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ON THE BEHAVIOUR OF FUNCTIONS WITH
FINITE WEIGHTED DIRICHLET INTEGRAL
NEAR THE BOUNDARY

TAKAFUMI MURAI

1. Introduction

L. Carleson ([6]) proved the following theorem:
Let % be a finite continuous function in the unit open ball B with
center zero in the complex plane. If u satisfies the following condition:

f lgrad u? A — |zP*dzedy < + oo =xz+1iy, 0<a<],
B

then the radial limit lim,_, u(re*) (8 cdB) exists on 0B except for a set
of C,-capacity zero, where the C,-capacity is the capacity on the real
line with respect to the kernel of order «,7~* This is generalization of
Beurling’s theorem ([2]). The above theorem is proved by using the
Fourier series and hence the original proof cannot be immediately ap-
plied to the same problem on the higher dimensional Euclidean space.
Let R? denote the p-dimensional Euclidean space. The elements of
R? are denoted by x = (2, ---,%,), s = (8, -++,8,) -+ ete. The distance
between x and 0 is denoted by |z]. Let R2*' denote the upper half space
of R?*. In particular, the elements of R?*' are denoted by (x; v), (s; 1)
.. ete, where z,seR? and 0<y,t< +c0. We may consider R? as the
boundary of R2*!' by the ordinary embedding. The C{»-capacity is the
capacity on R? with respect to the kernel of order «,7*"?. We shall
prove the following

THEOREM 1. Let p>2, 0<a <1 and u be a locally integrable
function in R2*. If w satisfies the following condition:

(1) ” lgrad uf y*dzdy < +oo ,
R£+1
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where partial derivatives of u are in the sense of distributions, then
there exists a locally integrable function v in RZ*' such that u = v al-
most everywhere (a.e.) in R and lim,_,v(z; r) exists on R? except for
a set of C® -capacity zero.

Applying this theorem to a locally integrable function « in the open
unite ball B, with center 0 in R? (p > 3) satisfying analogous condition
to (1), we shall obtain a generalized form of the Carleson’s theorem in
R?,

Next, we shall examine the behaviour of harmonic functions satisfy-
ing (1) near the boundary. We introduce a more extended conception
than the non-tangential limit. For y > 1, m > 0 and s R?, define

R(m,s,7) = {(x;9);|s — zff < my} .
We say that a function f(x;¥) on R2*' has a T'(p)-limit L at s provided
with
lim f(z;y) =L

(2;9)—(s;0)
(@;9) € R(m,8,7)

for any m > 0. We shall show the following

THEOREM 2. Letp>2, —1<a<land 0<B<1—a. If a harmonic

function h satisfies (1), then h has T(—p—a(ﬁ—/z))/—z—)-limits on R? except
p—»1A—«
for a set of C{P-capacity zero.

AFinally, we shall deal with the rectangular limit to the boundary of
harmonic functions on R2*'. Let

I'y(s;t) = R(m,s,1) N {(z;9);y <{t}.

For —1 < a <1 and a harmonic function 2 in R2*’, define

S(s; 1) = ” lgrad h(z; )P~ dzdy .
I'1(s;t) yr-e

The third main theorem is the following

THEOREM 3. Let p>2, -1 <a<1,E be a measurable set on R? and
h harmonic in RE*. If S(s;1) < 4+ oo for any se E, then lim,_ h(s; 7)
exists on E except for a set of C®.-capacity zero.

This theorem is suggested by the following theorem which was
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obtained by A.P. Carderén and E. M. Stein (See [4], [11], [12]).

Let p > 2, E be a measurable set on R? and % harmonic in R?*%.
Then the following three conditions are equivalent.

(i) h has a non-tangential limit for almost all point sec F.

(ii) & is non-tangentially bounded for @.a. point se E.

(i) S,(s;1) < +oo for a.a. point sc E.

