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Abstract

While constructing mathematical models, scientists usually consider biotic factors, but
it is crystal-clear that abiotic factors, such as wind, are also important as biotic factors.
From this point of view, this paper is devoted to the investigation of some bifurcation
properties of a fractional-order prey–predator model under the effect of wind. Using
fractional calculus is very popular in modelling, since it is more effective than classical
calculus in predicting the system’s future state and also discretization is one of the most
powerful tools to study the behaviour of the models. In this paper, first of all, the model
is discretized by using a piecewise discretization approach. Then, the local stability of
fixed points is considered. We show using the centre manifold theorem and bifurcation
theory that the system experiences a flip bifurcation and a Neimark–Sacker bifurcation
at a positive fixed point. Finally, numerical simulations are given to demonstrate our
results.

2020 Mathematics subject classification: primary 34A08; secondary 39A28, 39A30.

Keywords and phrases: wind effect, fractional-order equation, discretization, flip bifur-
cation, Neimark–Sacker bifurcation.

1. Introduction

Differential equations with fractional orders are widely used in science, and this exten-
sive use has recently sparked much research interest. The so-called fractional-order
integral or derivative operators are the main producers of fractional-order differential
equations. Due to the nonlocal nature of their integral and derivative operators,
fractional-order operators are more effective than other classical deterministic oper-
ators at predicting the future state of the system, because they depend not only on
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the current state, but also on all of its past states. The most popular and widely used
fractional-order operators in applications of fractional-order differential equations are
the Riemann–Liouville, Caputo and Grünwald–Letnikov kinds [28]. Now, let us give
the definition of fractional-order integration and differentiation [44, 46].

DEFINITION 1.1. The fractional integral (or the Riemann Liouville integral) of order
β ∈ R+ of the function f (t), t > 0, is defined by

Iβa f (t) =
∫ t

a

(t − s)β−1

Γ(β)
f (s) ds.

The fractional derivative of order α ∈ (n − 1, n) is defined by the following two
(nonequivalent) ways.

(1) Riemann–Liouville fractional derivative: take the fractional integral of order
(n − α), and then take the nth derivative as follows:

Dαf (t) = DnI(n−α)
a f (t), D =

d
dt

, n = 1, 2, 3, . . . .

(2) Caputo-fractional derivative: take the nth derivative, and then take a fractional
integral of order (n − α)

Dαf (t) = I(n−α)
a Dnf (t).

Even though it is more restrictive than the Riemann–Liouville, we consider the
fractional derivative provided by Caputo in this study [11]. This is because this
definition is more suitable for problems consisting of fractional differential equations
with initial conditions. The following result contains the main properties from
fractional calculus [45].

REMARK 1.2. Let L1 = L1[a, b] be the class of Lebesgue integrable functions on
[a, b], a < b < ∞, β, γ ∈ R+ and α ∈ (0, 1). Then:

(1) if Iβa : L1 → L1 and f (x) ∈ L1, then Iγa Iβa f (x) = Iγ+βa f (x);
(2) limβ→n Iβa f (x)=In

a f (x) uniformly on [a, b], n= 1, 2, 3, . . . , where I1
a f (t)=

∫ t
0 f (s)ds;

(3) limβ→0 Iβa f (t) = f (t) weakly;
(4) if f (t) is absolutely continuous on [a, b], then limα→1 Dαf (t) = df (t)/dt.

In applied mathematics, the process of converting continuous models defined
by differential equations into their discrete equivalent is known as discretization.
Analysing the dynamics of the discretization is crucial for understanding how well
the discrete model approximates the original continuous system. Discretization is
often applied to systems to perform numerical simulations or to design algorithms
that run on digital platforms. As the step size approaches zero, the discrete system
converges to the original continuous system. In this limit, the discrete-time model
approaches the behaviour of the differential equations, ensuring that any discrepancies
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between the two systems vanish. In the literature, there are a large number of nonlinear
fractional differential equations without an analytical solution, so they need to be
solved with the help of some numerical and discretization techniques such as the
Adomian decomposition method [1, 22], differential transform method [40, 51],
Euler method [34], extrapolation method [18], Grünwald–Letnikov method [30] and
variational iteration method [55, 56].

In the last decade, we see a new type of discretization technique for fractional
equations, called piecewise discretization, which is constructed with the help of the
piecewise constant arguments [2, 19, 20, 23, 32, 33, 39, 42, 57, 58, 60, 61]. The sys-
tematic study of problems involving piecewise constant arguments began in the early
1980s with the work of Shah and Wiener [50], who introduced the term “differential
equations with piecewise constant argument” (DEPCA). A comprehensive source on
this class of equations is provided in [52]. Busenberg and Cooke [10] were pioneers in
applying such deviating arguments to mathematical models, specifically in the study
of vertically transmitted diseases, by reducing their analysis to discrete equations. The
main source for DEPCA theory are the papers [17, 52]. In 1991, Györi was the first
who used the piecewise constant argument for approximation [24]. After this work,
there has been a significant interest in the usage of the piecewise constant argument
for a numerical approach [16, 25–27]. In the late 2010s, Akhmet [4] introduced the
equation

x′(t) = f (t, x(t), xγ(t))),

where γ(t) is a piecewise constant argument of generalized type, that is, given (tk)k∈Z
and (ζk)k∈Z such that tk < tk+1 for all k ∈ Z with limk→±∞ tk = ±∞ and tk ≤ ζk ≤ tk+1,
if t ∈ Ik = [tk, tk+1), then γ(t) = ζk. These type of equations are called “differential
equations with piecewise constant argument of generalized” (DEPCAG) type. They
have continuous solutions, even when γ(t) is not, producing a discrete equation.
Several aspects of this equation have garnered much interest, see [3, 5, 13–15] and
the references therein.

In this paper, we propose to use a piecewise discretization method. For this aim, let
us first explain the usage of the method for any fractional-order differential equation.
Agarwal et al. [2] considered the equation

Dαx(t) = f
(
x
(
r
[ t
r

]))
, x(t) = x0, t ≤ 0, (1.1)

as a discretized version of the equation⎧⎪⎪⎨⎪⎪⎩
Dαx(t) = f (x(t)), t > 0,
x(0) = x0, t ≤ 0,

where r is the discretization parameter. Let t ∈ [0, r), then t/r ∈ [0, 1). So from (1.1),

Dαx(t) = f (x0), t ∈ [0, r).
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Thus,

x1(t) = x0 +
tα

Γ(1 + α)
f (x0).

