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Abstract

We answer the following question: if the occupied (or vacant) set of a planar Poisson
Boolean percolation model contains a crossing of an n × n square, how wide is this
crossing? The answer depends on whether we consider the critical, sub-, or super-critical
regime, and is different for the occupied and vacant sets.
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1. Introduction

Percolation is the branch of probability theory that investigates the geometry and connec-
tivity properties of random media. Since its introduction in the 1950s to model the diffusion of
liquid in porous media [5], percolation theory has attracted great research interest and led to
significant discoveries, especially in two dimensions; see, for instance, Kesten’s determination
of the critical threshold [18] and of the scaling relations [19], Schramm’s introduction of the
Schramm–Loewner evolution [22, 27], and Smirnov’s proof of Cardy’s formula [28]. For an
introduction to and overview of percolation theory, we recommend [4, 16, 17], among many
other texts.

Bernoulli percolation on a symmetric grid lies at the foundation of all percolation mod-
els, and embodies the archetypal setting to investigate phase transitions and other phenomena
emanating from statistical physics. In the site-percolation version of this model, each node
of the grid is independently chosen to be black with probability p and white with probability
1 − p, and a random graph is obtained by removing the white vertices. It is well known that,
as the parameter p increases, the model undergoes a sharp phase transition at some critical
parameter. At the point of phase transition, percolation is expected to exhibit a universal and
conformally invariant scaling limit; unfortunately this was only proved in the particular case
of site percolation on the triangular lattice [28].

Boolean (or continuum) percolation (Figure 1) first appeared in [15] as an early mathemat-
ical model for wireless networks. In recent years, it has been studied in order to determine the
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2 I. MANOLESCU AND L. V. SANTORO

FIGURE 1. Continuum percolation on R2.

theoretical bounds of information capacity and performance in such networks [10]. See also
[14] for a wider perspective on random networks. In addition to this setting, continuum per-
colation has gained applications in other disciplines, including biology, geology, and physics,
such as the study of porous materials and semiconductors. From a mathematical point of view,
continuum percolation is particularly interesting as it is expected to exhibit the same features
as discrete percolation, but enjoys additional symmetries, such as invariance under rotations.
We direct the reader to [23] and the references therein for more background.

1.1. Framework

Let η be a Poisson point process on R2 with intensity λ · LebR2 , where λ > 0 is a parameter
of the model. Around each point in the support of η, draw a disk of random radius, sampled
independently for each point according to a fixed probability measure μ on R+; in this paper
we only consider the case where the radius is almost surely equal to 1, but describe the general
model for future reference. The set O =Oη ⊂R2 of points which are covered by at least one of
the above disks is called the occupied set, while its complement V = Vη := R2 \O is referred
to as the vacant set. Write Pλ for the measure governing η and the random sets O and V .

While sharing many features with site or bond Bernoulli percolation, the continuum model
poses significant additional challenges. Apart from being continuous rather than discrete, these
come from its asymmetrical nature (the ‘open’ and ‘closed’ sets have different properties) and
potential long-range dependencies. Nevertheless, similarly to the classical Bernoulli case, the
Boolean model undergoes a sharp phase transition as λ increases. Indeed, set λc := sup{λ ≥
0: Pλ(0

O�∞) = 0}, where 0
O�∞ is the event that the origin lies in an unbounded connected

component of O. Under the minimal condition
∫∞

0 x2 dμ(x) < ∞, which is in fact necessary
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Widths of crossings in Poisson Boolean percolation 3

for the model to present non-trivial behavior, it was recently shown by [1, 2] that 0 < λc < ∞
and:

• For λ < λc (the sub-critical phase) the vacant set has a unique unbounded connected
component, and the probability of observing an occupied path from 0 to distance n
decays exponentially fast in n.

• For λ = λc (the critical phase), no unbounded connected component exists in either the
occupied or the vacant set. Moreover, the probability of observing either a vacant or an
occupied path from 0 to distance n decays polynomially fast in n.

• For λ > λc (the super-critical phase) the occupied set has a unique unbounded com-
ponent and the probability of observing a vacant path from 0 to distance n decays
exponentially fast in n.

1.2. Results

For simplicity, we limit our study to the particular setting where the radii are all equal to 1
(i.e. when μ is the Dirac measure at 1).

Assumption 1. We assume that the radii are fixed and equal to 1, i.e. μ = δ1.

The proof extends readily to the case where μ is supported on a compact subset of (0, +∞),
and with additional work may include situations where μ has sufficiently fast decay towards 0
and ∞. We do not investigate the optimal conditions for which the results remain valid.

A horizontal crossing of the square [−n, n]2 is a path contained in [−n, n]2, connecting its
left and right boundaries, namely {−n} × [−n, n] and {n} × [−n, n], respectively. A crossing is
said to be occupied (resp. vacant) if it is entirely contained in O (resp. V). In the following, we
write cross (n) and cross∗(n) for the events that there exists an occupied and a vacant horizontal
crossing of [−n, n]2, respectively.

The width w(γ ) of an occupied crossing γ is twice the radius of the largest ball that can
be transported along γ without intersecting the vacant set. Alternatively, it may be viewed as
twice the distance between γ and V:

2 · sup{r ≥ 0: B(γ (t), r) ⊂O for all t ∈ [0, 1]} = 2 · dist(γ, V),

where γ is parameterized by [0, 1], and B(x, r) denotes the open Euclidean ball of radius r
centered at x ∈R2. A similar definition may be given for a vacant crossing, with the roles of O
and V reversed. See Figure 2 for a graphical interpretation.

Define the maximal occupied and vacant widths as

wn := 2 · sup
γ

dist(γ, V), w∗
n := 2 · sup

γ
dist(γ,O), (1)

where both supremums are taken over all horizontal crossings of [−n, n]2. Observe that no
occupied or vacant crossing exists if and only if wn = 0 and w∗

n = 0 almost surely, respectively.
Before stating our results, we define the four-arm probabilities. For r ≤ R, define the four-

arm event A4(r, R) as the existence of four disjoint paths γ1, . . . , γ4 in B(0, R) \ B(0, r), each
starting on ∂B(0, r) and ending on ∂B(0, R), distributed in counterclockwise order and with
γ1, γ3 ∈O and γ2, γ4 ∈ V . Let

π4(r, R) = Pλc [A4(r, R)], π4(R) = π4(1, R). (2)
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4 I. MANOLESCU AND L. V. SANTORO

(a) (b)

FIGURE 2. The width of (a) an occupied and (b) a vacant crossing of an n × n square.

Our main result concerns the maximal widths of occupied and vacant crossings, when these
are conditioned to exist. We formulate two theorems, respectively concerning the vacant and
occupied cases.

Theorem 1. (Widths of vacant crossings.) For any δ > 0 and λ > 0, there exist constants 0 <

c < C such that, for large enough n,

Pλ

[∣∣∣∣w∗
n − 2

(
λc

λ
− 1

)∣∣∣∣≤ C

λn2π4(n)

∣∣ cross∗(n)

]
≥ 1 − δ if λ < λc, (3)

Pλc

[
c

n2π4(n)
≤ w∗

n ≤ C

n2π4(n)

∣∣ cross∗(n)

]
≥ 1 − δ if λ = λc, (4)

Pλ

[
c

n
≤ w∗

n ≤ C

n

∣∣ cross∗(n)

]
≥ 1 − δ if λ > λc. (5)

Theorem 2. (Widths of occupied crossings.) For any δ > 0 and λ > 0, there exist constants
0 < c < C such that, for large enough n,

Pλ

[
c√
n

≤ wn ≤ C√
n

∣∣ cross(n)

]
≥ 1 − δ if λ < λc, (6)

Pλc

[
c

n
√

π4(n)
≤ wn ≤ C

n
√

π4(n)

∣∣ cross(n)

]
≥ 1 − δ if λ = λc, (7)

Pλ

[
wn ≥ 2

√
1 −

(
λc

λ
+ C

λn2π4(n)

)2 ∣∣ cross(n)

]
≥ 1 − δ if λ > λc. (8)

Remark 1. The events in the conditioning in Theorems 1 and 2 may be replaced by w∗
n > 0

and wn > 0, respectively.

