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ON THE BEHAVIOUR OF FUNCTIONS WITH

FINITE WEIGHTED DIRICHLET INTEGRAL

NEAR THE BOUNDARY

TAKAFUMI MURAI

1. Introduction

L. Carleson ([6]) proved the following theorem:

Let u be a finite continuous function in the unit open ball B with

center zero in the complex plane. If u satisfies the following condition:

|grad u\2 (1 — \z\)adxdy < + oo {z = x + iy, 0 < a < 1) ,
J B

then the radial limit limr_i u{reίθ) (β e SB) exists on dB except for a set

of Cα-capacity zero, where the Cα-capacity is the capacity on the real

line with respect to the kernel of order a,r~a. This is generalization of

Beurling's theorem ([2]). The above theorem is proved by using the

Fourier series and hence the original proof cannot be immediately ap-

plied to the same problem on the higher dimensional Euclidean space.

Let Rp denote the p-dimensional Euclidean space. The elements of

Rp are denoted by x = (xu , xp), s — (sly , sp) etc. The distance

between x and 0 is denoted by \x\. Let Rl+1 denote the upper half space

of Rp+ι. In particular, the elements of Rp+1 are denoted by (x; y), (s; t)

• etc, where x, s e Rp and 0 < y, t < + oo. We may consider Rp as the

boundary of Rp+1 by the ordinary embedding. The C^-capacity is the

capacity on Rp with respect to the kernel of order a,ra~p. We shall

prove the following

THEOREM 1. Let p > 2, 0 < a < 1 and u be a locally integrable

function in Rl+1. If u satisfies the following condition:

( 1 ) Igrad u 2 yadxdy < + CXD ,
I I nP + l
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where partial derivatives of u are in the sense of distributions, then

there exists a locally integrable function v in Rl+1 such that u = v al-

most everywhere (a.e.) in Rp+1 and limr_0 v(x r) exists on Rp except for

a set of C[vJa-capacity zero.

Applying this theorem to a locally integrable function u in the open

unite ball Bv with center 0 in Rp (p > 3) satisfying analogous condition

to (1), we shall obtain a generalized form of the Carleson's theorem in

Rp.

Next, we shall examine the behaviour of harmonic functions satisfy-

ing (1) near the boundary. We introduce a more extended conception

than the non-tangential limit. For γ > 1, m > 0 and s e Rp, define

R(m, s, γ) = {(x ;y);\s — x\r < my} .

We say that a function f(x; y) on Rp+ι has a T(j)-limit L at s provided

with

lim f(x y) = L

for any m > 0. We shall show the following

THEOREM 2. Let p>2, — 1 < a < 1 and 0<β<l — a. If a harmonic

function h satisfies (1), then h has T\—^ ~ ^' —Vlimits on Rp except
\p- (1 - a)β/

for a set of C(

β

p)-capacity zero.

Finally, we shall deal with the rectangular limit to the boundary of

harmonic functions on Rp+1. Let

Γm(s;t) - β ( m , s , l ) Π {(x;y);y < t] .

For — 1 < a < 1 and a harmonic function h in Rl+ι, define

Sa(s t) = f f I grad h(x y) |2

yp

The third main theorem is the following

THEOREM 3. Let p>2, - K α < l , ί 7 be a measurable set on Rp and

h harmonic in Rp+1. If Sα(s 1) < + oo for any seE, then lim^o h(s r)

exists on E except for a set of Cί^-capacity zero.

This theorem is suggested by the following theorem which was

https://doi.org/10.1017/S0027763000016044 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000016044


DIRICHLET INTEGRAL 85

obtained by A. P. Carderόn and E. M. Stein (See [4], [11], [12]).
Let p > 2, E be a measurable set on Rp and h harmonic in Λ*+ι.

Then the following three conditions are equivalent.
( i ) h has a non-tangential limit for almost all point seE.
(ii) h is non-tangentially bounded for α.α. point seE.
(iii) SΊ(s; 1) < +co for α.α. point seE.

2. The proof of Theorem 1.

For the proof of Theorem 1, we prepare the following three lemmas.

LEMMA 1. Let 0 < a < 1. Then there exists a constant cλ such that

Γ±dy f
Joy" Jir J Wls, - a|2 + (ί, - ΪJ) 2V|S 2 - x? + (ί2

τdx

/or an?/ Sj, s2 e J?p and 0 < tl912 < + oo.