2. The proof of Theorem 1.

For the proof of Theorem 1, we prepare the following three lemmas.
LEMMA 1. Let 0 <o <1. Then there exists a constant ¢, such that

=1 1
—d j Ax
Ly“ Y roy/[s; — xff + (& — ¥ V]|s, — af + (&, — ¥
1

ISI - SZ|p-1+a

<q

for any s, s,e R? and 0 < ¢, t, < +oo.

The method of the proof is the same as in the case of p =1, so
we omit the proof. See P. 56 in [6].

LEMMA 2. (i) Let 0 <a <1l. Then there exists a positive con-
stant ¢, such that

f(sg @O + [ OPEdt > 68 alo) — ao)]

for any & 71> 0,0 <t <p<r and any finite continuous function a(t)
of BL-type in the open interval (0, 7).

(ii) Let —1<a<1l. Then there exists a positive constant ¢, such
that

j:(a? )] + @ OPEdt > e alp) — a(O)]

forany &, 7> 0,0 < p <7 and any finite continuous function a(t) in [0,1)
of BL-type in (0,7).

The proof is analogous to in Lemma 5 of [6], so we omit the proof.
For a measure x on R? (p > 2), the potential of p of order a (0 <a <p)
is defined by
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1

— Sip*a

Us(@) = A(p, @) f E dp(s) = kos p(z)

where A(p, a) = n“‘WM and k, = A(p,®)r*-?. Let m, be the
I«/2)

unit measure on R? uniformly distributed in the open ball B(0,¢) with
center 0 and radius e. The following proposition is well-known ([9]).

PROPOSITION. Let p > 2 and 0 < o« < p. Then there exists a con-
stant ¢, depending on p and « such that for any potential U,

Urxm(x) < e, Ux(2) .

Let ¢ be a measure on R?. Set

2 Y
h ’ =
i = 2 j e

in R2*! provided the right integral is defined, where o,,, is the surface
area of the unit sphere in R?*!. By the properties of maximal functions
([13]) and the preceding proposition, we obtain

(2) h(x;y) < sup Usxm,(x) < c,Uk(x)
e>0

for any potential U:.

LEMMA 3. Let u be a temperate distribution in R? (p > 2). Suppose
that the Fourier tramsformation # of u ts & function such that

ﬁsl"m(sw dE< 400 (0<a<p).

Then u is a signed measure on RP, and h,(x; y) is defined and harmonic
i R2*. lim,_, h,(x; r) exists except for a set of CP-capacity zero.

Proof. By [1], we can set u = U%, in the sense of distributions,
where p is a square integrable function in R?. The potential Ul is
not identically infinite and hence it is locally integrable. Consequently,
u = U, in the sense of measures. By (2), h, = hUﬁ/z is defined and
harmonic in R2*!. Since C»({x e R?; Uk, = +c0}) = 0, it is sufficient to
show that

lirf)l hoer(@; 1) = Usja(x)
—
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everywhere. This holds evidently at any point « ¢ R? where U#(x) = + oo.
Suppose U4;y(x) < +oco. For any 5 > 0, there exists a § > 0 such that
Us(x) <7, where p, is the restriction of p* to the open ball B(z,d). Put
to=p" —m. By ),

lm [hyg(@; 1) — Usi(@)] < T gz (@5 1) — Ul(@)]
+ lzi?l;hvﬁ;z(x; ) + Uty(@) < 173701 e, (23 1) — Utin(@)]
+9le, + 1) .
Since Uw, is finite continuous in B(zx, d),

lim hUﬁ%(x; 7') = Uﬁ(/’z(x) .

r~0
Let 5 tend to zero. We obtain
lim hget(x; 1) = Utiy(x) .«
-0 af2
This completes the proof.
We remark on some transformation. We introduce an infinitely

differentiable function on R' such that f({) =0 on ¢ <1, f({) =1 on

t>2,0<f<1lonl1l<it<2and 0L f(#) <1 on R'. Consider the
domains

D= {@;y;lx|<4 and f(z) <y < f(z) + 2}
and
M=Dn{&;y;lz|>3 or y> f(z) + 1}
Define a mapping @ from D to R?*! by
O(x;y) = (@5 y — f(z]) .