Note that the lower bound in (8) is not sharp for λ large, due to the possible existence of
crossings of width larger than 2; see also Remark 2. We do expect wn to be of the order of the
lower bound in (8) for λ − λc > 0 sufficiently small.
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In (3), (4), (7), and (8), the conditioning has limited effect, as the events have uniformly
positive probability (even probability tending to 1 in the first and last cases). However, in (5)
and (6), the event in the conditioning is of exponentially small probability, and the resulting
measure is highly degenerate. In these cases, the vacant (and respectively occupied) clusters
crossing the box have a specific structure, described in detail in [6–9]; these works refer to
Bernoulli percolation on the square lattice, but the statements and proofs adapt readily. We
will use these results in clearly stated forms, but without re-proving them.

1.3. Organisation of the paper

Section 2 contains certain background on the continuum percolation model. In particular,
we state a result concerning the near-critical regime, whose proof we only sketch as it is very
similar to existing arguments. Section 3 contains an observation on two distinct increasing
couplings of Pλ for λ > 0 that is the key to our arguments. In Section 4 we prove most of our
two main results, Theorems 1 and 2, using the observations of Section 3. Unfortunately, the
upper bounds on wn of Theorem 2 are not accessible with this technique, and in Section 5
we prove these bounds using an alternative approach. Finally, in Section 6, we provide some
related open questions.

2. Background and preliminaries

2.1. Positive association

There is a natural partial ordering ‘	’ on the space of possible realizations of η. We write
ω 	 ω′ if and only if Oω ⊂O

ω
′ . An event A is said to be increasing if Oω ∈ A implies that

O
ω

′ ∈ A for all ω 	 ω′. A useful property of increasing events is that they are positively cor-
related. Indeed, if A1 and A2 are both increasing events, Pλ[A1 ∩ A2] ≥ Pλ[A1] · Pλ[A2]. This
result is known as FGK (Fortuin–Kasteleyn–Ginibre) inequality and was proved in [25]. For a
nice proof using discretization and martingale theory see [23].

2.2. Russo’s formula

Russo’s differential formula controls how the probability of a monotone event varies under
perturbations of the intensity parameter λ, assessing the variation in terms of pivotal events.
See [21] for a proof.

Proposition 1. (Russo’s formula.) Let A be an increasing event depending only on a bounded
subset of R2. Then, for every λ > 0,

d

dλ
Pλ[A] =

∫
x∈R2

Pλ[Pivx(A)] dx, (9)

where Pivx(A) := {O /∈ A} ∩ {O ∪ B(x, 1) ∈ A} is the event that x is pivotal for A.

2.3. Crossing probabilities and RSW theory

Let cross(r, h) denote the event that there exists an occupied path inside the rectangle
[−r, r] × [−h, h] between its left and right sides. We write cross∗(r, h) for the corresponding
event for the vacant set. Loosely speaking, the Russo–Seymour–Welsh (RSW) theory states
that a lower bound on the crossing probability for a rectangle of aspect ratio ρ implies a lower
bound for a rectangle of larger aspect ratio ρ′.
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6 I. MANOLESCU AND L. V. SANTORO

Proposition 2. (RSW.) For every ρ, ρ′ > 0 and ε > 0 there exists ε′ = ε′(ρ, ρ′) > 0 such that

Pλ[cross(ρn, n)] > ε =⇒ Pλ[cross(ρ′n, n)] > ε′ (10)

for all n ≥ 1. The same holds for cross∗.

RSW bounds for continuum percolation were obtained separately for the occupied and
vacant sets in [3, 26] respectively, assuming in both cases heavy restrictions on the radii distri-
bution, and later in [1] under minimal assumptions. A fundamental consequence of the RSW
theorem (see again [1]) concerns the abrupt change in crossing probabilities:

• For λ < λc and all ρ > 0, there exists c > 0 such that Pλ[cross(ρn, n)] ≤ e−cn for all
n ≥ 1.

• At criticality, the box-crossing property holds. That is, for every ρ > 0 there exists c =
c(ρ) > 0 such that

c ≤ Pλc [cross(ρn, n)] ≤ 1 − c for all n ≥ 1. (11)

• For λ > λc and all ρ > 0, there exists c > 0 such that Pλ[cross(ρn, n)] ≥ 1 − e−cn for all
n ≥ 1.

The above results may be translated for the vacant set using the duality observation that

Pλ[cross(ρn, n)] + Pλ[cross∗(n, ρn)] = 1.

Indeed, a rectangle is amost surely either crossed horizontally by an occupied path or vertically
by a vacant one.

Let us also give a corollary relating the crossing of slightly longer rectangles to that of
squares.

Lemma 1. There exists C > 0 such that, for any R ≥ r ≥ 1,

Pλc [cross(R)] − Pλc [cross(R + r, R)] ≤ C
r

R
. (12)

This can be shown using the so-called three-arm event in the half-plane. We give a different,
more basic, proof.

Proof. For simplicity, assume that R is a multiple of r; the general case may be deduced by
the monotonicity in r of the left-hand side of (12). Due to the inclusion of events, the difference
in (12) may be written as

Pλc [cross(R)] − Pλc [cross(R + r, R)] = Pλc [C̃(R) \ C(R + r)], (13)

where C(k) is the event that there exists a horizontal occupied crossing of [0, 2k] × [−R, R],
and C̃(k) is the translation of this event by 2r to the right (see Figure 3).

When C̃(R) \ C(R + r) occurs, there exists a vertical vacant crossing of [0, 2r + 2R]×
[−R, R] and a horizontal occupied crossing of [2r, 2r + 2R] × [−R, R]; the vertical crossing
avoids the horizontal one by using the strip [0, 2r] × [−R, R]. Now, conditionally on this event,
due to the RSW property (Proposition 2), the horizontal crossing may be extended with pos-
itive probability into a horizontal occupied crossing of [2r, 2r + 4R] × [−R, R]. This step is
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(a) (b)

FIGURE 3. (a) A configuration in C̃(R) \ C(R + r) contains a horizontal occupied crossing of the blue
square [2r, 2r + 2R] × [−R, R], but no crossing of the slightly longer rectangle [0, 2r + 2R] × [−R, R].
Occupied crossings are depicted by bold lines, vacant ones by dashed lines. (b) The horizontal crossing
of [2r, 2r + 2R] × [−R, R] may be lengthened into one of [2r, 2r + 4R] × [−R, R] at constant cost, due

to the RSW theorem. This configuration belongs to C̃(R + kr) \ C(R + (k + 1)r) for any 0 ≤ k < R/r.

not completely immediate, as it requires proving a separation property by which the horizontal
occupied crossing may be taken to end on {2R + 2r} × [−R, R], far from the vertical vacant
crossing. That is, that the probability of a horizontal occupied crossing is comparable to that
of the same event, with prescribed landing areas. This is shown by a gluing argument based on
RSW constructions. This type of property is classical and we will not detail its proof.

