible, creeping and steady flow problem for perfect slip in a periodic
unit cell, V , representative of the medium (see figure 1) can be stated as follows:

∇ · v = 0 in Vβ, (2.1a)

0 = ∇ · T p̃ − 1
μ

∇〈 p〉β in Vβ, (2.1b)

B.C.1 P · (n · (∇v + ∇vT)) = P · (n · T p̃) = 0 at Aβσ , (2.1c)

B.C.2 n · v = 0 at Aβσ , (2.1d)

ψ(r) = ψ(r + li) for i = 1, 2, 3, ψ = v, T p̃, (2.1e)

〈p̃〉β = 0. (2.1f )

In the above equations, v denotes the fluid velocity and p̃ the pressure deviation resulting
from the decomposition p̃ = p − 〈 p〉β (Gray 1975), in which 〈 p〉β is the intrinsic average
of the pressure. The intrinsic average of a quantity ψ taking values in the β-phase is
given by 〈ψ〉β = (1/Vβ)

∫
Vβ
ψ dV , where Vβ (of measure Vβ) denotes the portion of

the periodic unit cell V (of measure V and size �c) occupied by the β-phase. Moreover,
the stress-like tensor, μT p̃, is defined as μT p̃ = −p̃I + μ(∇v + ∇vT). In the perfect-slip
condition expressed in (2.1c), P = I − nn is the projection tensor on the tangential plane
at the fluid–solid interfaces inside the medium denoted by Aβσ , I being the identity tensor
and n the unit normal vector at Aβσ , pointing out of the β-phase. Note that (2.1c), which
represents zero shear at Aβσ , does not make reference to any partial-slip model at this
interface. Moreover, in (2.1e), li is the periodic lattice vector of the unit cell in the ith
direction and r is a vector locating any point inside the fluid phase with respect to a fixed
origin of the coordinate system. In the course of the development, the superficial average,
〈ψ〉, of ψ is also used, which is defined as 〈ψ〉 = (1/V)

∫
Vβ
ψ dV , i.e. 〈ψ〉 = ε〈ψ〉β ,

ε = Vβ/V being the porosity of the medium.
As a usual prerequisite to carrying out upscaling, it is assumed that characteristic length

scales are well separated, i.e. �c � L, L being the size of the macroscopic system (see
figure 1). As a consequence of this scale hierarchy, average quantities can be regarded as
constants within the unit cell, so that 〈p̃〉β = 0, as indicated in (2.1f ), which is required in
order for the above problem to be well posed.

3. Upscaling

The purpose of upscaling is to provide the average mass and momentum balance equations
that filter the non-redundant information contained in the flow problem within the unit
cell and affect the result to a single point of the effective medium. For mass conservation,
the superficial averaging operator can be applied to (2.1a). By making use of the spatial
averaging theorem (Whitaker 1999), which reads

〈∇ · ψ〉 = ∇ · 〈ψ〉 + 1
V

∫
Aβσ

n · ψ dA, (3.1)
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L

�c

σ-phase
β-phase

Unit cell, 

Figure 1. Sketch of a porous medium of characteristic length L that is represented as an array of periodic unit
cells V containing a fluid phase (the β-phase with characteristic length �β ) and a solid phase (the σ -phase with
characteristic length �σ ).

with ψ = v, and taking into account the impervious boundary condition given in (2.1d),
this leads to the classical macroscopic mass balance equation,

∇ · 〈v〉 = 0. (3.2)

3.1. Adjoint problem and Green’s formula
In order to derive the macroscopic momentum balance equation, it is convenient to
introduce the closure variables, vector d and second-order tensor D, which solve the
following adjoint problem associated with (2.1) (see Bottaro (2019) for applications of
the adjoint method):

∇ · D = 0 in Vβ, (3.3a)

0 = ∇ · T d + I in Vβ, (3.3b)

B.C.1 P · (n · (∇D + ∇DT1)) = P · (n · T d) = 0 at Aβσ , (3.3c)

B.C.2 n · D = 0 at Aβσ , (3.3d)

ψ(r) = ψ(r + li) for i = 1, 2, 3, ψ = D, T d, (3.3e)

d = 0 at r0, (3.3f )

T d = −Id + ∇D + ∇DT1. (3.3g)

