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Abstract 

Endogenous biological rhythms synchronise human physiology with daily cycles of light-

dark, wake-sleep, feeding-fasting. Proper circadian alignment is crucial for physiological 

function, reflected in the rhythmic expression of molecular clock genes in various tissues, 

especially in skeletal muscle. Circadian disruption, such as misaligned feeding, dysregulates 

metabolism and increases the risk of metabolic disorders like type 2 diabetes. Such 

disturbances are common in critically ill patients, especially those who rely on enteral 

nutrition. Whilst continuous provision of enteral nutrition is currently the most common 

practice in ciritical care, this is largely dictated by convenience rather than evidence. 

Conversely, some findings indicate that that intermittent provision of enteral nutrition aligned 

with daylight may better support physiological functions and improve clinical/metabolic 

outcomes. However, there is a critical need for studies of skeletal muscle responses to acutely 

divergent feeding patterns, in addition to complementary translational research to map tissue-

level physiology to whole-body and clinical outcomes.  

 

Introduction 

Endogenous biological rhythms synchronise human physiology with the daily cycles of light 

and dark, wakefulness and sleep, as well as feeding and fasting. This synchronisation 

typically aligns human behaviours such as wakefulness, activity, and feeding with the 

daylight hours - while sleep, rest, and fasting are aligned with nighttime 
(1; 2; 3; 4; 5; 6)

.  

In the context of these daily fluctuations in physiological regulation, temporal eating patterns 

(i.e. chrononutrition) are a key consideration for metabolic health, such that asynchrony 

between these states (e.g. through nocturnal eating patterns) can misalign the circadian timing 

system, leading to impairment of physiological function, increasing the risk for developing 

chronic metabolic disorders 
(3; 7; 8; 9)

. This is a topic of growing interest in the context of 

critical care whereby the environmental conditions within the intensive care unit (ICU), 

drastically differ from free-living conditions. In particular, the current default approach of 

continuous provision of nutrients to patients unable to feed themselves may further 

exacerbate circadian misalignment in critically ill patients thereby impacting recovery and 

long term outcomes 
(10)

.  Among critically ill patients who receive enteral nutrition, 

approximately 33% develop insulin resistance, which might be explained by endocrine 
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disruption and/or skeletal muscle wastage due to inappropriate or misaligned enteral nutrition 

delivery patterns 
(11; 12; 13)

. Remarkably, this practice is largely driven by convenience and 

ease of administration, rather than being based on a robust understanding of its impact on 

patients' circadian rhythms and recovery.  

The aim of this review is to summarise the current understanding around the importance of 

biological rhythmicity and feeding patterns in metabolic regulation, explore the existing 

evidence supporting an intermittent pattern of enteral feeding in a critical care setting, and to 

highlight the potential directions for future research to address the current gaps in our 

understanding. In doing so the review aims to to set the stage for future work that can inform 

and optimize nutritional strategies in critical care settings.  

Biological rhythms and their significance in muscle metabolism  

Skeletal muscle in particular is a robustly rhythmic tissue, which may underpin the 

coordinated disposal, degradation and synthesis of metabolic substrates across the day 
(14; 15; 

16; 17; 18; 19)
. Skeletal muscle is responsible for a significant proportion (~40-85 %) of dietary 

glucose and lipid disposal and is an important reservoir of amino acids stored as protein 
(20; 

21; 22; 23; 24)
. Previous work has revealed diurnal rhythmicity in ~1000 genes in skeletal 

muscle  including those related to glucose and lipid metabolism, as well as protein turnover 

(15; 17; 25)
. Lipidomic analysis within the same cohort identified diurnal rhythms in lipid 

metabolites particularly major membrane-lipid species such as the sphingolipids that are 

involved in insulin signalling and insulin resistance 
(14)

. Similarly, genes related to 

autophagy - a vital component of the skeletal muscle adaptive response to variable nutrient 

supply 
(26; 27)

 - also exhibit a diurnal rhythm 
(17)

.  