Let t ∈ [r, 2r), so t/r ∈ [1, 2). Thus,

Dαx(t) = f (x1(r)), t ∈ [r, 2r),

whose solution is

x2(t) = x1(r) +
(t − r)α

Γ(1 + α)
f (x1(r)).

Let t ∈ [2r, 3r), then t/r ∈ [2, 3). Thus, we obtain

Dαx(t) = f (x2(r)), t ∈ [2r, 3r).

So,

x3(t) = x2(2r) +
(t − 2r)α

Γ(1 + α)
f (x2(2r)).

Repeating the process, when t ∈ [nr, (n + 1)r),

Dαx(t) = f (xn(nr)), t ∈ [nr, (n + 1)r),

which yields

xn+1(t) = xn(nr) +
(t − nr)α

Γ(1 + α)
f (xn(nr)).

Letting t → (n + 1)r in the above, the corresponding difference equation is obtained as

yn+1 = yn +
rα

Γ(α + 1)
f (yn) (1.2)

with x(nr) = yn.
Prey and predator live in the same ecosystem, and both of them have their own, but

mostly the same, biotic factors, such as speed, stealth and camouflage (to hide while
pursuing the prey or to hide from the predator). They also possess good senses of
smell, sight and hearing (to locate the prey or to detect the predator), and poison (to kill
the prey or to spray when approached or bitten), among other traits. In mathematical
biology, these factors are usually considered as the main subjects that affect the model.
However, recently, there has been a significant increase in the number of studies
exploring the impact of abiotic effects. These include the influence of predator-induced
fear [6, 8, 36, 37], climate change [48, 49, 54], seasonal variations [12, 41, 47] and wind
[7, 43]. These elements can of course be increased.

Now, let us turn the wheels to our problem. Barman et al. [7] investigated the
effect of wind in a prey–predator model. They constructed two types of functional
responses to describe the whole dynamics of the considered system under the fact
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TABLE 1. Description of the variables and parameters in (1.3).

Description of the variables and parameters

x Prey population density at time t
y Predator population density at time t
r Intrinsic growth rate of prey population
k Environmental carrying capacity of the prey species
b Hindrance rate in prey capturing for predator species
d Natural mortality rate of predator
ω Strength of wind flow
c1 Prey consumption rate by predator
c2 Food conversion rate from prey to predator

that wind may either decrease or increase the predation rate of predators. They
showed positivity and boundedness of the solutions of the systems and examined
the stability of the equilibrium points. Also for particular cases, it is demonstrated
that wind can change the stability of the equilibrium point through Hopf bifurcation.
Furthermore, considering the fact that wind flow cannot be constant for a time period,
they developed the discussed system and investigated this system with the help of
numerical simulations. In their work, they considered⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx
dt
= rx

(
1 − x

k

)
− c1xy

1 + ω + bx + bωx/(1 + ω)
,

dy
dt
=

c2xy
1 + ω + bx + bωx/(1 + ω)

− dy,
(1.3)

with the initial conditions

x(0) = x0 and y(0) = y0. (1.4)

The variables and all positive parameters in this model are defined in Table 1.
Our aim is to investigate the fractional-order discrete version of this problem to see

the effect of both the fractional order and the discretization parameter in the occurrence
of flip and Neimark–Sacker bifurcation.

In recent years, there has been a considerable amount of work on flip and
Neimark–Sacker bifurcations: in [31], a discrete-time predator–prey system is consid-
ered, and the chaos control is investigated. The effect of prey refuge proportional to the
predator in a discrete-time prey–predator model is studied in [38]. The authors consider
the dynamical behaviour of a discrete-time prey–predator system with Leslie type in
[9], and in [59], a discrete Lotka–Volterra-type predator–prey system with refuge effect
is analysed. The reader is also referred to the references therein.

Before stating our main problem, let us first apply nondimensionalization to (1.3)
to use one of the most important benefits: reduction of the numbers of the parameters.
For this aim, let us define the variables
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x = kP, y =
rQ
c1

, t =
τ

r
. (1.5)

Then, the derivatives become

dx
dt
= kr

dP
dτ

,
dy
dt
=

r2

c1

dQ
dτ

. (1.6)

Substituting (1.5) and (1.6) in the initial value problem (1.3)–(1.4) gives the nondimen-
sionalized form ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dP
dτ
= P(1 − P) − PQ

a1 + a2P
,

dQ
dτ
=

b1PQ
a1 + a2P

− b2Q,

with

P(0) = P0, Q(0) = Q0,

where

a1 = 1 + ω, a2 = bk +
bωk

1 + ω
, b1 =

c2k
r

, b2 =
d
r

, P0 =
x0

k
, Q0 =

y0c1

r
.

Now, let us consider this initial value problem with fractional derivatives and apply
the piecewise discretization process. For α ∈ (0, 1) and h > 0 as the discretization
parameter, it can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DαP(τ) = P
([
τ

h

]
h
)(

1 − P
([
τ

h

]
h
))
−

P
([
τ

h

]
h
)
Q
([
τ

h

]
h
)

a1 + a2P
([
τ

h

]
h
) ,

DαQ(τ) =
b1P

([
τ

h

]
h
)
Q
([
τ

h

]
h
)

a1+a2P

([
τ

h

]
h
) − b2Q

([
τ

h

]
h
)
,

(1.7)

with

P(0) = P0, Q(0) = Q0.

The equations in (1.7) are both in the form of (1.1), so the corresponding difference
equation, from (1.2), is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Mn+1 = Mn +

ρ

Γ(α + 1)

(
Mn(1 −Mn) − MnNn

a1 + a2Mn

)
,

Nn+1 = Nn +
ρ

Γ(α + 1)

( b1MnNn

a1 + a2Mn
− b2Nn

)
,

(1.8)
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where ρ = hα,

P(nh) = Mn, Q(nh) = Nn

with the initial conditions

M0 = P0 and N0 = Q0.

The presentation in this paper is organized as follows. Section 1 is devoted to
the introduction of the stated problem. Preliminaries needed for the paper are given
in Section 2. Stability and bifurcation analysis are investigated in Sections 3 and 4,
respectively. Numerical examples are stated in Section 5 and, finally, Section 6 presents
the conclusion.

2. Preliminaries

In this section, we recall some definitions and lemmas that will be useful in the later
sections.