The constraint given in (3.3f ) is necessary in order to make the problem well posed, and
it replaces (2.1f ). Although it could have also been formulated as 〈d〉β = 0, (3.3f ) may

997 A65-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.587


From no-slip to perfect-slip flow in porous media

be preferred as it is less computationally demanding. In addition, in (3.3c) and (3.3g),
the superscript T1 denotes the transpose of a third-order tensor that permutes its first
and second indices, i.e. (∇D)T1

ijk = (∇D)jik in Gibbs’ notation. In (3.3g), Id represents the
dyadic product between the identity tensor I and vector d, i.e. Id ≡ I ⊗ d. However, for the
sake of simplicity in notation, the dyadic product sign is omitted in the rest of this work
since this does not cause any ambiguity. It is worth adding that the closure problem given
in (3.3) can be conceived as a simplified version of the one reported by Penta & Merodio
(2017) within a different physical context using the homogenisation approach (Hornung
2012).

To derive the upscaled form of the momentum balance equation, it is of interest to
consider the following Green’s formula that is valid for any arbitrary scalar field a, vector
fields a and b, and second-order tensor field B, both a and B being solenoidal and all the
variables spatially periodic. This formula is given by (see the derivation in the appendix
of Lasseux & Valdés-Parada 2022; Sánchez-Vargas, Valdés-Parada & Lasseux 2022)

〈a · (∇ · T b)− (∇ · T a) · B〉 = 1
V

∫
Aβσ

[a · (n · T b)− n · T a · B] dA. (3.4)

Here, T a = −aI + ∇a + ∇aT and T b = −Ib + ∇B + ∇BT1. The use of the adjoint
method with Green’s formula is convenient as it allows the formal derivation of the
upscaled model. Moreover, the adjoint problem is formally obtained as the volume integral
of the associated Green’s functions, as shown by Lasseux, Valdés-Parada & Bottaro
(2021). In this reference it is also shown that if more than one source term is present
in the flow problem, it is only necessary to solve one closure problem. Owing to these
features, the adjoint method with Green’s formula is used in this work. Identical results
would be obtained while employing the traditional asymptotic homogenisation or volume
averaging technique, with, however, the present approach having the advantage of being
much more compact in the development.

3.2. Macroscopic momentum balance equation
To relate the physical and adjoint problems, Green’s formula given in (3.4) can be used
taking a = p̃, a = v, b = d and B = D. Considering (2.1b) and (3.3b), this yields

−〈v〉 − 1
μ

〈D〉T · ∇〈 p〉β = 1
V

∫
Aβσ

[v · (n · T d)− n · T p̃ · D] dA. (3.5)

Since v and D are tangential at Aβσ , v = v · P and D = P · D. When these relationships
are substituted back into the area integral on the right-hand side of (3.5), taking into
account that P is a symmetric tensor, one can write this term as (1/V)

∫
Aβσ

[v · P · (n ·
T d)− P · (n · T p̃) · D] dA, which is zero due to boundary conditions (2.1c) and (3.3c).
The macroscopic momentum equation for perfect-slip flow finally follows from (3.5), and
takes the form

〈v〉 = − 1
μ

Kps · ∇〈 p〉β, (3.6)

with the perfect-slip permeability tensor given by Kps = 〈D〉. This definition takes into
account the fact that Kps is a symmetric tensor, the proof of which is provided in
Appendix A, together with proof of its positivity. It must be noted that Kps is intrinsic,
i.e. is a characteristic of the porous structure only. It is expected that this intrinsic effective
coefficient is larger than the no-slip intrinsic permeability and that it corresponds to the
limit as the slip length tends to infinity in partial slip as clearly shown below.
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4. Relationship between perfect-, partial- and no-slip flow permeability tensors

4.1. Recap of the macroscopic partial-slip and no-slip flow models
When flow is in the (partial-)slip regime, obeying a first-order slip condition at Aβσ , with
slip length �s, the pore-scale flow problem in a periodic unit cell is still defined by (2.1),
with the difference that the two interfacial boundary conditions given in (2.1c) and (2.1d)
are replaced by (see Lauga et al. 2007; Lasseux et al. 2014, 2016)

B.C. v = −�sP · (n · (∇v + ∇vT)) = −�sP · (n · T p̃) at Aβσ . (4.1)

Here, the slip flow condition is formulated assuming the slip length is a scalar. However,
extension to the case where this quantity is tensorial is straightforward.