The method of the proof is the same as in the case of p = 1, so
we omit the proof. See P. 56 in [6].

LEMMA 2. ( i ) Let 0 < a < 1. Then there exists a positive con-
stant c2 such that

JV|α(ί ) | 2 + \a'(f)\*)t*dt > c2?~«\a(p) - α(r)|2

for any ξ, r > 0 , 0 < τ < p < r and any finite continuous function α(ί)
of BL-type in the open interval (0,?̂ ).

(ii) Let — l<a<l. Then there exists a positive constant c3 such
that

(Vlα(ί)l2 + |α;(ί)|2)ίβdί > c£ι-\a(p) - α(0)f

for any ξ, r > 0 , 0 < p <r and any finite continuous function a(t) in [0,1)
of BL-type in (0,r).

The proof is analogous to in Lemma 5 of [6], so we omit the proof.
For a measure μ on Rp (p > 2), the potential of μ of order a (0 < a < p)

is defined by
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Uμ(x) = A(p,a) J J 1

 |p.α

where A(p9a) = ^-pnE^LzJ^l^ and fcα = A(p, «>"-*. Let me be the
/Xαr/2)

unit measure on Rp uniformly distributed in the open ball 2?(0,e) with

center 0 and radius ε. The following proposition is well-known ([9]).

PROPOSITION. Let p > 2 and 0 < a < p. Then there exists a con-

stant c4 depending on p and a such that for any potential Uμ,

Uμ

a*m£x) < cJ3μ£x) .

Let μ be a measure on Rp. Set

in Rl+1 provided the right integral is defined, where σp+1 is the surface

area of the unit sphere in Rp+1. By the properties of maximal functions

([13]) and the preceding proposition, we obtain

( 2 ) hμ(x y) < sup Uμ

a*mt(x) < c,Uμ(x)
e>0

for any potential Uμ

a.

LEMMA 3. Let u be a temperate distribution in Rp (p > 2). Suppose

that the Fourier transformation u of u is a function such that

ΊflΊ^(?)M?< +°° (0<a<p) .

Then u is a signed measure on Rp, and hu(x y) is defined and harmonic

in Rp+1. l im r _ 0 ^(^;^) exists except for a set of C(p)-capacity zero.

Proof. By [1], we can set u = Uμ

a/2 in the sense of distributions,

where μ is a square integrable function in Rp. The potential U[% is

not identically infinite and hence it is locally integrable. Consequently,

u — Uμ

tt/2 in the sense of measures. By (2), hu = hvμ 2 is defined and

harmonic in Rp

+

+ι. Since C(f({x e Rp Ulμ/2 = +00})^= 0, it is sufficient to

show that

lim hπμ+(x r) = Uμ%(x)
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everywhere. This holds evidently at any point x e Rp where Uμ%(x) = + oo.

Suppose Uμ

a%(x) < + oo. For any η > 0, there exists a δ > 0 such that

Uμ

a}2(
χ) < η> where μλ is the restriction of μ+ to the open ball B(x,δ). Put

μo = μ+ - ft. By (2),

lim \hΌμ+(x r) - U^2(x)\ < lim \hn/>o(x r) -

lim fe^i (a; r) + ί7ί}2(^) < lim | W « ^) - Uμ

a%(x)\
r-0 α / 2 r-0 α / 2

Since Uμ

a% is finite continuous in B(x,δ),

lim fe^A«o (x r) = ϋμ

a)2(x) .
r-*0 α / 2

Let 22 tend to zero. We obtain

lim hjjμ+ix r) = Z7;̂ (ίc) .
r—0 α / z

This completes the proof.

We remark on some transformation. We introduce an infinitely

differentiable function on R1 such that f(t) — 0 on t < 1, /(ί) — 1 on

ί > 2, 0 < /(ί) < 1 on 1 < t < 2 and 0 < /(«) < 1 on Λ1. Consider the

domains

D = {(x;y); \x\ < 4 and f(\x\) < y < f(\x\) + 2}

and

M = DΓi{(x;y);\x\>3 or y > f(\x\) + 1}

Define a mapping Φ from D to Rp+1 bγ

Φ(χ;y) = (%;y - f(\χ\)).

Set

17 = {(αj ; i/) ; |a j |<4 and 0 < y < 2}

and

Γ = tfΠ {(α 0) | α | > 3 or y > 1} .