Observe that, when [0, 2r + 2R] × [−R, R] contains a vertical vacant crossing but [2r, 2r +
4R] × [−R, R] contains an occupied horizontal crossing, all events of the type C̃(R + kr) \
C(R + (k + 1)r) with 0 ≤ k < R/r are realized. We conclude that there exists a universal
constant c > 0 such that, for every 0 ≤ k < R/r,

Pλc [C(R + kr)] − Pλc [C(R + (k + 1)r)] = Pλc

[C̃(R + kr) \ C(R + (k + 1)r)]

≥ c Pλc [C̃(R) \ C(R + r)].

Now sum the above over k to deduce that

1 ≥ Pλc [C(R)] − Pλc [C(2R)] ≥ c(R/r)Pλc [C̃(R) \ C(R + r)].

Apply (13) to obtain the desired inequality. �

2.4. Near-critical percolation

A fundamental question around the phase transition of percolation is the speed at which the
model transitions from sub-critical to super-critical behavior as λ increases. In infinite volume
the transition occurs instantaneously, but if we limit ourselves to a finite window, say the square
of side length L, then the model exhibits critical behavior for an interval of intensities λ around
λc called the critical window.

Alternatively, we can state that, for any given λ �= λc, the model behaves critically at scales
up to some L(λ), and sub- or super-critically above this scale. The scale L(λ) is called the
characteristic length, and may be shown to be equivalent to the better-known correlation
length.

This phenomenon was first proved in [19] for Bernoulli percolation on planar lattices, along
with an asymptotic expression for L(λ) in terms of the number of pivotals in a box of size n.
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8 I. MANOLESCU AND L. V. SANTORO

Kesten’s study of the near-critical regime produced the so-called scaling relations, which link
the algebraic decays of different natural observables of the critical and near-critical models. See
also [24] for a more modern exposition of Kesten’s result, and [12] for an alternative proof.

The principle of universality suggests that Kesten’s results extend to a large variety of
percolation models in the plane. They were indeed proven for Voronoi percolation in [29],
and appropriate alterations of Kesten’s relations were extended to FK (Fortuin–Kasteleyn)
percolation in [11].

We claim that the result in [19] also applies to our model of continuum percolation. Below,
we state a consequence of the more general theory of near-critical percolation designed to assist
us in the proof of our main results. For n ≥ 1, write αn := 1/π4(n)n2, where π4(n) was defined
in (2). As illustrated by the next theorem, αn is the size of the critical window at scale n; that
is, it is the amount by which the critical parameter should be perturbed to observe off-critical
features in a box of size n. We remark that, due to the general bound (20) on the probability of
the four-arm event, αn → 0 as n → ∞.

Theorem 3. (Crossings in near-critical percolation.) For any δ > 0 there exist positive con-
stants c(δ), C(δ) > 0, such that, for all n ≥ 1,

Pλc−C(δ)αn [cross(n, 2n)] ≤ δ, Pλc+C(δ)αn [cross(2n, n)] ≥ 1 − δ, (14)

and ∣∣Pλ[cross(n)] − Pλc [cross(n)]
∣∣≤ δ when |λ − λc| < c(δ)αn. (15)

The technique developed in [19] is easily adapted to continuum percolation when the radii
of the disks are fixed (as is the case here), or have compact support in (0, +∞). Beyond these
situations, conditions on the tails of the distribution of radii towards 0 and ∞ are necessary,
and the adaptation would require significant additional work.

In the rest of this section, we give an overview of the classical argument in [19] and discuss
how it needs to be adapted to continuum percolation in order for it to produce Theorem 3. We
start by sketching Kesten’s argument in our context.

For δ > 0 define the characteristic length at λ > 0 as

Lδ(λ) :=
⎧⎨
⎩

inf{n ≥ 1: Pλ(cross(n)) ≥ 1 − δ} if λ > λc,

inf{n ≥ 1: Pλ(cross∗(n)) ≥ 1 − δ} if λ < λc.

Fix δ for the rest of the section and omit it from the notation. We use the notation � to relate
two quantities whose ratios are uniformly bounded, with constants that may depend on δ.

A first step in the proof of Theorem 3 is to observe that the RSW theory implies uni-
form bounds on crossing probabilities ‘under the characteristic length’. Indeed, Proposition 2
implies that for any ρ > 0 there exists c = c(ρ) > 0 such that

c < Pλ(cross(ρn, n)) < 1 − c for all λ and 1 ≤ n ≤ L(λ). (16)

This fact will be used implicitly in the following arguments.
Observe now that Russo’s formula (9) applied to the event cross(n) reads

d

dλ
Pλ[cross(n)] =

∫
[−n,n]2

Pλ[Pivx(cross(n))] dx. (17)

For points x in the bulk of [−n, n]2, i.e. at a distance of order n from the boundary, the proba-
bility of being pivotal may be approximated by that of the four-arm event. A slightly involved
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analysis shows that the bulk provides the major contribution to (17) when 1 ≤ n ≤ L(λ); indeed,
for points close to the boundary of [−n, n]2 to be pivotal, they need to exhibit certain arm events
in the half-plane, which render their contribution to (17) negligible. Thus we find that

d

dλ
Pλ[cross(n)] � n2 Pλ[A4(1, n)] for all 1 ≤ n ≤ L(λ). (18)

Similar reasoning may be used to bound the logarithmic derivative of Pλ[A4(1, n)] by
c0n2 Pλ[A4(1, n)] for some universal constant c0. Integrating both of these expressions, we
conclude that∣∣∣∣ log

Pλ[A4(1, n)]

Pλc [A4(1, n)]

∣∣∣∣≤ c0(Pλ[cross(n)] − Pλc [cross(n)]) for any λ > 0 and 1 ≤ n ≤ L(λ).

Now, since the right-hand side here is contained in [−c0, c0], we conclude that

Pλ[A4(1, n)] � Pλc [A4(1, n)] for any λ > 0 and 1 ≤ n ≤ L(λ). (19)

This result is known as the stability of arm-event probabilities within the critical window. It
is the crucial step in the argument in [19, Theorem 1 and Lemma 8] and in its extensions [11,
29]; see [24, Theorem 23] for a more modern exposition. A more direct proof of (19) is the
subject of [12].

Finally, plugging (19) back into (18) and integrating, we find that

Pλ[cross(n)] − Pλc [cross(n)] � (λ − λc)n2π4(n) for any λ > 0 and 1 ≤ n ≤ L(λ).

This directly implies Theorem 3. The program described above applies to continuum per-
colation with only slight additions. When proving (18) for the logarithmic derivative of the
four-arm event, the argument showing that the bulk provides the majority of the contribution
uses the existence of c > 0 such that

Pλ[A4(r, R)] ≥ c(r/R)2−c for any λ > 0 and r < R ≤ L(λ), (20)

which may be colloquially stated as ‘the four-arm exponent is strictly smaller than two inside
the critical window’. Additionally, it uses that the three-arm probability in the half-plane has
the universal exponent 2; the proof of [24, Theorem 23] adapts readily to our setting.

To show (20) we can compare the four-arm event to the five-arm one, which has exponent
equal to 2 [20, Lemma 5]. For continuum percolation, an appropriate definition of the five-arm
event is necessary for this reasoning to function. For r < R, let A5(r, R) be the event that there
exist five disjoint paths γ1, . . . , γ5 in B(0, R) \ B(0, r), each starting on ∂B(0, r) and ending on
∂B(0, R), distributed in counterclockwise order, with γ1, γ3, γ5 ∈O and γ2, γ4 ∈ V and such
that there exist two disjoint families of disks in O, the first covering γ1 and the second covering
γ5. The disks of the two families may overlap, but no disk is allowed to belong to both families.