As in § 3.1, the corresponding adjoint (closure) problem for the velocity is now defined
in terms of the closure variables ds and Ds instead of d and D that solve the problem given
by (3.3), with the difference that B.C.1 and B.C.2 are replaced by

B.C. Ds = −�sP · (n · (∇Ds + ∇DT1
s )) = −�sP · (n · T ds) at Aβσ . (4.2)

Using the same procedure as the one described in § 3.2, i.e. Green’s formula provided
in (3.4) with a = p̃, a = v, b = ds and B = Ds, together with (2.1b) and (3.3b) (with Ds
and ds respectively replacing D and d), leads to

−〈v〉 − 1
μ

〈Ds〉T · ∇〈 p〉β = 1
V

∫
Aβσ

[v · (n · T ds)− n · T p̃ · Ds] dA. (4.3)

When the boundary conditions expressed in (4.1) and (4.2) are taken into account, the
area integral term on the right-hand side of the above expression can be rewritten as
−(�s/V)

∫
Aβσ

[P · (n · T p̃) · (n · T ds)− n · T p̃ · P · (n · T ds)] dA. Since P is a symmetric
tensor, P · (n · T p̃) = n · T p̃ · P, which indicates that this area integral is zero. Hence,
(4.3) yields the macroscopic (partial-)slip flow momentum equation that is given by

〈v〉 = − 1
μ

K s · ∇〈 p〉β, (4.4)

where the apparent slip permeability tensor is defined as K s = 〈Ds〉, taking into account
that this is a symmetric (and positive) tensor (see the proof in Appendix A). The tensor K s
is apparent in the sense that it depends on �s.

Statements of both the flow (2.1) and adjoint (3.3) problems are still valid when no slip
occurs, in which circumstances one only needs to consider �s = 0. In that case, the adjoint
problem given in (3.3) is written in terms of closure variables d0 and D0 instead of d and
D, and the interfacial boundary condition is now

B.C. D0 = 0 at Aβσ . (4.5)

The macroscopic model corresponds to the classical Darcy law given by (4.4) in which
K s is replaced by the intrinsic no-slip permeability tensor K , defined as K = 〈D0〉.

4.2. The special case of rectilinear flow
In the case of slip flow in a straight tube of radius R and length L, the component of (4.4)
in the axial direction (i.e. the z-direction) is given by

〈vz〉 = −Kszz

μ

d〈 p〉β
dz

, Kszz = R2

8μL

(
1 + 4�s

R

)
. (4.6a,b)

Clearly, in this case, the apparent permeability diverges when �s → ∞, which may be
understood as perfect-slip conditions. This is consistent with the fact that the pore-scale
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From no-slip to perfect-slip flow in porous media

flow solution indicates that vz is constant, whereas dp/dz = 0, thus leading to 〈vz〉 being a
finite constant. A similar result is obtained in any configuration allowing rectilinear flow.
The physical explanation of this particular feature is the following and stems from the
fact that, in the case of a straight channel, the velocity exhibits a piston-like solution.
Even if the fluid is viscous in nature, the flow is such that there is no viscous dissipation,
neither at the solid–fluid interfaces (due to perfect slip) nor in the bulk, because fluid
layers are flowing parallel to each other. As a result, the fluid flows as a rigid body with a
constant and uniform velocity given by the imposed flow rate (not by a pressure gradient
which is evanescent). Consequently, the permeability in that case is undefined. In any other
non-parallel flow situation, although there is no shear at Aβσ , shear is induced in the bulk
since streamlines are not straight. This yields a finite permeability.