Consider the difference system⎧⎪⎪⎨⎪⎪⎩
Mn+1 = f (Mn, Nn),
Nn+1 = g(Mn, Nn).

The Jacobian of this system at any fixed point (M̄, N̄) is

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂f
∂Mn

∂f
∂Nn

∂g
∂Mn

∂g
∂Nn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣∣
(M̄,N̄)

,

and the corresponding characteristic equation is

λ2 − Tr(J) · λ + det(J) = 0. (2.1)

DEFINITION 2.1 [31]. Let λ1 and λ2 be the characteristic roots of (2.1). A fixed point
(M̄, N̄) is called:

(i) sink if |λ1| < 1 and |λ2| < 1, and it is locally asymptotically stable;
(ii) source if |λ1| > 1 and |λ2| > 1, and it is locally unstable;
(iii) saddle if |λ1| > 1 and |λ2| < 1 or |λ1| < 1 and |λ2| > 1;
(iv) nonhyperbolic if either |λ1| = 1 or |λ2| = 1.

LEMMA 2.2 [29]. Let F(λ) = λ2 + Bλ + C, where B and C are constants. Suppose
F(1) > 0, and λ1 and λ2 are two roots of F(λ) = 0. Then:

(i) |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and C < 1;
(ii) λ1 = −1 and |λ2| � 1 if and only if F(−1) = 0, and B � 0, 2;
(iii) |λ1| > 1 and |λ2| < 1 if and only if F(−1) < 0;
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(iv) |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and C > 1;
(v) λ1 and λ2 are the conjugate complex roots and |λ1| = |λ2| = 1 if and only if

B2 − 4C < 0 and C = 1.

DEFINITION 2.3 [35]. The bifurcation associated with the appearance of μ1 = −1
is called a flip (or period-doubling) bifurcation, where μ1 is an eigenvalue of the
nonhyperbolic fixed point of the the system

xn+1 = f (xn,α), x ∈ Rn, α ∈ R (2.2)

with smooth f.

THEOREM 2.4 [35]. Suppose that a one-dimensional system

xn+1 = f (xn,α), x ∈ R, α ∈ R,

with smooth f, has at α = 0 the fixed point x0 = 0 and let μ = fx(0, 0) = −1. Assume
that the following nondegeneracy conditions are satisfied:

(i) 1
2 (fxx(0, 0))2 + 1

3 fxxx(0, 0) � 0;
(ii) fxα(0, 0) � 0.

Then, there is a flip bifurcation in the system.

DEFINITION 2.5 [35]. The bifurcation corresponding to the presence of μ1,2 = e±iθ0 ,
0 < θ0 < π, is called a Neimark–Sacker bifurcation, where μ1,2 are the eigenvalues of
the nonhyperbolic fixed point of the system (2.2).

THEOREM 2.6 [35]. Suppose that the system

(
Xn+1
Yn+1

)
=

(
f (Xn, Yn, δ)
g(Xn, Yn, δ)

)
,

with a parameter δ, has a pair of complex conjugate eigenvalues λ1,2 = r(δ)e±iθ(δ) at
the fixed point (0, 0), where δc is the critical parameter value, r(δc) = 1 and θ(δc) = θ0.
Assume that the following conditions are satisfied:

(i) d(r(δ))/dδ|δ=δc � 0;
(ii) eikθ0 � 1 for k = 1, 2, 3, 4 and a(δc) = Re(eiθ0 c1(δc)) � 0.

Then, there is a neighbourhood of origin in which a unique closed curve bifurcates
from the origin as δ passes through the critical value δc. It should be mentioned here
that the sign of a(δc) determines the direction of the appearance of the invariant curve
in a generic system exhibiting the Neimark–Sacker bifurcation: if a(δc) < 0, then there
is a supercritical Neimark–Sacker bifurcation which is stable; if a(δc) > 0, then there
is a subcritical Neimark–Sacker bifurcation which is unstable.
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3. Stability analysis

The difference system (1.8) has three equilibrium points given by

E0 = (0, 0), E1 = (1, 0) and E∗ = (M∗, N∗) (3.1)

with

M∗ =
a1b2

b1 − a2b2
, N∗ =

a1b1(b1 − b2(a1 + a2))
(b1 − a2b2)2 . (3.2)

When simulating biological systems, positivity ensures that the model can make
meaningful predictions about real-world behaviour. Negative values in simulations
would lead to outcomes that are not interpretable or applicable to the biological
phenomenon being studied. To ensure the positivity of the point E∗ = (M∗, N∗), it is
assumed that

b1 > b2(a1 + a2). (3.3)

Now, let us investigate the stability of each point.

3.1. Stability of E0

THEOREM 3.1. E0 = (0, 0) is:

(i) saddle if 0 < ρ < (2Γ(α + 1))/b2;
(ii) source if ρ > (2Γ(α + 1))/b2,

where ρ = hα, h is the discretization parameter and α is the order of the equation.

PROOF. The Jacobian matrix at E0 is

J(E0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ρ

Γ(α + 1)
+ 1 0

0 1 − ρb2

Γ(α + 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (3.4)

The characteristic polynomial corresponding to (3.4) is calculated as

F(λ) = λ2 +

( (b2 − 1)ρ
Γ(α + 1)

− 2
)
λ +

(Γ(α + 1) + ρ)(Γ(α + 1) − b2ρ)
Γ(α + 1)2 ,

whose eigenvalues are

λ1 = 1 − b2ρ

Γ(α + 1)
, λ2 = 1 +

ρ

Γ(α + 1)
> 1.

Hence, we have

1 − b2ρ

Γ(α + 1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∈ (−1, 1) if 0 < ρ <

2Γ(α + 1)
b2

,

< −1 if ρ >
2Γ(α + 1)

b2
.

From Definition 2.1 and Lemma 2.2, the proof is complete. �

https://doi.org/10.1017/S1446181125000045 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181125000045


10 G. S. Oztepe and M. Lafci Buyukkahraman [10]

3.2. Stability of E1

THEOREM 3.2. Assume that b1 < (a1 + a2)b2. Then, E1 = (1, 0) is:

(i) sink if 0 < ρ < min{δ1, δ2};
(ii) saddle if min{δ1, δ2} < ρ < max{δ1, δ2};

(iii) source if ρ > max{δ1, δ2},

where

δ1 = 2Γ(α + 1), δ2 =
2(a1 + a2)Γ(α + 1)

(a1 + a2)b2 − b1
.