The relative importance of such rhythms in skeletal muscle for health and function is 

apparent from studies utilising circadian disruption either through misalignment of 

environmental cues or through experimental in vitro and in vivo (i.e. animal models) 

disruption of the endogenous clock. Disturbance of typical rhythms in skeletal muscle 

compromises the lipidome and can reduce the uptake/transport, utilisation and non-oxidative 

storage of glucose (i.e. glycogen synthesis), thereby reducing insulin sensitivity in human 

skeletal muscle 
(17; 28; 29; 30; 31; 32; 33)

. These effects heighten the risk of type 2 diabetes (T2D), 

which itself is characterised by blunted circadian oscillations, collectively suggesting that 

circadian disruption is a defining feature of the insulin resistant state 
(34; 35)

. Loss of key clock 

proteins, such as Bmal1, leads to an accelerated sarcopenic phenotype with age in mice 
(36)

, 
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and impairs various aspects essential for proper muscle performance, including sarcomeric 

structure, mitochondrial morphology, and muscle contractile activities 
(37)

. Collectively, this 

evidence highlights the importance of rhythmicity within skeletal muscle for both metabolic 

health and function.  

Clinical implications of skeletal muscle rhythms for critically ill patients 

Maintaining typical circadian rhythmicity of skeletal muscle is especially important for 

critically ill individuals. Despite a worldwide increase in survival rates of critically ill 

patients, long-term outcomes for those who do survive remain poor. A significant proportion 

experience chronic impairment in metabolism, sleep, physical function, and cognitive and 

psychological health 
(38)

. These adverse outcomes can be attributed to a myriad of factors, 

such as muscle disuse and inflammation stemming from injury or illness, among others 
(11; 12; 

13)
. While these factors could theoretically vary based on the specific conditions and 

circumstances of each patient, one common element that could markedly impact all critically 

ill patients is circadian disruption due to the stark contrast between typical daily life and the 

24-h schedule of a working ICU environment 
(10; 39; 40; 41)

. Consequently, understanding and 

addressing circadian disruption could be a key aspect of improving outcomes in critically ill 

patients. One such practically feasible strategy for targeting circadian disruption is through 

the appropriate provision (e.g. amount and timing) of nutrition to critically ill patients.  

Enteral feeding patterns in critically ill patients 

Annually, critical care units in the UK admit approximately 200,000 patients 
(42)

 and it's 

estimated that between 30-50% of these patients are already malnourished at the time of their 

admission 
(43)

. Approximately half of admitted critically ill patients will be fed enterally, 

providing vital support for various conditions (e.g. palliative, post-surgical and intensive 

care)
(44)

, because they are unable to feed themselves for a prolonged period 
(45)

. However, 

~33% of enterally fed patients develop insulin resistance and a larger portion experience 

substantial muscle atrophy 
(12; 46; 47)

. Both of these could be explained, in part, by 

innapropriate delivery of enteral nutrition – which may exacerbate circadian disruption, 

further impairing metabolism at the tissue level of skeletal muscle. There is evidently a need 

to consider the implications of enteral feeding patterns in critically ill patients to maintain 

daily rhythmicity and prevent further deterioration of metabolism.  
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The default and most prevalent pattern worldwide is to deliver nutrients continuously, yet this 

decision is based on convenience not evidence. Recent systematic reviews consistently call 

for research into whether an intermittent feeding pattern may be superior 
(48; 49; 50)

. A number 

of studies have explored the effects of intermittent feeding in the Intensive Care Unit (ICU). 

These studies have not been successful in showing improvements in morbidity or mortality 

(41; 51; 52)
. However, it is worth noting that intermittent feeding protocols often still include 

nighttime feeding or lack a sufficiently long fasting period, factors that could potentially 

undermine the potential benefits of this approach 
(52; 53; 54; 55; 56; 57; 58)

.  

Continuous feeding presents practical problems, with unscheduled interruptions for clinical 

procedures such that nutritional targets are unmet. Moreover, a permanently postprandial 

(fed) state extending throughout most, or all the sleeping phase is unlikely to be optimal for 

physiological function or circadian alignment. By contrast, regular bolus feedings specific to 

the daylight/waking phase are more aligned both with our natural eating patterns and with 

entrained biological rhythms in clinically relevant processes such as metabolic 

regulation/flexibility, protein turnover and autophagy 
(41; 51; 59; 60)

. For instance, intermittent 

protein ingestion more effectively stimulates muscle protein synthesis than a continuous 

amino acid supply, which is an important outcome in critically ill patients to minimise the 

risk of muscle wastage 
(61; 62; 63)

. Normal meal intake results in the pulsatile release of insulin 

and ghrelin 
(64)