4.3. Relationship between Kps, Ks and K

In order to relate Kps and K s (and K ), it is convenient to consider the following Green’s
formula that is valid for any two arbitrary vector fields, a and b, and second-order
solenoidal tensor fields, A and B. When all the variables are spatially periodic, this formula
is expressed as (Lasseux, Zaouter & Valdés-Parada 2023)

〈AT · (∇ · T b)− (∇ · T a)
T · B〉 = 1

V

∫
Aβσ

[AT · (n · T b)− (n · T a)
T · B] dA, (4.7)

where, as before, T a = −Ia + ∇A + ∇AT1 and T b = −Ib + ∇B + ∇BT1. When the
above formula is used with a = ds, A = Ds, b = d and B = D, and once the
momentum-like equations for both (d,D) and (ds,Ds) are taken into account, one obtains

−K s + Kps = 1
V

∫
Aβσ

[DT
s · (n · T d)− (n · T ds)

T · D] dA. (4.8)

Since Ds = P · Ds at Aβσ and P is a symmetric tensor, the first term in the area integral
of the above equation can be equivalently rewritten as DT

s · (n · T d) = DT
s · P · (n · T d),

which is obviously zero due to the boundary condition given in (3.3c). Using the fact that
D = P · D at Aβσ and the boundary condition (4.2) in the remaining area integral term of
(4.8), together with the notation W s = ∇Ds + ∇DT1

s , the relationship between Kps and K s
follows from (4.8) as

Kps − K s = − 1
V

∫
Aβσ

(n · T ds)
T · D dA = − 1

V

∫
Aβσ

(P · (n · T ds))
T · D dA

= − 1
V

∫
Aβσ

(P · (n · W s))
T · D dA = − 1

V

∫
Aβσ

(n · W s)
T · D dA. (4.9)

In the limit of perfect slip, i.e. �s → ∞, Ds → D and K s → Kps, the area integral
term in (4.9) is zero due to the boundary condition given in (3.3c) and the above result
is an identity, as expected. More importantly, in the limit of no slip, �s → 0, Ds ≡ D0 and
K s → K so that the relationship between the two intrinsic permeability tensors, Kps and
K , becomes

Kps − K = − 1
V

∫
Aβσ

(n · T d0)
T · D dA = − 1

V

∫
Aβσ

[n · (∇D0 + ∇DT1
0 )]

T · D dA. (4.10)

A physical interpretation of this result can be provided by noticing that the solutions
for the pressure deviation and the velocity in the periodic unit cell are p̃ = −d · ∇〈 p〉β
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βσ β phase

σ phase

�c

�σ

Rc

(b)(a)

Figure 2. Sketch of a (a) periodic and (b) non-periodic (Chang’s) unit cell corresponding to a representation
of the porous medium geometry as a square pattern of parallel cylinders of circular cross-section.

and v = −(1/μ)D · ∇〈 p〉β in the perfect-slip case (respectively, p̃0 = −d0 · ∇〈 p〉β and
v0 = −(1/μ)D0 · ∇〈 p〉β in the no-slip case); see chapter 4 in Whitaker 1999. Pre- and
post-multiplying the first of (4.10) by −∇〈 p〉β/μ leads to

(〈v〉 − 〈v0〉) · ∇〈 p〉β = av〈(n · μT p0) · v〉βσ , (4.11)

with μT p0 = −p0I + μ(∇v0 + ∇vT
0 ). Here, av = Aβσ /V is the interfacial area per unit

volume of the medium and 〈ψ〉βσ = (1/Aβσ )
∫
Aβσ

ψ dA denotes the interfacial average of
ψ . The above equation indicates that the excess macroscopic velocity in the direction of the
macroscopic pressure gradient induced by perfect slip (with respect to no slip) is exactly
the interfacial average of the projection of the (perfect-)slip velocity (at Aβσ ) onto the
no-slip stress exerted by the solid skeleton on the fluid. The same conclusion generalises
if partial slip is meant instead of perfect slip, the latter representing the limiting case
�s → ∞. A similar interpretation also holds between perfect slip and partial slip. Finally,
it should be noted that all the above relationships remain valid in the case of rectilinear
flow.

5. Illustrative results on two-dimensional porous structures

To illustrate the developments reported above, the apparent permeabilities for no slip,
partial slip and perfect slip are predicted by solving the adjoint problems firstly on a
periodic unit cell for a simple two-dimensional structure, consisting of a square pattern
of parallel cylinders of circular cross-section like the one depicted in figure 2(a). In
addition, direct numerical simulations (DNS) are performed in the perfect-slip regime
over a finite-size domain composed of three juxtaposed unit cells of this pattern in the
x-direction, considering periodicity in the y-direction and specifying the normal stress
along ex in such a way that each unit cell is subject to a unitary macroscopic pressure
gradient. Secondly, two other classical structures of parallel cylinders are considered,
namely, the staggered and hexagonal lattices (see figure 4).