PROOF. The Jacobian matrix at E1 is obtained as

J(E1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − ρ

Γ(α + 1)
− ρ

Γ(α + 1)(a1 + a2)

0 1 +
(b1 − (a1 + a2)b2)ρ
(a1 + a2)Γ(α + 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

which has the characteristic polynomial

F(λ) = λ2 +

( ((a1 + a2)b2 + a1 + a2 − b1)ρ
(a1 + a2)Γ(α + 1)

− 2
)
λ

+
(Γ(α + 1) − ρ)((a1 + a2)(Γ(α + 1) − b2ρ) + b1ρ)

(a1 + a2)Γ(α + 1)2 .

Hence, the following eigenvalues are found:

λ1 = 1 − ρ

Γ(α + 1)
, λ2 = 1 − ((a1 + a2)b2 − b1)ρ

(a1 + a2)Γ(α + 1)
.

Since b1 < (a1 + a2)b2,

1 − ρ

Γ(α + 1)

⎧⎪⎪⎨⎪⎪⎩
∈ (−1, 1) if 0 < ρ < 2Γ(α + 1),
< −1 if ρ > 2Γ(α + 1),

and

1 − ((a1 + a2)b2 − b1)ρ
(a1 + a2)Γ(α + 1)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∈ (−1, 1) if 0 < ρ <

2(a1 + a2)Γ(α + 1)
((a1 + a2)b2 − b1)ρ

,

< −1 if ρ >
2(a1 + a2)Γ(α + 1)
((a1 + a2)b2 − b1)ρ

.

So, Definition 2.1 and Lemma 2.2 complete the proof. �

3.3. Stability of E∗

THEOREM 3.3. Assume that b1(a1 − a2) + a2b2(a1 + a2) > 0 and (3.3) is true. Then,
the positive equilibrium point E∗ of system (1.8) is:
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(i) sink fixed point if one of the following conditions holds:

0 < ρ < ρ1 when ξ2 > 4ξ1;

0 < ρ <
1
ξ1

when ξ2 ≤ 4ξ1,

(ii) source fixed point if one of the following conditions holds:

ρ > ρ2 when ξ2 > 4ξ1;

ρ >
1
ξ1

when ξ2 ≤ 4ξ1,

(iii) saddle fixed point if the following condition holds:

ρ1 < ρ < ρ2 when ξ2 > 4ξ1,

where ρ = hα and

ξ1 =
(b1 − a2b2)(b1 − b2(a1 + a2))

Γ(α + 1)(b1(a1 − a2) + a2b2(a1 + a2))
,

ξ2 =
b2(b1(a1 − a2) + a2b2(a1 + a2))
Γ(α + 1)b1(b1 − a2b2)

,

ρ1 =
ξ2 −

√
ξ22 − 4ξ1ξ2

ξ1ξ2
,

ρ2 =
ξ2 +

√
ξ22 − 4ξ1ξ2

ξ1ξ2
.

(3.5)

PROOF. The Jacobian matrix at E∗, given in (3.1) and (3.2), is

J∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − ρb2((a1 − a2)b1 + a2(a1 + a2)b2)

Γ(α + 1)b1(b1 − a2b2)
− ρb2

Γ(α + 1)b1
ρ(b1 − (a1 + a2)b2)

Γ(α + 1)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (3.6)

whose characteristic equation is

λ2 + Φλ + Ψ = 0, (3.7)

where

Φ =

(b2((a1 − a2)b1 + a2(a1 + a2)b2)ρ
b1(b1 − a2b2)Γ(α + 1)

− 2
)
,

Ψ = 1 +
b2ρ(ρ(b1 − a2b2)(b1 − b2(a1 + a2)) − Γ(α + 1)(b1(a1 − a2) + a2b2(a1 + a2)))

b1Γ(α + 1)2(b1 − a2b2)
.

To apply Lemma 2.2(i), consider the left-hand side of (3.7) as a function of λ, that is,

F(λ) = λ2 + Φλ + Ψ, (3.8)
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or

F(λ) = λ2 + (ρξ2 − 2)λ + (ρ2ξ1ξ2 − ρξ2 + 1) (3.9)

with hα = ρ, and ξ1 and ξ2 are given in (3.5). Equation (3.8) is called the characteristic
polynomial corresponding to the positive equilibrium point E∗.

Taking λ = 1 and λ = −1 above, and considering Φ and Ψ, F(1) and F(−1) are
calculated as

F(1) =
b2(b1 − (a1 + a2)b2)ρ2

b1Γ(α + 1)2 ,

F(−1) =
b2(b1 − (a1 + a2)b2)

b1Γ2(α + 1)
ρ2 − b2((a1 − a2)b1 + a2(a1 + a2)b2)

b1(b1 − a2b2)Γ(α + 1)
ρ + 4.

From (3.3), it is clear that F(1) > 0. To ensure the positivity of F(−1), it is written as

F(−1) = ξ1ξ2ρ
2 − 2ξ2ρ + 4

= (ρ − ρ1)(ρ − ρ2),

where ξ1, ξ2, ρ1, ρ2 are given in (3.5). So, the roots of F(−1) are obtained as

ρ = ρ1 =
ξ2 −

√
ξ22 − 4ξ1ξ2

ξ1ξ2
and ρ = ρ2 =

ξ2 +
√
ξ22 − 4ξ1ξ2

ξ1ξ2
.

First, we assume that ξ2 > 4ξ1, then ρ1 and ρ2 are real and distinct. Under conditions
(3.3) and a1 > a2, it is obtained that ρ1 and ρ2 are positive with 0 < ρ < ρ1 or ρ > ρ2,
and this implies that F(−1) > 0. Moreover, when 0 < ρ < ρ1, we get ρ < ρ1 < 1/ξ1 <
ρ2 and C = ξ1ξ2ρ2 − ξ2ρ + 1 < 1. When ρ > ρ2, it is found ρ > 1/ξ1 and then C > 1.

Second, if ξ2 = 4ξ1 and ξ2 < 4ξ1, then F(−1) has real roots ρ1 = ρ2 = 1/ξ1 and
does not have real roots, respectively, and for each case, F(−1) becomes positive. Also,
if 0 < ρ < 1/ξ1, then C < 1 or if ρ > 1/ξ1, then C > 1.