It is obvious t h a t Φ(JD) = U and Φ(ikf) = T. Set ^(aj ;y) = u(x;y + f(\x\))

in C7, where π is the function in Theorem. Then ux is a locally inte-

grable function in U such t h a t
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oo .|grad ux(x y)\2 yadxdy

Since

dy | grad u(x ;y)\2 dx < +00 ,
Jl/2 J

we can assume that u is bounded on M. (See Theorem 4 (p. 125) in [7])

Hence ux is bounded on T. Let u2 be a function in Rl+1 such that ^2 =

ux in £7 - Γ, u2 = 0 on i??+1 - # and

if I grad u2(x y) f yadxdy < + oo .

Then w(aj y) = ^2(# #) in |a?| < 1 and 0 < y < 1. Hence limr_ou(x r) =

limr^0 u2(x r) in |a;| < 1 provided one of the two limits exist. If, for

u2, there exists our desired function 1/, we obtain obviously, for u, the

function v in Theorem. Consequently, we can assume that u is sup-

ported by \x\ < 1 and 0 < y < 1.

There exists a sequence (unχ=1 of continuously differentiate func-

tions in Rl+1 such that un = 0 on | # | > 3/2 or ?/ > 3/2 for all n, un->u

as n -> 00 a.e. in 2?ϊ+1 and

I grad (^n — ^) | 2 dxdy — εn(τf) —* 0 as % —> 00

for each η > 0. There exists a sequence 6?fc)^=1 such that ηk < 2, ηk[0

and

J |^ n (« 9*) - u(χ ; as ft -^ oo

for each k. (Choose a subsequence of (un)%=19 if necessary.) Put Dk =

{(«; 2/) | # | < 2, ηk < y < 2}. Applying the Green's formula to un and

--•'- ' - vΊs-z| 2

in Dk, we obtain
1 Γ r)

un(s t) = -^ vn--g(S.t)dσ(x 3/)

(grad un, grad gi8;t))dxdy
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for (s;t)eDk, where d/dn is the outer normal derivative on 3Dk and da

the surface element on 3Dk. Since un = 0 on \x\ > 3/2 or y > 3/2,

( 3 )

2 Γ
un(s; t) = \un(x\ηk)—r

σp+ι J V\s-xι

t — -Ax

— — (grad un, grad giS;t))dxdy

For a vanishing sequence (αnG7*))n=i of positive numbers such that

(4) έ - Φ i < +™>

Put

Then

n,fc = Us ί) G RP+1 ί ί |(grad (ι/n - u),grad g{S)t))\dxdy > an(ηk)\ .

Crυ(An>k) < c-^— ίί I grad (un - u)f dxdy = c^ή^ .

By (4),

n -+ ooI (grad (un — u), grad gi8.t)) \ dxdy -> 0 as
JjDic

in Rl+1 except for a set of C£p+1)-capacity zero. Let n —* oo in (3).

w(s ί) - -A- fM(a? ηk) .
( 5 )

| S - X|2 + (t-ηk)
2P+1

——7r if (grad u,grad g(S]t))dxdy

a.e. in D^. Put ίίΛf9(ίc) = un(x; rj),uv{x) = %(»; 27) and

L = I 2/βdi/ f I g r a d wn |
2 da

^(x yΛdx.
3y J

Since
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dξ ,

L =
&&L

dy

dy
)yady.

By Lemma 2 (i),

By the same argument,

J y*dyigrad(wn - wm)|2 dx > c \\ξ\ι'a\nntVk — ϋm,ηJ dξ .

Since

I Vady |grad (wn — um)\2 dx -> 0 as w —> oo, m -» oo ,

there exists a locally integrable function u'Vk in 2?p such that

We have tt9 j = ^ Λ a.e. in Rp, because

- uVk\

as

as n -> oo .

We obtain

( 6 ) Γydy (grad ^ n | 2 dx > c f|f I1

Let w —> oo in (6). We have

Γyady

Since

< k)

fc)
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£yady I grad u f dx —» 0 as ί —> co, k —> co ,

there exists a locally integrable function u0 in i?p such that

) I f Γ"β 1^?* — ^ol 2 d? - > 0 a s fc - > CXD .