Using this definition, the same arguments as for Bernoulli percolation on the square lattice
(see [20, Lemma 5], [24, Theorem 23], or [29, Proposition 1.13]) show the existence of c > 0
such that

Pλ[A5(r, R)] ≥ c(r/R)2, Pλ[A4(r, R)] ≥ (R/r)c Pλ[A5(r, R)] (21)
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10 I. MANOLESCU AND L. V. SANTORO

for any λ > 0 and r < R ≤ L(λ). Let us mention here that the specific definition of the five-arm
event A5 is necessary for the proof of the second inequality. Indeed, this inequality should
be understood as ‘given the existence of four arms, the existence of a fifth arm comes at a
polynomial cost’. To prove this, first explore the interface between the two pairs of prima/dual
arms required by A4(r, R) (say between γ1 and γ2 and between γ3 and γ4). Then, for A5(r, R)
to be realized, another occupied arm γ5 should exist between γ1 and γ4, which uses none of the
disks already explored. This last property ensures that the existence of γ5 conditionally on the
explored arms γ1, . . . , γ4 is bounded by the one-arm probability, which in turn is dominated
by (r/R)c for some constant c > 0 due to (16).

Finally, (21) implies (20), and Theorem 3 follows.

3. Different couplings: A key observation

For a point process configuration η and r ≥ 0, set O(r) =⋃
x∈supp(η) B(x, r). With this nota-

tion, O =O(1). Write O(r) ∈ cross(n) for the event that O(r) contains a horizontal crossing of
[−n, n]2. More generally, write O(r) ∈ cross(m, n) for the event that O(r) contains a path cross-
ing [−m, m] × [−n, n] horizontally. Finally, set V (r) =R2 \O(r) and write V (r) ∈ cross∗(n) for
the event that V (r) contains a horizontal crossing of [−n, n]2.

The key to our argument is contained in the following two simple observations.

Lemma 2. For any λ > 0,

w∗
n = 2 sup{ε ≥ 0: V (1+ε) ∈ cross∗(n)}, (22)

wn ≥ 2

√
1 − inf{r ≤ 1: O(r) ∈ cross(n +

√
1 − r2, n − 1)}2, (23)

where the supremum and infimum are considered equal to 0 and 1, respectively, if the set in
question is empty.

Remark 2. Lemma 2 provides only a lower bound on the width of occupied crossings. This is
for good reason, as the two quantities in (23) are not generally equal. For λ ≤ λc, it is expected
that the two quantities are typically equal, but that fails for general values of λ. Indeed, for λ

sufficiency large, we can typically find wn > 2 due to the creation of crossings of [−n, n]2 by
‘double paths’ of disks.

The use of a slightly longer and thinner rectangle in the right-hand side of (23) rather than
simply cross(n) is for technical reasons explained in the proof below.

Proof. We start with (22). The equality is trivial when V /∈ cross∗(n), as both terms are equal
to 0. Fix η for which V ∈ cross∗(n). Figure 4 may be useful in understanding this proof.

Fix 0 < ε < w∗(n)/2 and let γ be a horizontal crossing of [−n, n]2 for which dist(γ,O) > ε;
the existence of such a path is guaranteed by the definition in (1) of w∗

n. Then γ ∈ V (1+ε), and
therefore V (1+ε) ∈ cross∗(n). This allows us to conclude that

w∗
n ≤ 2 · sup{ε ≥ 0: V (1+ε) ∈ cross∗(n)}.

Conversely, for ε such that V (1+ε) ∈ cross∗(n), let γ be a horizontal crossing of [−n, n]
contained in V (1+ε). Then dist(γ,O) ≥ ε, and therefore w∗

n ≥ 2ε. This proves that

w∗
n ≥ 2 · sup{ε ≥ 0: V (1+ε) ∈ cross∗(n)}.

Combine the last two displays to obtain the equality in (22).
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FIGURE 4. Computing the width of a vacant crossing by enlarging the balls.

We move on to the inequality (23), namely that involving wn. Figure 5 may be useful for this
for this part. The inequality is trivial when the right-hand side is equal to 0, and thus without
loss of generality we assume it is strictly positive. Fix η and r < 1 such that O(r) ∈ cross(n +√

1 − r2, n − 1). Then there necessarily exists a family x0, . . . , xk ∈ η ∩ [−n, n]2 such that
|xi − xi−1| ≤ 2r for all i = 1, . . . , k, and with x0 and xk at a distance at least 1 − √

1 − r2 from
the left and right sides of [−n, n]2, respectively.

Now consider γ to be the shortest path going through the vertices x0, . . . , xk in this order.
Furthermore, add to γ the initial horizontal segment going from the left side of [−n, n]2 to x0
and the final horizontal segment going from xk to the right side of [−n, n]2. Then γ crosses
[−n, n]2 horizontally.

Now, as may be observed in Figure 5,

1

2
wn ≥ dist(γ, V) ≥ dist

(
γ,

[
k⋃

i=0

B(xi, 1)
]c
)

≥
√

1 − r2.

By considering a crossing in O(r) of a rectangle slightly thinner than [−n, n]2, we ensure that
the points x0, . . . , xk do not approach the top and bottom boundaries too closely. We also
consider that a slightly longer rectangle as the distance between γ and V could in principle be
attained at the endpoint of γ and be strictly smaller than that between γ and V ∩ [−n, n]2.

Finally, taking the infimum over r, we find (23). �

The second key observation is related to the scaling properties of Poisson point processes.

Lemma 3. For every λ > 0 and r > 0, the law of (1/r)O(r) under Pλ is equal to the law of O
under Pλr. In particular, Pλ[O(r) ∈ cross(n)] = Pλr[O ∈ cross(n/r)].
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12 I. MANOLESCU AND L. V. SANTORO

FIGURE 5. When O(r) ∈ cross(n +
√

1 − r2, n − 1), we can identify a chain of points of η, each at a dis-
tance at most 2r from the previous, contained in R× [−n, n], with the first and last within a distance r of
the left and right sides of the rectangle, respectively. The path γ (bold black path) is obtained by inter-
polating linearly between these points, and potentially connecting the first and last points by horizontal

lines to the sides of [−n, n]2. The distance from γ to
[⋃k

i=0 B(xi, 1)
]c

is attained at the center of one of

the segments [xi−1, xi] or at the endpoints of γ .

Proof. Fix η. Observe that (1/r)O(r) =⋃
x∈(1/r)supp(η) B(x, 1). Now, if η is a Poisson point

process of intensity λ, then (1/r)supp(η) is distributed as a Poisson point process of intensity
λr. The result follows. �

The two lemmas above combine to prove the following corollary.

Corollary 1. For any a ≥ 0 and λ > 0,

Pλ[w∗
n ≤ 2a] = Pλ(1+a)

[
O ∈ cross

(
n

1 + a

)]
, (24)

Pλ[wn ≥ 2a] ≥ P
λ
√

1−a2

[
O ∈ cross

(
n + a√
1 − a2

,
n − 1√
1 − a2

)]
. (25)

Proof. We start with (24). Observe that, due to (22) and the fact that w∗
n has no strictly

positive atoms,

Pλ[w∗
n ≤ 2a] = Pλ[V (1+a) /∈ cross∗(n)] = Pλ[O(1+a) ∈ cross(n)] = Pλ(1+a)

[
O ∈ cross

(
n

1 + a

)]
,

for any a > 0. The second equality is due to the duality property and the invariance under
rotation by π/2; the last equality is due to Lemma 3.
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We now turn to (25). By (23) we have {wn ≥ 2a} ⊃ {O(
√

1−a2) ∈ cross(n + a, n − 1)
}
.