5.1. Square pattern of parallel cylinders
For convenience, the flow and closure problems are made dimensionless using �c
(i.e. the unit cell side length), �c‖∇〈 p〉β‖ and �2

c‖∇〈 p〉β‖/μ for the reference length,
pressure and velocity, respectively. Because of the symmetry of the structure, all the
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1.4
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1.8
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2.4

K
∗ sx

x/
K

∗ xx

K∗
sxx/K∗

xx (BEM)

K∗
psxx/K∗

xx

(5.4)

�∗s

K
∗ ps

xx
, 

K
∗ xx

(b)(a) (c)

Figure 3. (a) System under consideration for DNS with periodicity in the y-direction and a pressure gradient
applied along ex. The colour bar corresponds to the dimensionless pore-scale velocity magnitude in perfect-slip
flow condition. (b) Dimensionless perfect-slip, K∗

psxx, and no-slip, K∗
xx, permeabilities versus porosity. Here,

K∗
psxx is computed either from 〈D∗

xx〉, from (4.10) or from (5.1). Numerical results are obtained from DNS,
Comsol Multiphysics 6.1 or a BEM. (c) Partial-slip permeability normalised by the no-slip permeability versus
�∗s . The dashed line represents the normalised perfect-slip permeability. The dotted line represents the empirical
correlation (5.4). Here ε = 0.8 and K∗

xx = 0.01941.

permeability tensors under concern are spherical and interest is focused only on their
dimensionless xx-component, namely K∗

psxx = Kpsxx/�
2
c , K∗

sxx = Ksxx/�
2
c and K∗

xx = Kxx/�
2
c

for the perfect-slip, partial-slip and no-slip permeabilities, respectively. Solutions of
the flow and closure problems are computed using the finite element software Comsol
Multiphysics 6.1 or a boundary element method (BEM) with constant elements (Pozrikidis
1992), performing a prior mesh convergence check for both methods.

For large enough values of ε, K∗
psxx can be approximated analytically by replacing the

unit cell of figure 3(a) by Chang’s unit cell such as the one sketched in figure 2(b) (see
also figure 1.12 in Whitaker 1999), consisting of a fluid domain whose outer boundary is an
artificial circle of radius Rc centred on the solid cylinder such that the porosity considered
for the periodic unit cell of interest is conserved. At r = Rc, the flow is assumed not to
be significantly perturbed by the solid obstacle (requiring ε to be large enough), together
with a zero vorticity (Kuwabara 1959). In this way, formulating the flow with the stream
function in cylindrical coordinates and solving the resulting bi-harmonic equation leads to

K∗
psxx = 1

16π
[−2 ln(1 − ε)− 1 + (1 − ε)2]. (5.1)

The above expression is expected to reproduce well the numerical solution corresponding
to transverse flow across inline arrays of cylinders for sufficiently large porosity values.
Using the same approach, the corresponding analytical expression for the permeability
under no-slip conditions is (see, for example, (8-4.23) in Happel & Brenner 1981)

K∗
xx = 1

16π
[−2 ln(1 − ε)− 3 + 4(1 − ε)− (1 − ε)2]. (5.2)

These two limit values of the permeability can be summarised in the equation (Chai et al.
2011)

K∗
sxx =

K∗
psxx + 1

2
�σ /2
�s

K∗
xx

1 + 1
2
�σ /2
�s

, (5.3)
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with �σ being the cylinder diameter (see figure 2a). This last result was empirically
generalised by Geoffre et al. (2021) for transverse flow through a random arrangement
of parallel cylinders of circular cross-section with random diameters to

K∗
sxx = K∗

xx + K∗
psxx − K∗

xx

1 + 1
2

r̄
�s

, (5.4)

with r̄ being the cylinders’ mean radius. The difference between this equation and (5.3)
is that in the latter, K∗

psxx and K∗
xx respectively come from (5.1) and (5.2), whereas in the

former, these values are the intrinsic transverse permeabilities for perfect- and no-slip
conditions in the geometry under consideration and its use is not restricted to large porosity
values.