By the elementary formula

2

for t > ηk, we have

— 7]k -Ax

—j
t —

-. \Λ/%Λj I Li/i

V i s - i f

< fl*»*l le-"1"-'*' - e- !" f l t| dξ

< {\ξ\1" \ΰ,J2dξ f
J J |

as fc -^ oo and

as k—> oo, and hence

-A_ Jΐtt>

( = feMo(s;ί)) as k-*oo. Letting k-^oo in (5),
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u(s t) = hUo(s ί)

( 7 ) 1 C C
— lim — (grad u9 grad g{S]t))dxdy

a.e. in |s| < 2 and 0 < t < 2. Given 6 > 0, put

For a compact set K in Z?, there exists a measurable function ρ(s) on
/?p satisfying

I (grad u, grad flr(ί;p(β)))| d̂ ώτ/ > b

on K. By Lemma 1, we have, with constants c and c'

b2

< c J J p + i |grad u\2 yαdxdy M

X — , — dxdy
2/V|β! - x|2 + (M) ~ ?/)2 V|s2 -x\2 + (p(s2) -yyp

<c'{{ I grad u f yαdxdy f I λ dμ^
JJRV+1 JJ \S1 — s2\

p~1+α

where μk is the equilibrium measure on K of unit mass. Therefore

and so the same inequality holds for E. Consequently,

\ I I I nj> + 1 ' J /
+

and hence

lim (grad u, grad g(8.t))dxdy
( 8 ) ^ - j f t

= (grad M, grad g(8.t))dxdy

for s in i?p except for a set of Cί^-capacity zero. Hence the equality
(8) holds for a.e. in R*+1. We obtain
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u(s t) = hUQ(s t) — — (grad u, grad g(S.t))dxdy
σp+1{p — 1) J J

a.e. in \s\ < 2 and 0 < £ < 2. We have, in the same manner as the above,

that

lim I (grad u, grad g{S t))dxdy

exists in Rp except for a set of C{?α-capacity zero. Put

v(s t) = hUo(s £) — — J | (grad u> grad g(S.t))dxdy

in |s | < 2 and 0 < t < 2, v(s t) = 0 otherwise. Then v — u a.e. in jf?^+1

and lim^o v(s r) exists except for a set of Cί^-eapacity zero. This com-

pletes the proof.

In particular, if u is finite continuous in 2?J+1, we can evidently

choose v =: u.

COROLLARY. Let u be a locally integrable function in the open unit

ball Bp with center 0 in Rp (p > 3). If u satisfies the following condi-

tion:

I grad M |2 (1 - \x\)adx < +oo (0 < a < 1) ,

exists a locally integrable function v in Bp such that u — v

a.e. and limr_^ v(rξ) (ξedBp) exists on 3BP except for a set of C ^ 1 } -

capacity zero.

Proof. Similarly we may assume that u is supported by {xeBp;

\χ\ > hχp > i} Then by a suitable transformation from { ^ e B p ; ^ > 0}

to Rl, u is mapped to a function ^ of the class in our theorem and

hence this corollary is immediately followed.

3. The proof of Theorem 2.

We prepare five lemmas. In the following lemmas, we only consid-

er the case of p > 2 except for in Lemma 8.

LEMMA 4. For γ >1 and m > 0, there exists a positive constant cx

such that

V|S — x|2 + y2 > c1\s — sQ\r
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for any s, s0 e Rp with \s — sQ\ < 1 and any (x y) e R(yn, s0, γ).

LEMMA 5. For s, sQ e Rp and 0 < a < p, put uSo(s) = . There
|β-*olp~β

exists a constant c2 depending on p and a such that

hu (x: y) < Co
so 2 (Iso - x? + yΎp-a)/2

for any s0 e Rp and any (x y) e Rl+ι.

Proof. Put

1vSo(% y) =
(Iso - ^l2 + v2yp,2Mp-α)/2

It is sufficient to show that there exists a constant c2 such that for any

(x;y)e Rp

+

+ι,hUo(x y) < c2v0(x y). For 0 < m < + oo, put Γm = {(x y)

I a; I = my y > 0}. For m e [0,2] and O y) e Γm, we obtain, with constants

c[ a n d Cg,

hUQ(x ») = ~

< φo(x y) .

For m e (2, oo) and (x y) e Γm9 put ίc0 = x/\x\. We have, with constants

c'z a n d C4,

= _2_f V_

~ds

<U<cMx;y).