Therefore, employing Lemma 3 we find that

Pλ[wn ≥ 2a] ≥ Pλ

[O(
√

1−a2) ∈ cross(n + a, n − 1)
]

= P
λ
√

1−a2

[
O ∈ cross

(
n + a√
1 − a2

,
n − 1√
1 − a2

)]
. �

4. Proof of Theorem 1 and of the lower bounds in Theorem 2

The proofs of Theorem 1 and of the lower bounds in Theorem 2 are easy consequences of
Corollary 1. As Corollary 1 or Lemma 2 give no upper bounds on wn, the upper bounds in (6)
and (7) will be harder to prove. They are postponed to the next section.

Recall the notation αn = 1/n2π4(n).

Proof of Theorem 1. Let us start with the critical case, λ = λc. Fix δ > 0. Then, for C > c >

0 and n ≥ 1, due to (24),

1 − Pλc [2cαn ≤ w∗
n ≤ 2Cαn | cross∗(n)]

= 1

Pλc [cross∗(n)]

(
Pλc [w∗

n < 2cαn] − Pλc [w∗
n = 0] + Pλc [w∗

n > 2Cαn]
)

≤ C1

(
Pλc(1+cαn)

[
cross

(
n

1 + cαn

)]
− Pλc [cross(n)] + 1− Pλc(1+Cαn)

[
cross

(
n

1 + Cαn

)])
,

where C1 is a universal constant provided by (11). We used Corollary 1 to relate the bounds on
w∗

n to crossing events. Applying Theorem 3, we deduce that c and C may be chosen small and
large enough, respectively, independently of n, such that the above is bounded as

1 − Pλc [2cαn ≤ w∗
n ≤ 2Cαn | cross∗(n)] ≤ δ + C1

(
Pλc

[
cross

(
n

1 + cαn

)]
− Pλc [cross(n)]

)
.

Specifically, we have used the left-hand side in (14) to find C large enough that, for the last
term,

1 − Pλc(1+Cαn)

[
cross

(
n

1 + Cαn

)]
≤ δ/C1,

and (15) to find c small enough that, for the first term,

Pλc(1+cαn)

[
cross

(
n

1 + cαn

)]
≤ Pλc

[
cross

(
n

1 + cαn

)]
+ δ/C1.

Finally, employing the continuity of crossing probabilities, since αn → 0, we see that the last
term above may also be rendered arbitrarily smaller than δ, provided that n is large enough.
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14 I. MANOLESCU AND L. V. SANTORO

We now consider the sub-critical case, λ < λc. As in the critical case, applying Corollary 1
yields, for any n ≥ 1 and C > 0,

Pλ

[∣∣∣∣w∗
n − 2

(
λc

λ
− 1

)∣∣∣∣> 2Cαn | cross∗(n)

]

≤ 1

Pλ[cross∗(n)]

(
Pλ

[
w∗

n < 2

(
λc − λ

λ
− Cαn

)]
+ Pλ

[
w∗

n > 2

(
λc − λ

λ
+ Cαn

)])

≤ 1

Pλ[cross∗(n)]

(
Pλc−Cλαn [cross(n−)] + 1 − Pλc+Cλαn [cross(n+)]

)
, (26)

where
n± = n(

1 + ((λc − λ)/λ) ± Cαn
) .

Now, due to (14), C may be chosen large enough (depending on λ, but not on n) that

Pλc−Cλαn [cross(n−)] ≤ δ, 1 − Pλc+Cλαn [cross(n+)] ≤ δ

for all n large enough. Finally, for all n sufficiently large, the prefactor on the right-hand side
of (26) is smaller than 2. Combining the above inequalities leads to the desired conclusion.

Finally, let us consider the super-critical case, (5). We will treat the lower and upper bounds
on w∗

n separately. We start with the former.
Due to (24), for any c > 0 and n ≥ 1, we have

Pλ

[
w∗

n <
2c

n
| cross∗(n)

]
= 1

Pλ[cross∗(n)]

(
Pλ(1+c/n)

[
cross

(
n

1 + c/n

)]
− Pλ[cross(n)]

)

≤ 1

Pλ[cross(n)c]

(
Pλ(1+c/n)[cross(n − c, n) \ cross(n)] + Pλ(1+c/n)[cross(n)] − Pλ[cross(n)]

)
,

(27)

where the inequality is obtained by adding and subtracting Pλ(1+c/n)[cross(n)] and using the
inclusion of rectangles. We will bound separately the first term and the difference of the last
two terms appearing in the parentheses above. We start with the latter.

Consider the measure P which consists in choosing a Poisson process η of intensity λ and
an independent additional Poisson point process η̃ of intensity cλ/n. Write O and Õ for the
occupied sets produced by these two processes. Then

Pλ(1+c/n)[cross(n)] − Pλ[cross(n)]

Pλ[cross(n)c]
= P[O ∪ Õ ∈ cross(n) |O /∈ cross(n)]. (28)

Now, when O /∈ cross(n), write C for the union of the vacant clusters crossing [−n, n]2

vertically. Also, write C(1) = {x + z : x ∈ C, |z| ≤ 1} for the fattening of C by 1 and A(C(1)) for
the area covered by C(1).

Since λ > λc, the conditioning on O /∈ cross(n) is very degenerate, which renders the typ-
ical cluster C very thin. Indeed, a straightforward adaptation of the theory of [7] induces the
existence of a constant C(δ) > 0 such that

P[A(C(1)) ≥ C(δ)n |O /∈ cross(n)] < δ for all n. (29)
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(a) (b)

FIGURE 6. (a) In the super-critical regime, when cross(n) fails, the vacant cluster crossing [−n, n]2

vertically is thin; it typically has an area A(C) of order n. (b) In the same situation, there exists a linear
number of places where adding one disk induces an occupied horizontal crossing. The centers of these

potential disks form Pi.

(The quoted lemma states that, with high probability, the crossing cluster contains a linear
number of regeneration points. An additional consequence of the mass gap principle, proved
in the same way, is that the gap between successive regeneration points has exponential tails.
The cluster is contained in the cones formed by these regeneration points, which delimit a total
volume of linear order with exponentially high probability. A more detailed description of the
structure of the crossing cluster is given in [9, Section 1.2 and Theorem 3.1] in the context of
FK percolation.) See Figure 6 (left) for an illustration. Due to the independence of O and Õ,
the probability that a disk of Õ intersects C may be computed as

P[Õ ∩ C �= ∅ |O] = 1 − exp [−cλA(C(1))/n].

Fix c > 0 sufficiently small that exp (−cλC(δ)) > 1 − δ, with C(δ) the constant given by (29).
Then we find that

P[O ∪ Õ ∈ cross(n) |O /∈ cross(n)]

≤ P[A(C(1)) ≥ C(δ)n |O /∈ cross(n)] + P
[C ∩ Õ �= ∅ |O /∈ cross(n), A(C(1)) < C(δ)n

]
< 2δ.

Combined with (28), this yields

1

Pλ[cross(n)c]

(
Pλ(1+c/n)[cross(n)] − Pλ[cross(n)]

)≤ 2δ. (30)

We now turn to Pλ(1+c/n)[cross(n − c, n) \ cross(n)]. For this event to occur, a vacant ver-
tical crossing of [−n, n]2 needs to exist that visits [−n, −n + c] × [−n, n] or [n − c, n]×
[−n, n]. Since any such crossing is essentially straight [9, Theorem C] (i.e. has width of o(n)),
we find that, for n large enough,

Pλ(1+c/n)[cross(n − c, n) | cross(n)c] ≤ δ.
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16 I. MANOLESCU AND L. V. SANTORO

(The crossing cluster is unique by the positivity of the correlation length; it travels in the
vertical direction due to the strict convexity of the Wulff shape, which in the present context
is a Euclidean ball. Finally, the horizontal coordinate of its starting point is almost uniform in
[−n, n], except for a slight repulsion at the edges of the interval.) Thus,

Pλ(1+c/n)[cross(n − c, n) \ cross(n)] ≤ δ Pλ(1+c/n)[cross(n)c] ≤ δ Pλ[cross(n)c], (31)

where the second inequality comes from the monotonicity in λ. The term δ in the first inequal-
ity could even be replaced O(1/n) by studying the vacant cluster more carefully, but this is
unnecessary for our purposes.