So, from Definition 2.1 and Lemma 2.2, the proof is complete. �

4. Bifurcation analysis

This section is devoted to the investigation of the flip and Neimark–Sacker
bifurcation analysis of the equilibrium point E∗ given in (3.1)–(3.2). Here, we choose
ρ as a bifurcation parameter.

4.1. Flip bifurcation In this part, we study flip bifurcation for the system (1.8). We
prove that under certain conditions, the flip bifurcation arises from the positive fixed
point E∗.

THEOREM 4.1. If the following conditions are satisfied by the characteristic polyno-
mial (3.8), then one may conclude that there is a flip bifurcation at E∗. When ξ2 > 4ξ1,
then F(−1) has the roots ρ = ρ1 and ρ = ρ2 such that
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ρ �
2
ξ2

and ρ �
4
ξ2

,

where ρ1 and ρ2 are given in (3.5).

PROOF. From Lemma 2.2(ii), it is known that if

F(−1) = 0 and ρξ2 − 2 � {0, 2},

then there may be flip bifurcation at the equilibrium point E∗. From Theorem 3.3, it is
known that when ξ2 > 4ξ1, then F(−1) has two real roots, which means that if we take
ρ = ρ1 or ρ2, then we get F(−1) = 0. Moreover, considering ρ � 2/ξ2 and ρ � 4/ξ2
leads us to ρξ2 − 2 � {0, 2}, and thus the proof is complete. �

However, let us take

ρ = ρ1 =
ξ2 −

√
ξ22 − 4ξ1ξ2

ξ1ξ2
, (4.1)

then the characteristic roots of (3.9) are found as λ1 = −1 and λ2 = 3 − ρ1ξ2, with
|λ2| � 1.

We will now focus on the analytic construction of the flip bifurcation, or, to put it
another way, use Theorem 2.4 to establish the following theorem (Theorem 4.2) at the
point E∗. However, to apply Theorem 2.4, we must first apply to our system (1.8) the
centre manifold theorem [9, 35, 53].

THEOREM 4.2. If the following conditions are satisfied, then there is a flip bifurcation
for the system (1.8):

(i) ξ2 > 4ξ1;
(ii) 2m1 + 2(h1m2 + m5) � 0;

(iii) m3 � 0.

Furthermore, if 2m1 + 2(h1m2 + m5) is positive, then the flip bifurcation is super-
critical, otherwise it becomes subcritical. Here, ξ1 and ξ2 are given in (3.5), and
h1, m1, m2, m3, m5 are given in the following proof in (4.6) and (4.8).

PROOF. For the application of the centre manifold theorem, let us define the right-hand
side of the equations in system (1.8) as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F(Mn, Nn) = Mn +
ρ

Γ(α + 1)

(
Mn(1 −Mn) − MnNn

a1 + a2Mn

)
,

G(Mn, Nn) = Nn +
ρ

Γ(α + 1)

( b1MnNn

a1 + a2Mn
− b2Nn

)
.

Expanding the Taylor series of these functions around the fixed point

E∗ = (M∗, N∗) =
( a1b2

b1 − a2b2
,

a1b1(b1 − b2(a1 + a2))
(b1 − a2b2)2

)
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gives us the following equivalent system of (1.8):(
Xn

Yn

)
=

(
B11 B12
B21 1

) (
Xn

Yn

)
+

(
f1(Xn, Yn, ρ̃, ρ̄)
g1(Xn, Yn, ρ̃, ρ̄)

)
, (4.2)

where

B11 =
b1Γ(α + 1)(b1 − a2b2) − b2ρ(a1(a2b2 + b1) + a2(a2b2 − b1))

b1Γ(α + 1)(b1 − a2b2)
,

B12 = −
b2ρ

b1Γ(α + 1)
,

B21 =
ρ(b1 − b2(a1 + a2))

Γ(α + 1)
,

(4.3)

and

f1(Xn, Yn, ρ̃, ρ̄) =
(ρ̄ + ρ̃)(b1 − a2b2)2

a1b2
1Γ(α + 1)

XnYn −
2a2(ρ̄ + ρ̃)(a2b2 − b1)3

a2
1b3

1Γ(α + 1)
X2

nYn

−
2(ρ̄ + ρ̃)(a1(−a2

2b2
2 + a2b1b2 + b2

1) − a2(b1 − a2b2)2)

a1b2
1Γ(α + 1)

X2
n

−
6a2

2(ρ̄ + ρ̃)(b1 − a2b2)2(b2(a1 + a2) − b1)

a2
1b3

1Γ(α + 1)
X3

n + H.O.T .,

g1(Xn, Yn, ρ̃, ρ̄) =
(ρ̄ + ρ̃)(b1 − a2b2)2

a1b1Γ(α + 1)
XnYn +

2a2(ρ̄ + ρ̃)(a2b2 − b1)3

a2
1b2

1Γ(α + 1)
X2

nYn

+
2a2(ρ̄ + ρ̃)(b1 − a2b2)(b2(a1 + a2) − b1)

a1b1Γ(α + 1)
X2

n

−
6a2

2(ρ̄ + ρ̃)(b1 − a2b2)2(b2(a1 + a2) − b1)

a2
1b2

1Γ(α + 1)
X3

n + H.O.T .,

(4.4)

with ρ = ρ1 as in (4.1), where ξ1, ξ2 are given in (3.5), and H.O.T. represents the higher
order terms.

In this expansion, we take ρ̄ = ρ1 and Mn −M∗ = Xn, Nn − N∗ = Yn, ρ − ρ̄ = ρ̃,
which transform the fixed point E∗ to the origin and the bifurcation parameter’s critical
value to zero, that is, ρc = 0. Next, we construct the matrix

V =
(
−2 2 − ρ̄ξ2
B21 B21

)
,

whose columns are the eigenvectors corresponding to the eigenvalues of J∗, given in
(3.6), when ρ = ρ̄ = ρ1, which are λ1 = −1 and λ2 = 3 − ρ1ξ2. Here, ρ1 is given in
(4.1) with ξ1 and ξ2 as in (3.5), and B21 is given in (4.3). Using the transformation(

Xn

Yn

)
= V

(
Un

Vn

)
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in (4.2), the following system is obtained:(
Un+1
Vn+1

)
=

(
−1 0
0 3 − ρ1ξ2

) (
Un

Vn

)
+

(
f2(Un, Vn)
g2(Un, Vn)