Put c2 = max (e ,̂ cj). We obtain hUo(x y) < c2v0(x 7/) for any (x y) e 2?ϊ+1

This completes the proof.

Let L\OQ(RP) be the usual Frechet space of locally integrable functions

in Rp. We denote
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= {ω e LIAR*) Jl?lα |ώ(?)|2 d? < + 00} (0 < a < p) .

Then P<*> is a Banach space with norm ||ω||β = (ϊ\ξ\a\ώ(ξ)\2 dξ\ι/2. The

following lemma is essential in our proof.

LEMMA 6. Let 0 < β < a < p and ω e P<*\ Then hω has τ(p " <£/2Λ-

limits on Rp except for a set of Cf]-capacity zero.

Proof. Put γ = v ~~ ̂ ^^. By [1], we can describe ω = Uμ

a/2 in
p — (a/2)

L\OQ{RV), where μ is a square integrable function. Suppose U]

β%(0) < +oo

and S(μ) c B(0,1). By Lemma 4 and Lemma 5, for any (x y) e Rim, 0, γ),

v) =

^ /

It is well-known that C(

β

p)({x e i?^ Uι

a%(x) = + oo}) = C^}({x e

+ oo}) = 0 for any square integrable function μ. We can prove Lemma 6

by the same way as in Lemma 3 and hence we omit the rest of our

proof.

Let H^^K-KaKl) be the totality of harmonic functions in Rl+1

with (1). Hip+1) is a Banach space with norm |||Λ|||β = (11 |grad hix y)\2 ya

)V2

LEMMA 7. Let - K a < l and ωeP[l\. Then \\\hω\\\a = ca\\Hι-«>

where ca = 2-«-1τr~(«+1)/2(l + Aπψ2Γ(a + 1)1/2.

Proof. If ω is a sufficiently smooth function with a compact sup-

port, we have

{hω(x; y)e-™'*dx = L(s)ds(^~ f
J J \σp+1 H\s - x\2

= ί e - 2 s | ί i ^ - 2
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Put ωy(x) = hJLx y). Then ώy(ξ) = e-2°lζlyώ(ξ) and dώv/dy(ξ) = - & | £ |

ώ(f). Hence we obtain

= fa-ay J(|f|2K(f)l2 +

By the limit process, we obtain the equality of Lemma 7 for any ω e P[ί\.
This completes the proof.

LEMMA 8. Let h be harmonic in Rp (p>S). If h satisfies the fol-
lowing condition:

| g rad hf —dx < + oo (0 < a < 1) ,
\x\

then h is constant.

Proof. Put u = |grad hf. Then u is subharmonic. Assume %(0) > 0.
Then

r~ i r / r™ \
Γ A-dr f ^dσ > σp ( Γ

Jl r 9 JdB(0yr) \Jl

This is contradiction. Hence ^(0) — 0. By the same argument, u = 0.
This completes the proof.

We are going to show Theorem 2. Let 0 < a < 1. For any η > 0,
there exists a distribution Γ9 with finite Newton energy and a constant
c6 which is independent on η such that h(x y) = u/jf'Ca? 2/) + c6 in ί > η.
We may assume c6 = 0. Put ω,(x) = &(#; 57). By the same argument as
in Theorem 1, we have ωηeP[l\ Π Pp* and \\ωv - ω,,||1_Λ->0 as η,η'-*O.
There exists ωeP[l\ such that ||ω, — ω||1_α->0 as η ->0. Since Λω7(a?; 0)
= h(x ^) and hωη(x y)— h(x;y + η) eH(

o

p+1\ we have hωη(x;y) = h(x;y + η).
Letting η—> 0, we have hω(x; y) = h(x;y). By lemma 6, the assertion
of this theorem holds in the 0 < a < 1 case.

Let — 1 < a < 0. Since for almost all y,

(9) f |grad h(x ;y)\2dx < +00 .

We can assume that (9) holds for y — lfn (n = 1,2, •). There exists
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a sequence of numbers (dn)ζ=1 such that ωn = h(x; 1/ri) + dne P(

2

a\ Then

\\ωn\\l< \\gra.dh(x;l/ri)fdx < +00 .

By Lemma 8, we have h(x; y + 1/ri) = hωn(x; y) + dn. Let £(t) = t~a in

ί < 1 and h(t) — t2 on t > 1. There exists a constant c7 such that

11 I grad hωn f - dxdy = | ί | grad h(x y) f dxdy
JJRP++1 1 + y~a JJR\+1 1 + y~a

< cΛ\ I grad h f dxdy < + 00 .