Results on the perfect-slip, K∗
psxx, and no-slip, K∗

xx, permeabilities for porosity values,
ε, ranging from 0.3 to 0.95, are reported in figure 3(b). In the perfect-slip case, results
from DNS (see a representation of the velocity magnitude field in figure 3a) are obtained
after averaging the x-component of the dimensionless velocity over the central unit cell.
As expected, the structure of the medium under consideration is such that the edges x∗ = 1
and x∗ = 2 are isobars so that DNS could be restricted to a single unit cell on which the
problem exactly stated as in (2.1) is solved.

As shown in figure 3(b), results on K∗
psxx obtained from DNS and closure problems

(3.3) are in excellent agreement, with the maximum relative error, considering DNS as the
reference, being less than 0.12 %. Moreover, results obtained from Comsol Multiphysics
and BEM are also in perfect agreement, with a relative error (taking BEM as the reference)
smaller than 0.09 % for perfect slip and 0.07 % for no slip. The results are also perfectly
consistent with the prediction from (5.1), which remains less than 1.3 % in error compared
with the BEM results, taking the latter as the reference, for ε > 0.7. Finally, K∗

psxx,
computed either as 〈D∗

xx〉 = 〈Dxx/�
2
c〉 or from the dimensionless version of (4.10), perfectly

match, with the relative error, considering the former as the reference, remaining less
than 0.05 % over the whole range of ε. All these results validate the macroscopic model
for perfect slip and the relationship (4.10) between the perfect-slip and no-slip intrinsic
permeabilities.

To complete the results, the partial-slip permeability, K∗
sxx = 〈D∗

sxx〉, computed from the
solution of the closure problem for partial slip for ε = 0.8 and normalised by K∗

xx = 〈D∗
0xx〉,

are represented in figure 3(c) versus �∗s ranging from 10−4 to 104. The normalised value
of K∗

psxx for this porosity is also reported in this figure, showing that the asymptotic value
of K∗

sxx in the limit �∗s → ∞ is in excellent agreement with this intrinsic value. Indeed, the
relative error between K∗

sxx for �∗s = 104 and K∗
psxx is 0.04 %.

Finally, the values obtained from the relationship given in (5.4) are reported in
figure 3(c) and show agreement with the model reported in the present work.

5.2. Staggered and hexagonal arrays of cylinders
To conclude the numerical analysis, the closure problem solution is extended to periodic
unit cells for staggered and hexagonal arrays of cylinders with circular cross-section like
those depicted in figure 4, keeping the same dimensionless forms as those employed in
§ 5.1. The corresponding predictions of the transition of the apparent permeability from
no slip to perfect slip are reported in figure 5, both normalised by �2

c (a–d) and by the
dimensionless intrinsic permeability under no-slip conditions (i–iv), for several porosity
values. In this figure, the results from solving the closure problem in an inline array of
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�c

�σ

�σ/2

�c

�c

(b)(a)

�σ/2

Figure 4. Sketch of configurations and unit cells consisting of (a) staggered and (b) hexagonal arrays of
cylinders of circular cross-section and uniform radius.

cylinders and those resulting from the analytical solution in (5.3) (for ε > 0.6) are also
included for comparison purposes. Regarding these results, the following comments are in
order:

(a) When normalised by �2
c , the apparent permeability for a staggered array of obstacles

is always smaller than the one corresponding to hexagonal or inline arrays of
cylinders. This is to be expected since, in the staggered configuration, the streamlines
are more deformed than in the two other arrays. Nevertheless, when the apparent
permeability is normalised by K∗

xx, the predictions for the staggered array are quite
close to those obtained with an inline array of cylinders for all the porosity values
considered here.

(b) The value of K∗
sxx for the hexagonal array is larger than K∗

sxx for the inline array
only for ε ≤ 0.5. Note that, when the apparent permeability is normalised by K∗

xx,
the predicted permeability for the hexagonal array is always smaller than those of
both inline and staggered lattices. Moreover, for sufficiently large porosity values
(i.e. ε ≥ 0.9), all the predictions tend to collapse onto a single curve.

(c) As expected, K∗
psxx increases with ε for all the structures. Nevertheless, K∗

xx increases
more rapidly, and from the ratio between (5.1) and (5.2), it can be concluded that
K∗

psxx/K
∗
xx → 1 when ε → 1.