Set

U={=;;|z|<4 and 0<y<2}
and

T=UN{x;y;|z|>3 or y>1}.

It is obvious that @(D) = U and ¢(M) =T. Set u(x;y) =ux;y + f(z])
in U, where u is the function in Theorem. Then u, is a locally inte-
grable function in U such that
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”U!grad w(x; YFydedy < +co .

Since
r dyjlgrad wx; PPde < 400,
1/2

we can assume that u is bounded on M. (See Theorem 4 (p. 125) in [7])
Hence #, is bounded on T. Let u, be a function in R2*! such that u, =
u, in U —-T,u,=0 on R2*' — U and

”Rp+1|grad w5 Y P yedady < +oo .

Then u(x; ¥) = u(x; %) in |2| <1 and 0 <y <1. Hence lim,_,u(z;7r) =
lim,_, u,(x; ) in |x] <1 provided one of the two limits exist. If, for
u,, there exists our desired function v/, we obtain obviously, for u, the
function » in Theorem. Consequently, we can assume that u is sup-
ported by [2] <1 and 0 <y < 1.

There exists a sequence (u,);_, of continuously differentiable funec-
tions in R2*! such that %, = 0 on || >3/2 or ¥y > 3/2 for all n, u, —»u
as n— co a.e. in R2*' and

” |grad (u, — W} dedy = e,(p) — 0 as n— oo
D,y>y

for each » > 0. There exists a sequence (y);., such that 5, <2, 7,10
and

'[lun(x, ) — u(@; pp)|dx — 0 as n — oo

for each k. (Choose a subsequence of (u,);_,, if necessary.) Put D, =
{@; ;x| <2, <y <2} Applying the Green’s formula to u, and

1
et G

g(s;t)(x; y) =
in D,, we obtain

U853 1) = L vnjn—g(mdo(x; Y)

op(® — DJone 0
— Y ([ (eradu,, grad 9s:0)dxdy
0p+1(p - 1) Dr

https://doi.org/10.1017/50027763000016044 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016044

DIRICHLET INTEGRAL 89

for (s;t) e D, where d/on is the outer normal derivative on 4D, and do
the surface element on 9D,. Since u, =0 on |[x|>3/2 or ¥y > 3/2,

t'—7]k

U, (25 11) dx
-[ ( 77k«/l —af + & —p) ™"

U (85 t) =
Op+1
(3)

— m J (grad u,, grad g .;)dxdy
For a vanishing sequence (a,(y:));-, of positive numbers such that
(4) 3 ) o
Put

A= {(s; t) e R2*, I Dk[ (grad (u, — u), grad g.,..,)| dedy > an(pk)} .
Then

O < oL [ larad e, — wF dady = 279

a (77k)2

k)2
By 4,

JJ |(grad (u, — u), grad g,,,,)| dxdy — 0 as n — oo
Dg

in R?*! except for a set of C{P*V-capacity zero. Let n— oo in (3).

t — N
u(s; t) = Ju(x; ) —dx
(5) Opi1 7 \/ls_xlz‘*‘ (t_‘%)zp !
-1 (grad u, grad ¢ .., dzdy
0p+1(p — 1) )b