Inserting (30) and (31) in (27), we find that

Pλ

[
w∗

n <
2c

n
| cross∗(n)

]
≤ 3δ, (32)

which is the desired lower bound on w∗
n.

We now turn to the upper bound on w∗
n. Using (24), for C > 0 and n ≥ 1,

Pλ

[
w∗

n >
2C

n
| cross∗(n)

]
= 1

Pλ[cross∗(n)]

(
1 − Pλ(1+C/n)

[
cross

(
n

1 + C/n

)])

≤ 1

Pλ[cross(n)c]
Pλ(1+C/n)[cross(n, n − C)c].

The second inequality is due to the inclusion of rectangles. As in (31),

Pλ(1+C/n)[cross(n, n − C)c] ≤ Pλ(1+C/n)[cross(n)c](1 + δ)

for n large enough. Thus,

Pλ

[
w∗

n >
2C

n
| cross∗(n)

]
≤ (1 + δ)

Pλ(1+C/n)[cross(n)c]

Pλ[cross(n)c]
. (33)

Using the same notation P, O, and Õ as above, with η̃ having intensity C/nλ, we find

Pλ[cross(n)c] − Pλ(1+C/n)[cross(n)c] = P[O /∈ cross(n) but O ∪ Õ ∈ cross(n)]. (34)

When O /∈ cross(n), the Ornstein–Zernike theory of [7] states that there typically exists a
unique vacant cluster connecting the top and bottom of cross(n), and that this cluster has a
linear number of pivotals. Let us give a precise statement of this fact. For a configuration with
O /∈ cross(n), write Pi for the set of pivotal points, i.e. Pi := {x ∈R2 : O ∪ B(x, 1) ∈ cross(n)};
see Figure 6(b) for an illustration. Then, an adaptation of [7, Lemma 4.1] to the continuous
setting shows the existence of a constant c(δ) > 0 such that Pλ[A(Pi) > c(δ)n |O /∈ cross(n)] ≥
1 − δ, where A(Pi) denotes the area of Pi. (The quoted lemma states that, with exponentially
high probability, the crossing cluster contains a linear number of regeneration points; each
such point may be transformed into a pivotal point by local surgery. The uniqueness of the
cluster is due to the positivity of the correlation length.) It follows that

P[O ∪ Õ ∈ cross(n) |O /∈ cross(n)]

≥ P[O ∪ Õ ∈ cross(n) |O /∈ cross(n) and A(Pi) > c(δ)n]P[A(Pi) > c(δ)n |O /∈ cross(n)]

≥ (1 − e−c(δ)Cλ)(1 − δ),
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since 1 − e−c(δ)Cλ bounds from below the probability that η̃ contains a pivotal point. Taking
C > 0 large enough, depending on c(δ) and λ but not on n, we conclude that the above is larger
than 1 − 2δ for all n large enough. Inserting this into (34), we find that Pλ(1+C/n)[cross(n)c] ≤
2δ Pλ[cross(n)c]. This together with (33) imply that

Pλ

[
w∗

n >
2C

n
| cross∗(n)

]
≤ (1 + δ)2δ.

Finally, this together with (32) yield (5). �

We now turn to the results concerning the maximal width in the occupied set. In this section,
we only prove lower bounds for wn; upper bounds are proved in the next section.

Proof of Theorem 2, lower bounds. Fix δ > 0. We will prove in each case that, by taking c
small enough, Pλ[wn ≤ c θ (n) | cross(n)] may be rendered smaller than some explicit function
of δ that tends to 0 as δ → 0. The threshold θ (n) depends on whether λ is smaller than, equal
to, or larger than λc, and is given in Theorem 2.

We start with the critical case (7). Then, for c > 0 and n ≥ 1, due to (25),

Pλc [wn ≤ 2
√

cαn | cross(n)]

= 1

Pλc [cross(n)]
(Pλc [cross(n)] − Pλc [wn > 2

√
cαn])

≤ 1

Pλc [cross(n)]

(
Pλc [cross(n)] − Pλc

√
1−cαn

[
cross

(
n + √

cαn√
1 − cαn

,
n − 1√
1 − cαn

)])

≤ 1

Pλc [cross(n)]

(
Pλc [cross(n)] − Pλc(1−cαn)[cross(n + 3cnαn, n − 1)]

)
, (35)

provided that n is large enough that (1 − cαn)−1/2 > 1 + cαn and n
√

cαn ≥ 1. The last
inequality uses the monotonicities of Pλ(cross(a, b)) in λ, a, and b.

Now, by arguments analogous to those used to prove (15) in Theorem 3, we deduce that c
may be chosen such that, for all n,

Pλc(1−cαn)[cross(n + 3cαn, n − 1)] ≥ Pλc [cross(n + 3cnαn, n − 1)] − δ ≥ Pλc [cross(n)] − 2δ,

with the second inequality due to Lemma 1, n large enough (depending on c), and we have
used the a priori estimates on the four-arms event, see (20). This property is classic in Bernoulli
percolation, and its proof is analogous in our case.

Combining the above with (35), and using the RSW inequality (10), we conclude that, for
c small enough and all n larger than some threshold,

Pλc [wn ≤ 2
√

cαn | cross(n)] ≤ C0δ, (36)

where C0 is a universal constant.
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We continue with the super-critical case (8). Fix λ > λc. As in the critical case, applying
(25) yields, for C > 0 and all n large enough,

Pλ

[
wn ≥ 2

√
1 −

(
λc

λ
+ C

λ
αn

)2

| cross(n)

]

≥ 1

Pλ[cross(n)]
Pλc+Cαn

[
cross

(
λ(n +√

1 − ((λc/λ) + (C/λ)αn)2)

λc + Cαn
,

λ(n − 1)

λc + Cαn

)]

≥ 1

Pλ[cross(n)]
Pλc+Cαn [cross(2c(λ)n, c(λ)n)],

where c(λ) is a constant depending only on λ. Theorem 3 states that C may be chosen large
enough that the second term on the right-hand side of the above is larger than 1 − δ for all n.
The first term on the right-hand side above converges to 1 as n → ∞ due to the choice of λ

being super-critical. Thus, for C chosen sufficiently large and all n large enough,

Pλ

[
wn ≥ 2

√
1 −

(
λc

λ
+ C

λ
αn

)2

| cross(n)

]
≥ 1 − 2δ,

as claimed.
Finally, let us analyze the sub-critical case (6). The strategy is the same as for the super-

critical case (5) for the vacant set. Fix λ < λc. Due to (25), for any c > 0 and n ≥ 1, we have

Pλ

[
wn < 2

√
c

n
| cross(n)

]

≤ 1

Pλ[cross(n)]

(
Pλ[cross(n)] − Pλ

√
1−(c/n)

[
cross

(
n + √

c/n√
1 − (c/n)

,
n − 1√

1 − (c/n)

)])

≤ 1

Pλ[cross(n)]

(
Pλ[cross(n)] − Pλ

√
1−(c/n)[cross(n)]

+ Pλ
√

1−(c/n)[cross(n)] − Pλ
√

1−(c/n)

[
cross

(
n + √

c/n√
1 − (c/n)

,
n − 1√

1 − (c/n)

)])
.

(37)

We will bound separately the two differences appearing in the parentheses above, starting with
the first one.