)
with (4.5)

f2(Un, Vn) = m1U3
n + m2UnV2

n + m3U2
nVn + m4V3

n + m5U2
n

+ m6UnVn + m7V2
n + H.O.T .,

g2(Un, Vn) = n1U3
n + n2UnV2

n + n3U2
nVn + n4V3

n + n5U2
n + n6UnVn + n7V2

n + H.O.T .,

where

m1 = (a2
1b3

1Γ(α + 1))−18a2(ρ̄ + ρ̃)(b1 − a2b2)2(b1T12 − T11)(a2(b2(6a1 + B21) − 6b1)

+ 6a2
2b2 − b1B21),

m2 = (a2
1b3

1Γ(α + 1))−1(a2
1b3

1Γ(α + 1))−12a2(ρ̄ + ρ̃)(r2ρ̄ − 2)(b1 − a2b2)2(b1T12 − T11)

× (r2ρ̄(a2(18a1b2 − 18b1 + b2B21) + 18a2
2b2 − b1B21 + 2a2(−18a1b2 + 18b1

+ b2B21) − 36a2
2b2 − 2b1B21)a1 + B21)) − 18a2

2b2 + b1B21),

m3 = (a2
1b3

1Γ(α + 1))−18a2(ρ̄ + ρ̃)(b1 − a2b2)2(b1T12 − T11)(ρ̄ + ρ̃)(r2ρ̄(a2(b2(9a1

+ B21) − 9b1) + 9a2
2b2 − b1B21) + a2(18b1 − b2(18a1 + B21)) − 18a2

2b2 + b1B21),

m4 = (a2
1b3

1Γ(α + 1))−1(2a2(ρ̄ + ρ̃)(r2ρ̄ − 2)2(b1 − a2b2)2(b1T12 − T11)

× (3a2r2ρ̄(b2(a1 + a2) − b1) + a2(−6a1b2 + 6b1 + b2B21) − 6a2
2b2 − b1B21)),

m5 = −(a1b2
1Γ(α + 1))(2(ρ̄ + ρ̃)(4a1(−a2

2b2
2T11 + b2

1(T11 − a2b2T12)

+ a2b1b2(a2b2T12 + T11)) + (4a2 + B21)(b1 − a2b2)2(b1T12 − T11))),

m6 = −(a1b2
1Γ(α + 1))−1((ρ̄ + ρ̃)(r2ρ̄(8a1(−a2

2b2
2T11 + b2

1(T11 − a2b2T12)

+ a2b1b2(a2b2T12 + T11)) + (8a2 + B21)(b1 − a2b2)2(b1T12 − T11))

− 16(a1(−a2
2b2

2T11 + b2
1(T11 − a2b2T12) + a2b1b2(a2b2T12 + T11))

+ a2(b1 − a2b2)2(b1T12 − T11)))),

m7 = −(a1b2
1Γ(α + 1))−1((ρ̄ + ρ̃)(ξ2ρ̄ − 2)(2ξ2ρ̄(a1(−a2

2b2
2T11 + b2

1(T11 − a2b2T12)

+ a2b1b2(a2b2T12 + T11)) + a2(b1 − a2b2)2(b1T12 − T11)),

− 4a1(−a2
2b2

2T11 + b2
1(T11 − a2b2T12) + a2b1b2(a2b2T12 + T11))

+ (4a2 − B21)(−(b1 − a2b2)2)(b1T12 − T11))),

n1 = (a2
1b3

1Γ(α + 1))−1(8a2(ρ̄ + ρ̃)(b1 − a2b2)2(b1T22 − T21)(a2(b2(6a1 + B21) − 6b1)

+ 6a2
2b2 − b1B21)),

n2 = (a2
1b3

1Γ(α + 1))−1(2a2(ρ̄ + ρ̃)(r2ρ̄ − 2)(b1 − a2b2)2(b1T22 − T21),

× (r2ρ̄(a2(18a1b2 − 18b1 + b2B21) + 18a2
2b2 − b1B21)

+ 2a2(−18a1b2 + 18b1 + b2B21) − 36a2
2b2 − 2b1B21)),
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n3 = (a2
1b3

1Γ(α + 1))−1(8a2(ρ̄+ρ̃)(b1−a2b2)2(b1T22−T21)(r2ρ̄(a2(b2(9a1 + B21) − 9b1)

+ 9a2
2b2 − b1B21) + a2(18b1 − b2(18a1 + B21)) − 18a2

2b2 + b1B21)),

n4 = (a2
1b3

1Γ(α + 1))−1(2a2(ρ̄ + ρ̃)(r2ρ̄ − 2)2(b1 − a2b2)2(b1T22 − T21)

× (3a2r2ρ̄(b2(a1 + a2) − b1) + a2(−6a1b2 + 6b1 + b2B21) − 6a2
2b2 − b1B21)),

n5 = −((a1b2
1Γ(α + 1))−1(2(ρ̄ + ρ̃)(4a1(−a2

2b2
2T21 + b2

1(T21 − a2b2T22)

+ a2b1b2(a2b2T22 + T21)) + (4a2 + B21)(b1 − a2b2)2(b1T22 − T21))),

n6 = −(a1b2
1Γ(α + 1))−1((ρ̄ + ρ̃)(r2ρ̄(8a1(−a2

2b2
2T21 + b2

1(T21 − a2b2T22)

+ a2b1b2(a2b2T22 + T21)) + (8a2 + B21)(b1 − a2b2)2(b1T22 − T21))

− 16(a1(−a2
2b2

2T21 + b2
1(T21 − a2b2T22) + a2b1b2(a2b2T22 + T21))

+ a2(b1 − a2b2)2(b1T22 − T21)))),

n7 = −(a1b2
1Γ(α + 1))−1((ρ̄ + ρ̃)(ξ2ρ̄ − 2)(2ξ2ρ̄(a1(−a2

2b2
2T21 + b2

1(T21 − a2b2T22)

+ a2b1b2(a2b2T22 + T21)) + a2(b1 − a2b2)2(b1T22 − T21))

− 4a1(−a2
2b2

2T21 + b2
1(T21 − a2b2T22) + a2b1b2(a2b2T22 + T21))