a.e. in D,,. Put u, ,(x) = u,(x;7n,u,(®) = u(x;n and

L = r yedy J.]grad U, [ do
Tk

2 ) Uy, (...
:I Y dyj.(]gradun,yl +l (x; )
% 3?/

2
)dx
Since

[1grad vy, do = [1erian @ as
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and
ou 2 J ol 2
_ M d = Ty d N
| B ] az = |22 o] as
we have
2 N aa 2
L= [ yeay [(1er aa@r + | oo )ae
7% Y
2 - a,u 2
= fae [ (1eF1am.@rF + ]#(5)] Yoy
By Lemma 2 (i),
L > of 87, @F d& .
By the same argument,
r yedy |grad (u, — U} do > cj}&\““mmk — U, [ AE
Since
jz yedy |grad (u, — u,)f dx — 0 as n— oo, M — oo ,
Tk
there exists a locally integrable function u;, in R? such that
j|$11-am,,,% W PdE—>0  asm— oo,
We have u, = u; a.e. in R?, because
j!un% —u,|de —0 as 7 — oo .
We obtain
(6)  [‘vaylgradu,pds > c I[sr-«mm g fdE <)
%
Let n — oo in (6). We have
f‘yady jxgrad up de > cf;sr—am% e €<,
Tk

Since
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rl’]y“dyjlgradulzdxﬁo as £ - oo, k— oo,
%
there exists a locally integrable function #, in R? such that
‘[[511—“[72%—’&0]2 dc—0 as k— oo.

By the elementary formula

2 —orie t—%
g s dx
Op+1 \/fs_xlz‘}‘(t—O)sz

— pniés, g-inlElt-ny)

for t > 7,, we have

i — Vi3 2 AL~ﬁ |

2
® Vl.ft’/‘ — Iu e lil?
Opi1 v Vis—af + ¢t — Ni)’ b Opi1 Ox/ls —tF + A

— Uaﬂke—zﬂes_e—zﬂe)(t—nk)df . J‘ﬁoe——Zni&s.e—anfitdg‘

S J‘,avk”e—ﬂlfl(t—v,ﬁ _ e—2xléltl df + f}@“ _ @0] e—2x|5{tcl$ X

(J [l [ €717 — e7ErIel] ds)z

< [1ep=lan as j’i s|1 e (g e — 1idE — 0

as k — oo and

(f[ﬂﬂk — | e—zn;fltdéy

< [1g1= 1, — af a- Jfél‘ aetds 0
as k — co, and hence
U dx
Tpr ) Vs — 2f + (& — por P

t
dx
t o e

(=hy(s;t) as k— co. Letting & — oo in (5),

https://doi.org/10.1017/50027763000016044 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016044

92 TAKAFUMI MURAI

u(s; t) = hy(s; t)
(7)

—lim— 1

P (grad u, grad g ;.;,))dxdy
L 0p+1(29 — 1)JJ oy

a.e in |s| <2 and 0 <t <2. Given b > 0, put
E = {s € R?; “ ) 1](grad u, grad g.,,) | dedy > b} .
RET

For a compact set K in E, there exists a measurable function p(s) on
R? satisfying

j [(grad u, grad g . ,«),)| dedy > b
on K. By Lemma 1, we have, with constants ¢ and ¢’

2
b < ”dyﬁs)(”ﬂﬂl(grad u, grad g . | dxdy)

< j f . lgrad uf ydady j j (s dpea(s)

% 1 d
yvls, — xF + (o(s) — 1)**V[s, — [ + (o(s?) — y)*?

/ a 1
<e HRTJ grad uP y dxdyﬂmdyusodﬂk(s»

xdy

where y, is the equilibrium measure on K of unit mass. Therefore
CP(K) < % ”R£+1|grad ul y*dady
and so the same inequality holds for E. Consequently,
C{I_’{,({s e R?; ”RNJ(grad u, grad g, | dady = +oo}) =0
and hence

lim | (gradu,grad g..)dxdy
k—oo J Dg

(8)
= ”(grad u, grad g..,)dxdy

for s in R? except for a set of C{?,-capacity zero. Hence the equality
(8) holds for a.e. in R2*!. We obtain
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1

3t = Ry (s;t) — ——————
u(s; t) (s; 1) =D

J(grad u, grad g, dxdy

a.e.in [s]<2and 0 <t < 2. We have, in the same manner as the above,
that

lim “(grad u, grad g ,,)dxdy

-0

exists in R? except for a set of C{® -capacity zero. Put
V(83 1) = hyy(858) — . Jf(grad u, grad g ,,;,)dzdy
Opa(p — 1)

in|s|<2 and 0<t<2, v(s;t) = 0 otherwise. Then v = u a.e. in R2*"
and lim,_, v(s; r) exists except for a set of C{? -capacity zero. This com-
pletes the proof.