Consider the measure P which consists in choosing a Poisson process η of inten-
sity λ

√
1 − c/n and an independent additional Poisson point process η̃ of intensity λ(1 −√

1 − c/n). Write O and Õ for the occupied sets produced by these two processes. Then

Pλ[cross(n)] − Pλ
√

1−c/n[cross(n)] = P[O /∈ cross(n) but O ∪ Õ ∈ cross(n)]. (38)

Now, when O ∪ Õ ∈ cross(n), write C for the union of the occupied clusters crossing
[−n, n]2 horizontally. Since λ < λc, C is typically formed of a single, thin cluster. As before, [7]
implies that this cluster is of linear ‘volume’, both in area and in the number of disks belonging
to it. Thus, there exists a constant C(δ) > 0 such that

Pλ

[|(η ∪ η̃) ∩ C| ≥ C(δ)n |O ∪ Õ ∈ cross(n)
]
< δ for all n. (39)
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Now, under P and conditionally on η ∪ η̃, each point of η ∪ η̃ belongs to η with a probability√
1 − c/n. Thus, whenever the event in (39) occurs,

P[η̃ ∩ C = ∅ | η ∪ η̃] ≥
(

1 − c

n

)C(δ)n/2

≥ 1 − δ, (40)

provided that c > 0 is chosen sufficiently small. Inserting (39) and (40) in (38), we find that

Pλ(1−c/n)[cross(n)] ≥ (1 − 2δ)Pλ[cross(n)]. (41)

We now turn to the second difference in (37). Assuming that c > 0 is sufficiently small and
n sufficiently large, we have

Pλ(1−c/n)

[
cross

(
n + √

c/n√
1 − c/n

,
n − 1√
1 − c/n

)]
≥ Pλ(1−c/n)[cross(n + 2c, n − 1)]

≥ (1 − δ)Pλ(1−c/n)[cross(n + 2c, n)]

≥ (1 − 2δ)Pλ(1−c/n)[cross(n)].

The first inequality is due to the inclusion of rectangles and some basic algebra. The second
is obtained in the same way as (31) and is valid for n large enough; the occupied component
producing cross(n + 2c, n − 1) avoids approaching the top and bottom sides of the rectangles
with high probability. The third is valid for c small enough (independent of n) and is based on
the same reasoning as Lemma 1, namely that, for all k ≤ 1/c,

Pλ(1−c/n)
[
cross(n + 2(k + 1)c, n) \ cross(n + 2kc, n)

]≥ c0Pλ(1−c/n)
[
cross(n + 2c, n) \ cross(n)

]
,

where c0 > 0 is some constant depending only on λ, not on n or c. Finally, the above combined
with (41) shows that

Pλ(1−c/n)[cross(n)] − Pλ(1−c/n)

[
cross

(
n + √

c/n√
1 − c/n

,
n − 1√
1 − c/n

)]
≤ 2δPλ(1−c/n)[cross(n)]

≤ 2δPλ[cross(n)], (42)

where the second inequality comes from the monotonicity in λ. Putting (41) and (42) together,
we conclude that

Pλ

[
wn < 2

√
c/n | cross(n)

]≤ 4δ, (43)

as claimed.

5. Remaining proofs

In this section we prove the upper bounds (6) and (7) on wn in the sub-critical and critical
cases. These could not be proved using the techniques of the previous section due to the missing
upper bound on wn in (25).

The method presented here could most likely be used to obtain all the results in Theorems 1
and 2, but is less elegant than that of Section 4 and would require significantly more work.

The arguments in this section use some fine properties of critical and sub-critical perco-
lation, which we will state explicitly, but not prove. Proofs are available in the literature for
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(a) (b)

FIGURE 7. (a) A thin connected point. The only two disks with centers in [−4, 4]2 \ (0) are marked in
bold; their centers belong to the two blue regions on the side of (0). They are connected by the pink
disks with centers in (0). (b) For 0 < w(0) < 2a, it suffices to have no point of η in the hashed part of
(0) and a point of η in the blue region, which is then connected to r(0) by other disks centered in (0).

The blue region has area of order a2.

Bernoulli percolation on the square lattice (references will be provided), and these may be
adapted directly to our setting. We start with a series of definitions.

For x ∈R2, write (x) = [−2, 2]2 + x for the square of side length 4 centered at the
point x. For n ≥ 1 and points x1, . . . , xk ∈R2, we say that (x1, . . . , xk) is a pivotal chain for
cross(n) if O \⋃k

i=1 (xi) /∈ cross(n), but the set is minimal for this property, in that, for any
X � {1, . . . , k}, O \⋃i∈X (xi) ∈ cross(n).

Call 0 a thin point if there exist exactly two disks with centers in [−4, 4]2 \ (0) and if
these disks have centers in [−3.5, −2.5] × [−1, 1] and [2.5, 3.5] × [−1, 1], respectively. Call
these centers �(0) and r(0), respectively. See Figure 7 for an illustration.

Notice that the property that 0 is thin imposes no restriction on the disks inside (0), nor
on those outside of [−4, 4]2. In particular, there may exist more than two disks intersecting
[−4, 4]2 \ (0). However, no disk centered inside (0) can intersect disks centered outside
[−4, 4]2.

We call 0 a thin connected point if the two disks with centers in [−4, 4]2 \ (0) are con-
nected by the occupied set formed of the disks with centers in (0). Write w(0) for the maximal
width of the occupied connection between �(0) and r(0) produced by the disks in (0). Set
w(0) = 0 if no such connection exists. The following lemma is a simple but key observation.

Lemma 4. Fix λ > 0. There exists c0 = c0(λ) > 0 depending on λ such that, for any a ∈ [0, 1],
Pλ[0 < w(0) < 2a | 0 thin and η outside (0)] ≥ c0a2.

In particular, applying the above with a = 1 shows that thin points are connected with
positive probability.

Proof. The proof follows from a simple geometrical construction. For {0 < w(0) < 2a} to
occur, it suffices that there exists a disk in (0) at a distance between 1 − a2 and 1 from �(0)
which is connected to r(0) by disks inside (0), and that there exists no other point of η in (0)
at a distance at most 1 from �(0); see Figure 7. The existence of the first point occurs with a
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FIGURE 8. A situation in PivChn(m, K) with two sets X1, X2 (the corresponding boxes are blue and
yellow, respectively) and two points x in each set. All thin points are connected. The overall width of the
crossing is small if there exists a point x in each set X1 and X2 with w(x) small (see the top right and

bottom left boxes).

probability at least c0a2 (for some positive constant c0 that depends on λ); all other conditions
are satisfied with positive probability. �

The definitions of thin and connected thin point apply by translation to any point x ∈R2.
Write �(x), r(x), and w(x) for the associated notions.

For n, m, K ≥ 1, let PivChn(m, K) be the event that there exist 1 ≤ k ≤ K and disjoint sets
X1, . . . , Xk ⊂ (8Z)2 such that

• |Xi| ≥ m for each i,

• any x ∈⋃k
i=1 Xi is thin and connected,

• for any x1 ∈ X1, xk ∈ Xk, x1, . . . , xk is a pivotal chain for cross(n).

Observe that here the points of each set Xi are required to be placed on a fixed lattice, at a
large distance from each other. Also note that PivChn(m, K) ⊂ cross(n). See Figure 8 for an
illustration of PivChn(m, K).
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5.1. Critical occupied case: Upper bound

It is a property of critical percolation that, even when cross(n) occurs, there exists a chain
of large vacant clusters that cross [−n, n]2 vertically, with the clusters almost touching each
other at many points. Moreover, these clusters are few in number and are all of large size. The
following lemma is a more formal restatement of this.