(d) All the results reported in figure 5 were verified to be well reproduced by the
empirical equation (5.4). This can be confirmed upon substitution into this equation
of the values of K∗

xx and K∗
psxx reported in table 1 for the three geometrical

configurations considered here. Furthermore, the analytical solution given in (5.3)
reasonably reproduces the results for K∗

sxx for an inline array of cylinders for ε = 0.7
and 0.9.

Certainly, the unit cell concept allows consideration of more elaborate geometries in
both two and three dimensions. Performing an exhaustive analysis of these geometries,
although interesting, surpasses the scope of the present work and shall be considered in
future studies.

6. Conclusions

The closed macroscopic model for steady, Newtonian, incompressible, creeping flow in
the perfect-slip regime in homogeneous porous media is formally derived in this work,
making use of the adjoint method and Green’s formula applied to the pore-scale flow
problem. It is shown that the averaged momentum equation corresponds to Darcy’s
law with a permeability tensor, Kps, determined from the solution of a new adjoint
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Figure 5. Comparison of the predictions of the xx component of the partial-slip permeability tensor with
the dimensionless slip length �∗s resulting from solving the adjoint closure problem in inline, staggered and
hexagonal arrays of solid obstacles. In (a–d) the results are presented normalised by �2

c , i.e. K∗
sxx, whereas in

(i)–(iv) they are normalised by the dimensionless intrinsic permeability under no-slip conditions, K∗
xx. Porosity

values are 0.3 ((a), (i)), 0.5 ((b), (ii)), 0.7 ((c), (iii)) and 0.9 ((d), (iv)). In (c), (d), (iii) and (iv), results from the
analytical solution given in (5.3) are included.
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From no-slip to perfect-slip flow in porous media

Porosity (ε) Inline Staggered Hexagonal

K∗
xx K∗

psxx K∗
xx K∗

psxx K∗
xx K∗

psxx

0.3 7.47 × 10−5 1.50 × 10−3 3.75 × 10−5 7.51 × 10−4 3.14 × 10−4 3.12 × 10−3

0.5 1.88 × 10−3 1.07 × 10−2 9.42 × 10−4 5.38 × 10−3 2.27 × 10−3 1.08 × 10−2

0.7 9.73 × 10−3 2.94 × 10−2 4.87 × 10−3 1.47 × 10−2 8.96 × 10−3 2.59 × 10−2

0.9 4.03 × 10−2 7.27 × 10−2 2.02 × 10−2 3.64 × 10−2 3.45 × 10−2 6.24 × 10−2

Table 1. Predictions of the xx components of the no-slip and perfect-slip permeability tensors normalised by
�2

c resulting from solving the corresponding closure problems in periodic unit cells for inline, staggered and
hexagonal arrays of cylinders with circular cross-section for several porosity values.

(closure) problem on a (periodic) unit cell, representative of the porous material under
consideration. This permeability tensor is characteristic of the medium as it is intrinsic
to the pore-scale structure. Moreover, Kps is shown to be symmetric and (semi-definite)
positive. Relationships between Kps and the permeability tensor in the partial-slip flow
regime, as well as the classical no-slip intrinsic permeability tensor, K , are developed.
Validity of the macroscopic model is assessed from comparison with DNS, and is
further supported by an approximated analytical prediction of the permeability considering
an inline array of cylinders, for which the relationships between Kps and K are also
verified. Moreover, the role of the porous medium structure is investigated by comparing
the transition permeability curves from no slip to perfect slip in three geometrical
configurations, noticing relevant differences for small enough porosity values (i.e. for ε ≤
0.5). Nevertheless, when the slip permeability is normalised by the no-slip permeability, it
is found that the geometry becomes unimportant in the limit of sufficiently large porosities
(i.e. ε ≥ 0.9). Moreover, the perfect-slip permeability reaches the same value as the no-slip
permeability in the limit of exceedingly large porosities.