, which is preserved with intermittent enteral feeding but lost with continuous 

feeding. Given that insulin is a potent modulator of clock gene and/or protein expression in 

multiple tissues, this pulsatile release may be necessary for maintaining rhythmicity in 

skeletal muscle, 
(65; 66; 67; 68; 69)

. Interestingly, under controlled conditions the diurnal rhythm 

of skeletal muscle genes related to glucose, lipid, and protein metabolism are temporally 

related to the diurnal profile of insulin, highlighting the potential for feeding patterns to 

modulate and entrain skeletal muscle rhythmicity 
(25)

. Notably, shortening of the eating 

window through time restricted feeding (TRF) has been shown to increase the amplitude of 

oscillating muscle transcripts 
(70)

. However, neither the acute response (i.e. 24-h) or 

adaptation time of skeletal muscle to novel feeding patterns has been established 
(41; 71)

.  

Nonethless, intermittent provision of enteral nutrition attenuates the progressive rise in 

plasma leptin and insulinemia seen with continuous feeding during bed rest 
(47)

 potentially 

enhancing splanchnic blood flow, and improve gastrointestinal tolerance of enteral nutrition 

while influencing skeletal muscle autophagy 
(72)

. While intermittent enteral nutrition may 

increase the risk of diarrhea, it can reduce the incidence of constipation, without affecting 
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other gastrointestinal outcomes 
(73)

. From a practical perspective, intermittent feeding offers 

several advantages. It imposes less limitation on patient mobility and necessitates fewer 

pauses for procedures or tests. It may also help achieve enteral calorie targets faster than 

continuous feeding in line with international guidelines emphasising the importance of 

providing early adequate enteral nutrition for critically ill patients 
(52; 53; 54; 74; 75; 76)

. 

In theory, intermittent feedings could sustain organ stress resistance and promote overall 

resilience, thus improving patient response to treatment and recovery from illness 
(51; 59; 60)

. It 

is thus remarkable that the links between nutrient timing, chronobiological strain and human 

health outcomes remain to be established 
(77)

 and skeletal muscle metabolic responses have 

never been examined. However, in practice, improvements in morbidity and mortality are not 

yet observed.   

Recommendations for future research 

The existing body of research clearly indicates the existence of diurnal rhythms in skeletal 

muscle and the detrimental metabolic outcomes that can arise from disruption of these 

rhythms. However, a significant knowledge gap remains regarding how different feeding 

patterns influence these 24-hour profiles. In particular, it is now important to establish 

whether these rhythms occur independently from, of or are driven by, feeding pattern (i.e., 

whether they are driven by endogenous or exogenous clocks, respectively). Furthermore, 

disruption of circadian clocks as a result of enteral feeding pattern may also lead to insulin 

resistance, yet no studies to date have examined skeletal muscle clocks in response to 

divergent feeding patterns. Given the critical role of skeletal muscle in postprandial 

metabolic regulation 
(20; 35)

, it is important to establish the temporal responses of this tissue 

to enteral nutrition delivery pattern. 

In addition to furthering mechanistic understanding of divergent feeding patterns, it is 

important to recognise the need for translational studies to determine whether intermittent 

feeding with overnight fasting can produce improvements in physiological, hormonal, and 

metabolic responses in critically ill patients. Specifically, we need complementary studies 

that map tissue-level physiology onto whole-body and clinical outcomes. Given that existing 

studies of intermittent enteral nutrition still provide nutrition through the night studies 

aiming to establish the clinical feasibility, tolerability, and efficacy of intermittent diurnal 

feeding in critically ill adults would be particularly useful. Additional work should also seek 
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to establish the effects of intermittent enteral nutrition on long term outcomes (e.g. 

metabolism, sleep, physical function, and cognitive and psychological health).  

Conclusion 

Existing research highlights the significance of circadian rhythms in skeletal muscle 

metabolism and their relevance for critically ill patients. However the influence of feeding 

patterns (i.e. temporal variance in nutrient availability) on these rhythms remains unclear. 

Complementary mechanistic (i.e. in healthy adults) and clinical (i.e. in critically ill patients) 

studies contrasting the specific metabolic effects of intermittent and continuous nutrition are 

still required to improve our understanding and provide a more robust evidence base. In turn 

this will drive clinical practice in critically ill patients. 
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