Since for t < 1,

Γ e'tvdy = ί""'1 Γ e~vdy
Jo 1 + ί-« Jo t~a + y~a

> t—1 Γ — i e-^# .
Jo 1 + #-«

We have, with a constant c8,

if |grad KJ } dxdy - f |f f \ώnf dξ Γ —*L—e-
JJR*++1 1 + i/"α J Jθ 1 + I/""*

Moreover

i +co .

By the same argument as in the 0 < a < 1 case, there exists a ω0 e L\OQ(RV)

such that hωo(x;y) = h(x; y). By Lemma (2) (ii), we have ω0 e P{?α. By

Lemma 6, the assertion of this theorem holds in the — 1 < a < 0 case.

This completes the proof.

4 The proof of Theorem 3.

Let E be the set in Theorem 3. For positive integers n, m, put

En>m = E Π B ( 0 , n ) f l { s e ^ ; Sa(s 2) < m}. Then S = U#»,« . Since

>Sα(s 2) is lower semi-continuous, {s e Rp Sα(s 2) < m) is closed. There-

fore it is sufficient to show the following
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THEOREM 3'. Let p > 2, - 1 < a < 1, E be a compact set in J5(0,l)

and h harmonic in Rl+1. If Sa(s;2) is bounded on E, then limr_0 h(s r)

exists on E except for a set of C^-capacity zero.

Put Ux = (J.e* Γa(s 3/2) (a < 1),C72 - {(x ;y);y>l} and R - U, Π t/2.

Then the following lemma holds.

LEMMA 9. ([12]) There exists a sequence (#«)„=i of domains in Rl+1

satisfying the following four conditions:

( i ) RnaR,

(ii) Rn% c Rni for nx > n2,

(iii) dis (βRn9 dR) -+ 0 as n -* oo,

where δn(x) is an infinitely differential function such that 0 < δn(x) < 3/2

on Rp, δn(x) = 1 on \x\ > 2 and \dδn/dXi\ < I/a (i = 1, , p).

LEMMA 10. Let Sa(x 2)1/2 < M1 on E. There exists a constant c0

depending on p, a and a such that

I grad h(s; y)f (y — δn(x))adxdy < c0M\ .

Proof. Let EQ = [JseE {x e Rp | x - s\ < (3/2)α}. For a; e Eo, define

= inf {]/ (x #) e f/J. Evidently, ?/(x) is measurable on Eo and

0 < y(x) < 3/2. We define a vector valued measurable function s(x) =

(Si(ίr), ,Sp(x)) such that (a?; 2/(a;)) e3Γα(s(αj); 3/2). There exists a con-

stant &(0 < k < £) depending only on α such that for any (x y) e Uu

the open ball Bk(x /̂) with center (x /̂) and radius ky is containted in

Γ^six) 2). Since |grad h(x 2/) I2 is subharmonic, we have, with constants

Cj and c2 (depending on p, a and α),

I g r a d M» V) f < {V^ Λ

X)

+Ί f f Igrad h(s t) f dsdt
σΏΛky)p+ι JJB*<*;!0

< c2 ff |gradMs;ί)|2-A

Hence we have

\gradh(x;y)\2(y-δn(x)y

< 2 c / l z i ϊ M ) β ff igrad h(s t)f _1
\ 2 / JJΓi(β(aj);2) ί̂ H
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Then

11 I grad h(x y) f (y - δn(x))adxdy

Γ Γ3/2

= \ dx \ I grad h(x y)f (y — δn(x))ady
J Eo J δn(x)

< 2a+1c2 [ dx Γradr ί ί |grad h(s; t)\2-*—dsdt
J Eo JO JjΓi(sU);2) tP + 1

= 2 " + 1 c2 f eta (T I grad h(s £)|2 -^—dsdt < c0Ml .
α + 1 J^o JJri(β(ar);2) tP~a

LEMMA 11. There exists a constant c3 depending on p, a and a

such that for any (x y) e U19

y(1+a)/21 grad h(x y) |2 < c ^ .

By the elementary calculation, we can show this inequality.