+ (4a2 − B21)(−(b1 − a2b2)2)(b1T22 − T21))), (4.6)

with

T11 =
B21

−4B21 + B21ρ̄ξ2
,

T12 =
−2 + ρ̄ξ2

−4B21 + B21ρ̄ξ2
,

T21 =
−B21

−4B21 + B21ρ̄ξ2
,

T22 =
−2

−4B21 + B21ρ̄ξ2
,

and B21 is given in (4.3). Applying centre manifold theorem [9, 35, 53] to the system
(4.5), one may obtain the one-dimensional system

Un+1 = −Un + ρ̃m3Un + (m1 + ρ̃h1m4 + ρ̃m6)U2
n + (h1m2 + m5 + ρ̃m4)U3

n (4.7)

with

h1 =
m1

1 − λ2
and h2 =

−m3

1 + λ2
. (4.8)

Now, let us apply Theorem 2.4 to (4.7). Considering the right-hand side of (4.7) as
f (Un, ρ̃), we calculate that
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∂f
∂Un

(0, 0) = −1,

1
2

(
∂2f
∂U2

n
(0, 0)

)2
+

1
3
∂3f
∂U3

n
(0, 0) = 2m2

1 + 2(h1m2 + m5) � 0,

∂2f
∂Un∂ρ̃

= m3 � 0.

So, from Theorem 2.4, we may conclude that there exists a flip bifurcation for the
system (1.8) under the conditions (i), (ii), (iii) in Theorem 4.2. So the proof of Theorem
4.2 is complete. �

4.2. Neimark–Sacker bifurcation This section focuses on the construction of the
Neimark–Sacker bifurcation at the point

E∗ = (M∗, N∗) =
( a1b2

b1 − a2b2
,

a1b1(b1 − b2(a1 + a2))
(b1 − a2b2)2

)

with the help of condition (v) in Lemma 2.2.

THEOREM 4.3. If

ρ =
1
ξ1

and
ξ2
4
< ξ1, (4.9)

then there exists a Neimark–Sacker bifurcation for the equilibrium point E∗.

PROOF. It is known that if the characteristic roots of the Jacobian matrix at E∗ are
complex conjugate with modulus 1, then there may be a Neimark–Sacker bifurcation
at this point. In our problem, the characteristic equation is given by

λ2 − (2 − ρξ2)λ + (ξ1ξ2ρ
2 − ξ2ρ + 1) = 0.

Under (4.9), conditions given in Lemma 2.2(v) are satisfied and the proof is
complete. �

To show the existence of the Neimark–Sacker bifurcation, we apply Theorem 2.6.
For this aim, let us obtain the characteristic roots and the bifurcation parameter explic-
itly under the condition b1(a1 − a2) + a2b2(a1 + a2) > 0. The complex characteristic
roots are in the form

λ1,2(ρ) = α(ρ) ± iβ(ρ) = r(ρ)e±iθ(ρ)

with

α(ρ) =
2 − ξ2ρ

2
, β(ρ) =

ρ
√
ξ2(4ξ1 − ξ2)

2
,

r(ρ) =
√
α2(ρ) + β2(ρ), θ(ρ) = arctan

(
β(ρ)
α(ρ)

)
.
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Note that when ρ = 1/ξ1,

|λ1,2| = r(ρ) = 1, θ(ρ) = arctan
(√ξ2(4ξ1 − ξ2)

2 − ξ2ρ

)
= θ0,

and our critical bifurcation parameter is ρc = 1/ξ1 and

d(r(ρ))
dρ

∣∣∣∣∣
ρc=1/ξ1

=
ξ2
2
> 0,

because of the condition a1 > a2. Furthermore, since ξ2 > 0, it is seen that
(λ1,2(ρc))k = e±ikθ=0 � 1 for k = 1, 2, 3, 4. So, we conclude that Neimark–Sacker
bifurcation occurs as for the fixed point E∗ as ρ passes ρc = 1/ξ1 from left to right.

To construct the normal form of this bifurcation, let us consider the system (4.2)
again as follows: (

Xn
Yn

)
=

(
B11 B12
B21 1

) (
Xn
Yn

)
+

(
f1(Xn, Yn, ρ̃, ρ̄)
g1(Xn, Yn, ρ̃, ρ̄)

)
, (4.10)

where B11, B12, B21 and f1(Xn, Yn, ρ̃, ρ̄), g1(Xn, Yn, ρ̃, ρ̄) are given in (4.3) and (4.4),
respectively. With this system, we transform the fixed point E∗ to the origin and the
bifurcation parameter ρc = ρ̄ to zero.

Now, let us consider the following Jacobian matrix:

J(ρ̄) = J
( 1
ξ1

)
=

(
j11 j12
j21 j22

)
where

j11 =
1

b1(b1 − a2b2)2(b1 − b2(a1 + a2))
(b2

1b2(−a2
1 + 2a1a2(b2 + 1) + a2

2(3b2 − 1))

− a2
2b3

2(a1 + a2)2 − b3
1b2(a1 + 3a2) − a2b1b2

2(a1 + a2)(2a1 + a2(b2 − 2)) + b4
1),

j12 = −
b2(b1(a1 − a2) + a2b2(a1 + a2))
b1(b1 − a2b2)(b1 − b2(a1 + a2))

,

j21 =
b1(a1 − a2) + a2b2(a1 + a2)

b1 − a2b2
,

j22 = 1.

We now create a matrix

V =
(
−j12 0

j11 − μ ω

)
,

whose columns are made up of the real and imaginary parts of an eigenvector that
correspond to λ1 = μ − iω, where

μ = 1 − ξ2
2ξ1

and ω =

√
ξ2(4ξ1 − ξ2)

2ξ1
.
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Next, we apply the transformation
(
Xn

Yn

)
= V

(
Un

Vn

)

to the system (4.10) and procure the following system:
(
Un+1
Vn+1

)
=

(
μ −ω
ω μ

) (
Un

Vn

)
+

(
H1(Un, Vn)
H2(Un, Vn)

)
,

where

H1(Un, Vn) = h11U3
n + h12U2

nVn + h13U2
n + h14UnVn,

H2(Un, Vn) = h21U3
n + h22U2

nVn + h23U2
n + h24UnVn,

with

h11 = −
1

a2
1b6

1ξ
4
1Γ(α + 1)4

(2a2b2
2(b1 − a2b2)2(b2(a1(b1 − 2a2b2) + 2a2(b1 − a2b2))