In particular, if « is finite continuous in R2*!, we can evidently
choose v = u.

COROLLARY. Let u be a locally integrable function in the open unit
ball B, with center 0 in R? (p > 3). If u satisfies the following condi-
tion :

”B lgraduf (1 — |a)*dz < +00 (0 <a<1),

then there exists a locally integrable function v in B, such that u = v
a.e. and lim, ,v(r§) (§€dB,) exists on 3B, except for a set of CE;b-
capacity zero.

Proof. Similarly we may assume that « is supported by {reB,;
€| > 4,2, > %}. Then by a suitable transformation from {z ¢ B,; x, > 0}
to R?, u is mapped to a function %’ of the class in our theorem and
hence this corollary is immediately followed.

3. The proof of Theorem 2.

We prepare five lemmas. In the following lemmas, we only consid-
er the case of p > 2 except for in Lemma &.

LEMMA 4. For y >1 and m > 0, there exists a positive constant c,
such that

Vs —xf + ¥ > ¢, |8 — &f
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for any s, s, R? with |s — 8| <1 and any (x; y) € R(m, Sy 7).

1

W There

LEMMA 5. Fors,sye R? and 0 < a < p, put u,(s) =
exists a constant ¢, depending on p and « such that

1

hy (x39) <ec
So( y) = 72 (’So _ x,z + yz)(p—a)/z

for any s,e R? and any (x;y) € R2*'.
Proof. Put

1

’030(3@; 2/) = (Iso _ xlz + yz)(p—a)/Z *

It is sufficient to show that there exists a constant ¢, such that for any
@; ) e RE L (x5 y) < cv(x; ). For 0 <m < 400, put 'y, ={(x;%);
j|=my y>0}. For mel0,2] and (x;y) e, we obtain, with constants
¢, and ¢},

1
b (2 Y
o( y) O'p+1 (ls . xlz + yZ)(p+1)/2 ’slp «
1
J— -—2::1639 e-leel'y dé:
J (&l

<aq T < v ) .

For me(2,) and (x;y) e l',, put =, = z/|x|. We have, with constants
¢ and cj,

1
Ry Y
o(x ’,l/) 0p+1 (,S _ xlz + yz)(p+1)/2 fslp a
2 I 1/m) 1 <
vw lxl” “J(sP + A/m)HPH0R |5 — gy P
<c 1 < ez y) .
|wlp-e

Put ¢, = max (¢}, ¢}). We obtain &,,(x; ¥) < ¢,v(x; ¥) for any (x; y) € R2+.
This completes the proof.

Let L .(R?) be the usual Fréchet space of locally integrable functions
in R?. We denote
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pw — {we L;oc(m);ﬁsl“[av(@xz ds < +oo} O<a<p.

Then P® is a Banach space with norm |ol, = (IIS]"‘I@(E)I2 dé)‘/z. The
following lemma is essential in our proof.

LEMMA 6. Let 0<pg<a<p and we P®. Then h, has T(z) - ((,Bg)_
p— (@

limits on R? except for a set of C{P-capacity zero.

Proof. Put 1= » = (B/2) By [1], we can describe w = U4, in
p — (2/2)

Li,(RP), where ;1 is a square integrable function. Suppose Uji0) < + oo
and S(p) € B(0,1). By Lemma 4 and Lemma 5, for any (z;y) € R(m,0,7),

Cop) — 2 Y 1
g’]%(x’ y) - f’ﬁ‘('z), dz(o_ I(IS _ 90|2 + yZ)(p-H)/Z IS _ zlp—(a/Z) ds)

p+1
1 |u(2)| dz

< CZJ‘ e 2 (p— (a/2))/2
(z — 2 + v°)

< ao | I—éll—ﬂ,— |1(2)] dz < ee,URO0) .