We are going to prove Theorem 3'. By Lemma 10, there exists a

continuously differentiable function u(x;y) on Rp+1 such that u(x;y) =

y) on |αs| < 2, 0 < 7/ < 2, ^O 7/) = 0 on \x\ > 3 or ?/ > 3 and

I grad u(x y)\2 (y — δn(x))adxdy < cQM\ + 1 .

Define un(x y) — u{x y + δn(x)) and ωn(x) — un(x; 0). Then we have,

with constant c'o depending on α,

Π lgrad un(x; y)\2yadxdy < c'0(cQMl + 1) .
Rl+1

By Lemma 2 (ii), there exists a constant c4 depending on p and <x such

that

» Λ Λ

KcoM? + 1)) .

Hence we may assume t h a t there exists ω e P{vJa such t h a t ωn —> ω weakly

in P[l\ as n-> oo. By [1], we can describe ω = Γ7{Ί_β)/2 a.e., where ^ is

a square integrable function. Assume t h a t soeE and £/(?lα)/2(So) < + o o .

P u t Z7&_β)/2(s0) = δ. We show lim,.^ fe(s0 r) = 6. Set D = {(x;y);\x\<2,

0<y< 2}, 3 D ! = dD Π {(x;y);y > 1}, dD 2 = 3D - dDί9 Do = R Π D ,

D n = β n Π D, 3D n f l - ai?n Π Ulf dDn>2 = (3JBΛ - 3DΛ f l) Π {(a? y) | » | < 2}

and &Dn,3 = aD n — (dDnΛ U 3DΛ f 2). P u t Γ = sup {h(x 2/) (x j/) 6 3DJ- and
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M2 = snv{ya+a)/2\gradh(x;y)\2; (x;y)e{(s; t); \s\ < 3,i < t < 2)} .

Let H(x y) be the harmonic function in D whose boundary values equal
to 1 on 3D1 and 0 on 3D2. For (x; y) e dDnΛ, Bk(x y) is contained in
Γ^six) 2). For any (s t) e Bk{x y), we have, with a constant ix depend-
ing on p, a and a,

\h(x;y)-h(s;t)\

< ky sup {|grad h{x'\y')\\ {xf yf) e Bk(x y)} <

In particular, for (s; t)edRn Π Bk(x; y), we have,

and hence

ωn(s) - b - β.M^-^2 <h(x;y)-b

< ωn(s) -b +

Since \dδnfdXi\<l/a (i = 1, * ,p), the inequality (10) holds for sei? p

as long as |# — s\ < Vl + (p/a2) (=^2) Let ^3 be a number with
Vl<*p(&dv < ŝ < 2p'p/ap(£2)

p and ψ(s) an infinitely differentiate function
such that ψ(s) = ^3 on |s| < 4/2, ψ(s) = 0 on |s| > ί29 0 < ψ(s) < £3 and

fψ(s)ds = 1. Put ψy(s) = (l/yp)ψ(s/y) and τ ^ ( s ) = ψy(s - α;). By (10),

n - b)τxψyds - iMitl~a)n <Hx;y) -b

< J (ωn - 6)rβψ y(te + ^1M17/(1

Letting n —> oo, we have

ί (ω - b)τxψyds - ^1M1?/α-α ) / 2 < Λ(x y) - 5
(11) J

 f

< J (ω - &)τΛψyds + ^1M1?/(1-

We see, with a positive constant ^ depending on p> a and α,

2 * > | ψ ( β )
σ,+i ((β - x)2 +

for \s — x\ < £2y. Hence by (11),

\h(s;y)-b\< £,hlm_ti(x; y)
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By the same argument, there exists constants £'o and £[ depending on

p, a and a such that for any (x y) e dDn>2,

\h(x;y)-b\< tΌh^x y) + £[M2y«-«)/2 .

Since dDn>z — dDu we see

\h(x; y) - b\ < (T + \b\)H(x; y)

for any (x y) e dDUt3. Put f0 — max (£Q9 ΦJΪ = max (A, ^ί) and M =

max(M1,M2), we have

\h(x;y)~b\< K'hlω-bl(x;y) + (T + \b\)H(x;y) + %'My"-"2

for any (x;y)edDn and hence this inequality holds in Dn. Letting

n—> oo, we obtain that this inequality holds in D. We see limr_0 hϊω_bl

. (s0 r) = 0. Hence we obtain limr_0 h(sQ r) = b. Since CΊ_rt({s e E

^ίiί«)/2(s) = +00}) = 0, this completes the proof.
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