Finally, the results reported here confirm that the no-slip and perfect-slip permeabilities
respectively represent the lower and upper bounds for Newtonian incompressible creeping
flow. They are intrinsic to the porous material and respectively correspond to the maximum
and minimum resistances to flow for a given system. This work opens the way for further
comparison with experimental data that could be obtained from aqueous one-phase flow
in porous materials exhibiting superhydrophobic properties, for instance.
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Appendix A

In this appendix, the symmetry and positivity of Kps = 〈D〉, with D being the solution of
the closure problem given in (3.3), are explored and extended to K s (and K ).
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A.1. Tensor Kps

To carry out the analysis, it is convenient to use the procedure detailed in Lasseux &
Valdés-Parada (2017), consisting in pre-multiplying (3.3b) by DT and performing the
superficial average of the result. Letting W = ∇D + ∇DT1, this yields

KT
ps = 〈DT · ∇d〉 − 〈DT · (∇ · W )〉. (A1)

As shown in Lasseux et al. (2016) (see (A4) to (A8) therein), 〈DT · ∇d〉 = 0. Moreover,
following the same steps as those in Lasseux et al. (2021) (see (C3), (C4) and (C6c) with
their justifications), it can be shown that

〈DT · (∇ · W )〉 = 1
V

∫
Aβσ

DT · (n · W ) dA − 〈∇DT3 : W 〉T. (A2)

Here, the superscript T3 denotes the transpose of a third-order tensor that permutes its first
and third indices, i.e. (∇D)T3

ijk = (∇D)kji in Gibbs’ notation. Moreover, : is the double dot
product in the nested convention sense, which for two arbitrary third-order tensors A and
B is such that (A : B)ij = AiklBlkj, where Gibbs’ and Einstein’s notation is implied.

The fact that D is tangential (D = P · D) at Aβσ can now be employed in the interfacial
integral term on the right-hand side of (A2), so that it becomes (1/V)

∫
Aβσ

DT · P · (n ·
W ) dA, which is equal to zero according to (3.3c). Consequently, (A1) reduces to

Kps = 〈∇DT3 : W 〉. (A3)

As demonstrated in Lasseux & Valdés-Parada (2017) (see appendix B, paragraph (4)
therein), 〈∇DT3 : W 〉 is a symmetric tensor and, therefore, so is Kps.

To analyse positiveness of Kps, let λ be a constant non-zero vector. Making use of Gibbs’
and Einstein’s notation, one can write, from (A3),

λ · Kps · λ = 〈λi(∇D)T3
ikl W lkjλj〉 = 〈λi((∇D)lki(∇D)lkj + (∇D)lki(∇D)klj)λj〉. (A4a)

Since k and l are dummy indices, the above relationship can be equivalently written as

λ · Kps · λ = 1
2 〈λi((∇D)lki(∇D)lkj + (∇D)kli(∇D)klj)λj

+ λi((∇D)lki(∇D)klj + (∇D)kli(∇D)lkj)λj〉.
= 1

2 〈(W · λ)lk(W · λ)lk〉 = 1
2 〈tr((W · λ) · (W · λ)T)〉, (A4b)

where tr(A) denotes the trace of tensor A. The right-hand side of the above equation
is obviously positive, which proves that Kps is a positive (semi-definite) tensor. This
conclusion is consistent with the one reported by Arbogast, Douglas & Hornung (1990)
and Arbogast & Lehr (2006) using the homogenisation method.

A.2. Tensors Ks and K

As a final remark, note that the symmetry and positivity analysis can be carried out for K s,
replacing d and D in the above development by ds and Ds that solve the adjoint (closure)
problem for partial slip. Following the same procedure, and denoting W s = ∇Ds + ∇DT1

s ,
leads to, from the equivalent of (A2) in which (4.2) is employed, K s = 〈∇DT3

s : W s〉 +
(1/�s)(1/V)

∫
Aβσ

DT
s · Ds dA, or K s = 〈∇DT3

s : W s〉 + (�s/V)
∫
Aβσ

(P · (n · W s))
T · (P ·

(n · W s)) dA. Both expressions prove that K s is a symmetric tensor, in accordance with
the conclusion reached by Lasseux et al. (2021) (see appendix C with �s ≡ ξ λ̄), and that
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it is positive (semi-definite). In the limit �s → ∞, the former allows establishment of the
symmetry and positivity properties of Kps demonstrated above. The same conclusions
are obtained from the latter for K when �s = 0, in agreement with the literature (see for
instance § 7.2.2.4 in Auriault, Boutin & Geindreau 2009). These conclusions for K are
also reached employing d0 and D0, which solve (3.3) (with d and D respectively replaced
by d0 and D0) subject to (4.5) instead of B.C.1 in (2.1c) and B.C.2 in (2.1d), in the same
development as the one detailed above.
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