It is well-known that C{»’({x e R?; Ulkl(x) = +oo}) = CP({x € R?; Ulii(w) =
+o0}) = 0 for any square integrable function 4. We can prove Lemma 6
by the same way as in Lemma 3 and hence we omit the rest of our

proof.
Let H?*P(—1<a<1) be the totality of harmonic functions in R2*!

with (1). H{®*? is a Banach space with norm |||A}||, = (U]grad h(x; Y)Fy=
dxdy)m.

LEMMA 7. Let —1<a<1l and wePP®,. Then |||h,|ll. = Call®lize
where ¢, = 27 g~V + 47V (« + 1)V2.

Proof. If w is a sufficiently smooth function with a compact sup-
port, we have

Yy e—m'exdx>

. —2rifx —_— 2

— J.e—ﬂxlelzle-—hiesw(s)ds = e 2 IEG(g) |
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Put w,() = h,(x;y). Then @,(§8) = e *"*"¥a(§) and da,/dy(§) = —2x|&|e "7
-@(&). Hence we obtain

e = [Jveay f(1610,@F + | S22 )as

— (1 + 4”2)Il$lzl®(5)’2 df f:e‘“‘“”y“dy
= ¢ loli-q -

By the limit process, we obtain the equality of Lemma 7 for any we P{®,.
This completes the proof.

LEMMA 8. Let h be harmonic in R® (p>38). If h satisfies the fol-
lowing condition :
=

J lgrad b —dz < + o0 0<a<l,
1z1>1 ||

then h is constant.

Proof. Putu =|grad k. Then u is subharmonic. Assume %(0) > 0.
Then

) —1-er uds > o, (J.w rp‘l‘”dﬂﬂ)u(O) = +4o00.
1 aB(0,7) 1

This is contradiction. Hence w(0) = 0. By the same argument, « = 0.
This completes the proof.

We are going to show Theorem 2. Let 0 <a <1. For any 5> 0,
there exists a distribution T, with finite Newton energy and a constant
¢; which is independent on 7 such that k(z;y) = Ui(z; y) + ¢ in t > 7.
We may assume ¢, = 0. Put o,(x) = k(x; 7). By the same argument as
in Theorem 1, we have o, ¢ P{®, N P{” and ||o, — o, [;-.— 0 as 5,7 — 0.
There exists o € P{?), such that ||o, — 0l;-,— 0 as —0. Since &, (z; 0)
= h(z;y) and h,,(x; y) — h(x; ¥ +7) € HP*Y, we have h, (x; ¥) = h(x; ¥ + ¥).
Letting » — 0, we have h,(x;¥) = k(z;y). By lemma 6, the assertion
of this theorem holds in the 0 < o <1 case.

Let —1 < a < 0. Since for almost all y,

(9) Ilgradh(x;y)lzdx< too.

We can assume that (9) holds for y =1/n (n =1,2,...). There exists
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a sequence of numbers (d,);_, such that o, = k(z;1/n) + d, e P{®. Then
loal < I|grad h(z; 1/m)Fde < +oo .

By Lemma 8, we have h(z;y + 1/n) = h,(@;¥) + d,. Let 4(f) =t in
t<1and h(f) =t* on t > 1. There exists a constant ¢, such that

H Jgrad b, P = ——drdy = ” grad h(z; y)F ;dxdy
14y
< ¢ ” |grad hl _dxdy < +o0.
Since for t <1,
e~tdy = t-*- 1I e vd
.[o 14t v= te + Y= v
> t""‘lj ————e“ydy .
o 14y
We have, with a constant ¢,
” Jerad o f 1 dady = [1gr10.r e [ —1“;—“ .

cajmsmanlz dé .

Moreover

I g(lsl)(—z— 1 e"""“%z)z dz
Gp (Ix _— le + y2)(p+l)/2

< fe”z"””’dé < 4oo.