Lemma 5. For any δ > 0, there exist c > 0 and K ≥ 1 such that, for all n large enough,
P
[
PivChn(cn2π4(n), K) | cross(n)

]≥ 1 − δ.

The lemma is a consequence of the RSW theorem and of the a priori bounds on the four- and
six-arm probabilities, which may be proven similarly to the Bernoulli case; see, e.g., (20) and
the display below. Lemma 5 may be proved in the same way as [13, Theorem 7.5]. We should
mention that [13, Theorem 7.5] does produce pivotal chains, but not with points belonging to
the lattice (8Z)2, nor points that are thin. To obtain thin points aligned to the lattice, one needs
to use the separation of arms for the four-arm event. This is a tedious but standard approach
which we will not detail.

Proof of Theorem (2) critical case (7). Recall that the lower bound on wn was proved in
(36). We will focus here on the upper bound. Fix δ > 0 and let K ≥ 1 and c > 0 be the constants
provided by Lemma 5. Let n be large enough that Lemma 5 applies.

When PivChn(cn2π4(n), K) occurs, let X = (X1, . . . , Xk) be the first family of sets of
(8Z)2 that satisfies the properties of PivChn(cn2π4(n), K) according to some arbitrary order.
The properties of X impose that any occupied path crossing [−n, n]2 horizontally crosses all
[(x)]x∈Xi for some i ≤ k. As such, we find that

wn ≤ max
1≤i≤k

min
x∈Xi

w(x).

Observe that the thin points of (8Z)2 may be determined by knowing η outside of⋃
x∈(8Z)2 (x). Furthermore, for any family (X1, . . . , Xk) of sets of (8Z)2, we can deter-

mine whether it satisfies the properties of PivChn(cn2π4(n), K) by knowing η outside of⋃
x∈(8Z)2 (x), inside all (x) for points x ∈ (8Z)2 which are not thin, and by knowing which

thin points of (8Z)2 are connected.
It follows that, for any possible realization X0 of X , the law of η knowing X =X0 and the

process η outside of (X0) := ⋃
x∈X0

(x) is simply that of a Poisson point process on (X0)
conditioned on each x ∈⋃i Xi being connected. In particular, Lemma 4 shows that, for any
x ∈⋃i Xi,

Pλc

[
w(x) < 2a |X =X0 and η outside (X0)

]≥ c0a2 for all a ∈ [0, 1]. (44)

Apply this to a = √
Cαn for some large constant C to deduce that, for each i,

Pλc

[
min
x∈Xi

w(x) ≥ 2
√

Cαn |X =X0 and η outside (X0)
]
< (1 − c0Cαn)c/αn <

δ

K
.

The first inequality is a direct consequence of (44), the fact that the restrictions of η to the
different [(x)]x∈Xi are independent, and that |Xi| ≥ c/αn. The second inequality is ensured by
taking C sufficiently large (depending on c and c0, but not on n). We conclude from the above
that

Pλc

[
max
1≤i≤k

min
x∈Xi

w(x) ≥√Cαn |X =X0 and η outside (X0)
]
< δ.
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Now apply this to all realizations X producing PivChn(cn2π4(n), K), then integrate to
obtain

Pλc [wn ≥ 2
√

Cαn] ≤ Pλc [wn ≥ 2
√

Cαn and PivChn(cn2π4(n), K)]

+ Pλc [cross(n) \ PivChn(cn2π4(n), K)]

≤ 2δ,

with the second inequality also due to Lemma 5. Together with the upper bound (36) already
proved, this implies (7). �

5.2. Sub-critical occupied case: Upper bound

In sub-critical percolation cross(n) is very unlikely to occur. Moreover, when it does, the
occupied cluster crossing [−n, n]2 horizontally is very thin and contains a linear number of
pivotals, of which a linear number will be connected thin points. Concretely, the following
statement may be deduced from [7, Lemma 4.1] as explained in Section 4.

Lemma 6. Fix λ < λc. There exists c1 = c1(λ) > 0 depending only on λ such that
Pλ

[
PivChn(c1n, 1) | cross(n)

]≥ 1 − e−c1n.

Proof of Theorem 2, sub-critical case (6). Recall that the lower bound on wn was proved
in (43). We will focus here on the upper bound. Fix λ < λc and δ > 0, and let c1 > 0 be the
constant provided by Lemma 6. Let n be large enough that e−c1n < δ.

The proof is similar to that of Section 5.1. When PivChn(c1n, 1) occurs, let X be the max-
imal set of (8Z)2 that satisfies the properties of PivChn(c1n, 1). Since we are considering
situations where each point of X is pivotal, we can define such a maximal set (this was not
the case in Section 5.1, where pivotal chains were considered). Then, since any occupied path
crossing [−n, n]2 horizontally crosses all [(x)]x∈X , we find that wn ≤ minx∈X w(x).

The same argument as in Section 5.1 shows that, for any potential realization X0 of X , the
law of η knowing X =X0 and the process η outside of (X0) := ⋃

x∈X0
(x) is simply that of

a Poisson point process on (X0) conditioned on each x ∈⋃i Xi being connected. In particular,
Lemma 4 shows that, for any x ∈⋃i Xi,

Pλ

[
w(x) < 2a |X =X0 and η outside (X0)

]≥ c0a2 for all a ∈ [0, 1].

Apply this to a = √
C/n for some large constant C to deduce that, for any X0,

Pλ

[
min
x∈X

w(x) ≥ 2
√

C/n |X =X0 and η outside (X0)
]
< (1 − c0C/n)c1n < δ. (45)

The second inequality is ensured by taking C sufficiently large (depending on c0 and c1, but
not on n).

Now apply (45) to all realizations X producing PivChn(c1n, 1), then integrate to obtain

Pλ[wn ≥ 2
√

C/n] ≤ Pλ[wn ≥ 2
√

C/n and PivChn(c1n, 1)] + Pλ[cross(n) \ PivChn(c1n, 1)]

≤ 2δPλ[cross(n)],

with the second inequality also due to Lemma 6 and the choice of a large enough n. Together
with the upper bound (43) already proved, this implies (6). �
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6. Questions

In closing, let us discuss some related open questions.
The most natural question is probably to extend the results beyond non-compactly supported

radii distributions. The results surely fail when the tails of the distribution of radii are too heavy,
but for quickly decaying distributions they should remain valid.

The second question that comes to mind is whether this analysis may be performed for
randomly placed sets of any shape, rather than disks. For such sets, Corollary 1, which is the
cornerstone of the proofs of Section 4, ceases to hold. The method used in Section 5, based on
the study of pivotal points, appears more robust, and may be used for general shapes. It would
therefore be interesting to adapt this method to prove all results. Some problems may arise for
lower bounds on wn and w∗

n, as the points where these minimal widths are reached are not
always pivotals.

A third question is related to the difference between the results for the occupied and vacant
set. In the critical case, wn is of the same order as

√
w∗

n; the same phenomenon happens when
comparing (3) to (8) and (5) to (6). This difference appears to be due to the round shape of
the disks, but a quick computation based on the method of Section 5 seems to suggest that the
same is true when disks are replaced with squares. Is this phenomenon more general?

Finally, note that the super-critical case of Theorem 2 only offers a lower bound on wn.
Indeed, the upper bound

Pλ

[
wn ≤ 2

√
1 −

(
λc

λ
− C

λn2π4(n)

)2

| cross(n)

]
≥ 1 − δ

fails for λ sufficiently large, due to the phenomenon explained in Remark 2. Still, we can expect
it to hold for λ sufficiently close to λc. Is this the case?

We close with a thought. This study appears to be specific to continuum percolation, with
no apparent correspondence in the discrete. Is there one?
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