+ b1(μ − 1)ξ1Γ(α + 1)(b1 − a2b2))),

h12 =
2a2b2

2ω(b1 − a2b2)3

a2
1b5

1ξ
3
1Γ(α + 1)3

,

h13 = −
b2

a1b4
1ξ

3
1Γ(α + 1)3

((b2(a1(a2
2b2

2 − 2a2b1b2 + 3b2
1) + a2(b1 − a2b2)2)

+ b1(μ − 1)ξ1Γ(α + 1)(b1 − a2b2)2)),

h14 = −
b2ω(b1 − a2b2)2

a1b3
1ξ

2
1Γ(α + 1)2

,

and

h21 =
1

a2
1b5

1ξ
4
1Γ(α + 1)4

(2a2b2
2(b1 − a2b2)2(b2(a1(b1 − 2a2b2) + 2a2(b1 − a2b2))

+ b1(μ − 1)ξ1Γ(α + 1)(b1 − a2b2))),

h22 =
2a2b2

2ω(a2b2 − b1)3

a2
1b4

1ξ
3
1Γ(α + 1)3

,

h23 =
b2

a1b3
1ξ

3
1Γ(α + 1)3

((b2(a1(b1 − a2b2)2 + a2(a2
2b2

2 − 2a2b1b2 − 3b2
1))

+ b1(μ − 1)r1Γ(α + 1)(b1 − a2b2)2)),

h24 =
b2ω(b1 − a2b2)2

a1b2
1ξ

2
1Γ(α + 1)2

.
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However, the direction of this bifurcation is calculated with the help of the
formula [21]

a
( 1
ξ1

)
= −Re

( (1 − 2λ)λ̄2

1 − λ ζ20ζ11

)
− 1

2
|ζ11|2 − |ζ02|2 + Re(λ̄ζ21) (4.11)

with the following functions, which are all calculated at the point (0, 0, 1/ξ1):

ζ20 =
1
8 [(H1

UU − H1
VV + 2H2

UV ) + i(H2
UU − H2

VV − 2H1
UV )],

ζ11 =
1
4 [(H1

UU + H1
VV ) + i(H2

UU + H2
VV )],

ζ02 =
1
8 [(H1

UU − H1
VV − 2H2

UV ) + i(H2
UU − H2

VV + 2H1
UV )],

ζ21 =
1
16 [(H1

UUU + H1
UVV + H2

UUV + H2
VVV ) + i(H2

UUU + H2
UVV − H1

UUV − H1
VVV )],

and it is said that the bifurcation is supercritical if a(1/ξ1) < 0 and subcritical if
a(1/ξ1) > 0. As a result of the above discussion, we state the following theorem.

THEOREM 4.4. If ξ2/4 < ξ1 and a(1/ξ1) � 0, then system (1.8) has a Neimark–Sacker
bifurcation at the fixed point E∗ = (M∗, N∗) and this bifurcation is supercritical if
a(1/ξ1) < 0 and subcritical if a(1/ξ1) > 0.

5. Examples

This section provides two numerical examples to strengthen and broaden the
conclusions drawn from the theory in the other sections.

EXAMPLE 5.1. This example is constructed by choosing the parameters in [7]. Here,
we obtain the system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Mn+1 = Mn + 2.11101

(
Mn(1 −Mn) − MnNn

26 + 39.2308Mn

)
,

Nn+1 = Nn + 2.11101
( 8MnNn

26 + 39.2308Mn
− 0.12Nn

)

with the initial conditions

M0 = 0.1 and N0 = 0.1.

The equilibrium point for this system is determined to be E∗ = (0.947664, 3.30649).
As the first condition in Theorem 3.3 holds, we conclude that this point is a sink as
illustrated in Figure 1(a) and the phase portrait of the system is given in Figure 1(b).

However, since the conditions of Theorem 4.2 are satisfied, we have established that
there exists a flip bifurcation when ρ exceeds the critical value 1.93915. This can also
be observed in Figures 2(a) and 2(b), where the flip bifurcation takes place within the
range [0, 3], which includes the critical value ρc = 1.93915.
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FIGURE 1. (a) Stability of E∗ = (0.947664, 3.30649) of system (1.8) and (b) phase portrait for (Mn, Nn).

(a) (b)

FIGURE 2. Bifurcation diagrams in ρ ∈ [0, 3] with initial condition (M0, N0) = (0.1, 0.1).

EXAMPLE 5.2. Let us consider the following system:
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Mn+1 = Mn + 1.5957
(
Mn(1 −Mn) − MnNn

26 + 39.2308Mn

)
,

Nn+1 = Nn + 1.5957
( 8MnNn

26 + 39.2308Mn
− 0.06Nn

)

with the initial conditions

M0 = 0.1 and N0 = 0.1.

The equilibrium E∗ = (0.276294, 26.6608) of this system is a sink, as it satisfies
the first condition of Theorem 3.3. This can be seen in Figure 3(a) and the phase
portrait of the system is given in Figure 3(b). Meanwhile, since the conditions in
Theorem 2.6 are true, there exists a Neimark–Sacker bifurcation at ρc = 1.83218. This
bifurcation is supercritical in view of (4.11), which is calculated as −0.000042416 < 0.
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FIGURE 3. (a) Stability of E∗ = (0.276294, 26.6608) of system (1.8) and (b) phase portrait for (Mn, Nn).
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FIGURE 4. Bifurcation diagrams in ρ ∈ [0, 3] with initial condition (M0, N0) = (0.1, 0.1).

This behaviour is presented in Figures 4(a) and 4(b), which occurs within the range
[0, 3].

6. Conclusion

This paper explores the bifurcation properties of a fractional-order prey–predator
model influenced by the wind, which is one of the most important abiotic factors
often overlooked in ecological studies. The model was discretized using a piecewise
discretization approach, allowing a detailed analysis of its discrete-time dynamics.
We choose ρ = hα as the bifurcation parameter that consists of both the discretization
parameter h and the fractional order α of the system. The local stability of fixed points
was investigated, and it was shown using the centre-manifold theorem and bifurcation
theory that the system experiences both flip and Neimark–Sacker bifurcations at a
positive fixed point. Numerical simulations were provided to illustrate and validate the
theoretical results.
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This work underscores the importance of including the abiotic factors such as wind
in ecological models and demonstrates the advantages of fractional-order systems
for capturing complex dynamics. Future research could focus on extending the
model to include additional ecological interactions or exploring control strategies for
practical applications. Further, validating the theoretical findings with empirical data
could enhance the model’s relevance and applicability to the real-world ecological
scenarios.
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