By the same argument as in the 0 < o < 1 case, there exists a o, ¢ L}, .(R?)
such that 4, (x;y) = h(x; y). By Lemma (2) (ii), we have w,e P{®,. By
Lemma 6, the assertion of this theorem holds in the —1 <a < 0 case.
This completes the proof.

4. The proof of Theorem 3.

Let E be the set in Theorem 3. For positive integers =, m, put
E,n=ENBO,n N{seR?;S,(s;2) <m}. Then F =JF,,. Since
S.(s; 2) is lower semi-continuous, {se R,; S,(s; 2) < m} is closed. There-
fore it is sufficient to show the following
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THEOREM 3. Let p > 2, -1 < a <1, F be a compact set in B(0,1)
and h harmonic in R2*. If S.(s;2) is bounded on E, then lim,_, h(s;7)
exists on K except for a set of C® -capacity zero.

Put U, = Userl'a(533/2) (<D, U,={x;y;y>1} and R=U,NU,.
Then the following lemma holds.

LEMMA 9. ([12]) There exists a sequence (R,);_, of domains in R2+
satisfying the following four conditions:

(i) R,CR,

(ii) R,, C R,, for n, > n,

(iii) dis @R,,0R) — 0 as n — oo,

(iv) 0R, = {(z; »);y = 3, (@)},
where §,(x) is an infinitely differential function such that 0<d,(x) <38/2
on R? 6,(x) =1 on || >2 and [35,/0z;] < 1/a G=1,--., p).

LEMMA 10. Let S (x;2)V* < M, on E. There exists a constant ¢,
depending on p, « and a such that

” [grad h(s; Y[ (¥ — d(@)dedy < c,M; .
UiNRy

Proof. Let Ey= \Usep{x e R?;|x — 8| < (8/2)a}. For xeck, define
y@) = inf{y; (®; Y e U,}. Evidently, wy(x) is measurable on E, and
0 < ylx) < 3/2. We define a vector valued measurable function s(x) =
(s,(®), - - -, 8,(®)) such that (x; ¥(@) €dl,(s(x); 3/2). There exists a con-
stant k(0 < k < 1) depending only on e such that for any (z;y) e U,
the open ball B,(x; ) with center (x; %) and radius ky is containted in
I'(s(®);2). Since |grad h(x; y)P is subharmonic, we have, with constants
¢, and ¢, (depending on p, « and a),

lgrad k(z; Y} < _+1) ” |grad k(s; t)} dsdt
0p (P JJ Butmiy

. 1
< I-[Bk(x;y)lgrad h(s; D Fdsolt

e 1
_<- ¢ Ji[h(s(x);iz)lgrad h(s ’ t)l —t‘p_ﬂ‘det ’
t2y/2

Hence we have
lgrad h(x; ¥ (¥ — 6,(2))"

< 2acz<_y_:j_n(_x)>“ jf |grad i(s; t)f 1
2 n

tp+1

dsdt .
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Then
[ lgrad n@; ) @ — ou(e)rdady
UiNRa

3/2
- j dxf \grad h(z; 9)F ( — 8,(2))"dy
Eo dn(x)
1

tp+1

dsdt

< 2““02‘[ dx roﬂ“dqﬂ ” |grad A(s; t)}
Eo 0 Fl(tsz(a;);‘z)

— 2““’1 . 2 1 2
=1 ¢, Lodx ILI(S(xm)lgrad h(s; t)| stdt < cM?.

LEMMA 11. There exists a constant c, depending on p, « and o
such that for any (x;y)e U,

Y@ o” | grad h(z; Y) P < e,M, .

By the elementary calculation, we can show this inequality.

We are going to prove Theorem 3’. By Lemma 10, there exists a
continuously differentiable function u(x;¥y) on R?*' such that u(z;y) =
hMz;y) on |2]<2,0<y<2 wWzr;y) =0o0n |[2]/>3 or ¥y >3 and

” lgrad u(z; P W — 6,(x)dedy < eM2 + 1.

Define u,(x;y) = u(x;y + 6,(x)) and o,(x) = u,(x;0). Then we have,
with constant ¢; depending on a,

ﬂ olgradu(es Y yededy < cle,M; + 1) .
RYF

By Lemma 2 (ii), there exists a constant ¢, depending on p and « such
that

fl §la, ) d§ < ¢, ”Rp“lgrad w25 Y yrdrdy(<Leci(eM + 1))

Hence we may assume that there exists w e P{®, such that w, — o weakly
in P as n— co. By [1], we can describe w = U%_,,, a.e., where p is
a square integrable function. Assume that s,e £ and U¥!, ,(s) < + co.
Put U4_,,(s)) = b. We show lim,_, A(s,; 1) =b. Set D = {(z;v);|z| <2,
0<y<?2}, aD,=aD N{;y;y>1}, oD, =0dD —oD,, D,= RN D,
D,=R,0D, aD,,=0R, N U, 3D,, = @R, — 3D, ) N {(z;y;|z| <2}
and 9D, ; = oD, — (@D, U 34D, ,). Put T = sup{nx;¥); (x;y) eaD;} and
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M, = sup {y"*7|grad Max; YF; @; P e{ls;0);]s] <3, <t <2},

Let H(x;y) be the harmonic function in D whose boundary values equal
to 1 on 0D, and 0 on 8D,. For (x;¥) €dD,,, Bi(x;y) is contained in
I'(s(x);2). For any (s;t) e By(x;y), we have, with a constant ¢, depend-
ing on p, « and a,

[h(x; y) — h(s; D))
< ky sup {lgrad k(= ; ¥)|; (&5 ¥) € Bu(w; W)} < &Myt .
In particular, for (s;t) e R, N By(x; ), we have,
(@ Y) — 0 (8)| < 6, Mytr
and hence

() — b — 4 My " < W5 y) — b

10
a0 < @(8) — b + LMy "

Since [99,/0x;] < 1/a (1 =1, ...,p), the inequality (10) holds for secR?
as long as |z —s|< VI + @/a) (=4). Let 4, be a number with
plo,(£)? < 83 < 27.p/a,(¢,)* and y(s) an infinitely differentiable function
such that (s) = ¢, on |s| < 4,/2,¢(s) = 0 on [8] > 4,, 0 < (s) < ¢; and

f¢(8)ds = 1. Put ‘l"y(S) = (1/?/1’)\#‘(8//!/) and T.@\I/‘y(S) — \!,y(s — 2). By (10),
I(wn — b)Tm\,/‘de — LMy < h(xsy) — b
< j(w” — D)o ds + £ Myt

Letting n — oo, we have

j(w — Dryds — LMy < h(x;y) — b
(11

< j(w — b)Tx\!I‘de + LMyt

We see, with a positive constant ¢, depending on p, « and a,

y 1
o - > 1,
P+l ((3 x)z + yz)(p+1)/2 = goT \!/'y(S)

for |s — 2| < 4,y. Hence by (11),

[h(s;Y) — b] < bl (@5 ) + £, My,

https://doi.org/10.1017/50027763000016044 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016044

DIRICHLET INTEGRAL 101

By the same argument, there exists constants /4; and /4{ depending on
p, ¢ and a such that for any (x; y)edD,,,

[h(z;y) — b < %hm—b](x; Y) + LMyt or .
Since 8D,,,; = 6D,, we see
[h(x;y) — bl < (T + |bDH(x; y)

for any (z;y)edD,,. Put 4; = max (4, 4)),4) = max (¢, ¢;) and M =
max (M,, M,), we have

[R(x; ) — b| < &Ry, (@5 y) + (T + |DDH(x; y) + 67/ My“-"

for any (x;y)edD, and hence this inequality holds in D,. Letting
7 — oo, we obtain that this inequality holds in D. We see lim,_ %,
-(8;7 =0. Hence we obtain lim,_, i(s,; ) = b. Since C,_({seE;
Ult! ,5(8) = +o0}) = 0, this completes the proof.
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