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Abstract
We exhibit large families of K3 surfaces with real multiplication, both abstractly, using lattice theory, the Torelli
theorem and the surjectivity of the period map, as well as explicitly, using dihedral covers and isogenies.
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1. Introduction

Most of the theory of complex K3 surfaces is governed by the Hodge structure on the second cohomology
group. The symmetries of this Hodge structure lead to the concepts of real multiplication (RM) and
complex multiplication (CM). We already have a decent understanding of CM, in particular for the
existence problems which we consider here, by work of Taelman [Tae]. However, RM remains rather
mysterious, with only very few abstract constructions and even fewer concrete examples so far (cf. 2.4)
and no analogue of Taelman’s result. The present paper aims to remedy this by developing new general
methods which can be used to construct families of K3 surfaces with RM (and with CM). Here, a
family of K3 surfaces has RM (or CM) by a field F if the very general member X in the family has
𝐹 = EndHod (𝑇𝑋,Q). The K3 surfaces considered in this paper are all algebraic.

It is a special feature of K3 surfaces with RM that they always come in deformation families, as
opposed to being isolated, as is quite frequent in the CM case (cf. Remark 2.2). More precisely, if a K3
surface X of Picard number 𝜌 has RM by a field F of degree 𝑚 = [𝐹 : Q], then 𝑙 := (22 − 𝜌)/𝑚 is an
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2 B. van Geemen and M. Schütt

integer and X deforms in a family of K3 surfaces with RM by F of dimension 𝑙 − 2, with 𝑙 − 2 ≥ 1;
see 2.6. As 𝑙 ≥ 3, one has 𝑚 = 2, 3, . . . , 7, and the maximal l is 10, 7, 5, 4, 3, 3, respectively. A high
interest lies in exhibiting families of the maximal dimension. Using Taelman’s results on K3 surfaces
with CM, we prove the following theorem which produces maximal families for any totally real field F
of degree 2 or 5:

1.1. Theorem

Let F be a totally real field of degree 1 < 𝑚 ≤ 5. Let 𝑙 = � 20
𝑚 � for 𝑚 ≠ 4 resp. 𝑙 = 4 for 𝑚 = 4. Then

there is an (𝑙 − 2)-dimensional family of K3 surfaces with RM by F.

A variation of this method allows us to find maximal families also for the remaining degrees
𝑚 = 3, 4, 6, 7 in Theorems 3.15 and 3.19, but only under certain conditions on F or for specific fields.
In the case of real quadratic fields, we give an alternative proof of the existence of maximal families,
with more explicit K3 surfaces and with an explicit description of the action of F on the transcendental
lattice, in Theorem 3.10.

To get explicit examples of families of K3 surfaces with RM, our first approach uses K3 surfaces
X with a purely non-symplectic automorphism 𝜎 of order m so that X has CM by the cyclotomic field
Q(𝜁𝑚). We deform the cyclic covering 𝑋 → 𝑋/〈𝜎〉 in such a way that the action of the totally real
subfield ofQ(𝜁𝑚) on the transcendental cohomology deforms with X. These deformations are not Galois
coverings, but their monodromy group is the dihedral group 𝐷𝑚 of order 2𝑚. Such deformations have
also been studied in [EM+], with applications to Teichmüller curves in M𝑔 among others. This provides
a concrete implementation of the ideas that go into the abstract proof of Theorem 3.5. We obtain the
following results.

1.2. Theorem

Let 𝜌 denote the rank of Pic(𝑋) for a very general K3 surface X in a family, so 𝑑 = dimQ 𝑇𝑋,Q = 22− 𝜌.

(5) The 7-dimensional family of degree 2 K3 surfaces in §5.9 has 𝜌 = 2 and RM by Q(
√

5) =
Q(𝜁5 + 𝜁−1

5 ).
(7) The 3-dimensional family of elliptic K3 surfaces in §5.3 has 𝜌 = 4 and RM by the cubic field
Q(𝜁7 + 𝜁−1

7 ).
(9) The 2-dimensional family of elliptic K3 surfaces in §5.5 has 𝜌 = 10 and RM by the cubic field
Q(𝜁9 + 𝜁−1

9 ).
(11) The 2-dimensional family of elliptic K3 surfaces in §5.7 has 𝜌 = 2 and RM by the degree 5 field

Q(𝜁11 + 𝜁−1
11 ).

Our second approach, in Sections 6 and 7, exploits isogenies between elliptic K3 surfaces to exhibit
self-maps of K3 surfaces, a topic of independent interest. Such a self-map is then shown to induce RM
or CM.

1.3. Theorem

Let 𝜌 denote the rank of Pic(𝑋) for a very general K3 surface X in a family, so 𝑑 = dimQ 𝑇𝑋,Q = 22− 𝜌.
(2) The 4-dimensional family of elliptic K3 surfaces in Proposition 6.2 has 𝜌 = 10 and RM by Q(

√
2).

(3) The 3-dimensional family of elliptic K3 surfaces in Proposition 7.2 has 𝜌 = 10 and RM by Q(
√

3).

In fact, the very same approach gives also new large families with CM (see Propositions 6.2, 7.2)
and subfamilies with larger CM fields (see 6.7). There is also a single example with RM by the field
Q(

√
7) (see 7.6).
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1.4. Organization of the paper

Section 2 reviews basics of Hodge theory and how they apply to the moduli of K3 surfaces with RM
or CM. We then prove our abstract results such as Theorem 1.1 in Section 3 using Taelman’s work and
lattice theory.

Turning to concrete settings, Section 4 explains how Dickson polynomials can be used to deform
K3 surfaces admitting non-symplectic automorphisms in the realm of 𝐷𝑚-covers. As a special feature,
the construction provides a cycle on 𝑋 × 𝑋 which induces the RM-action on 𝐻2 (𝑋); see 4.8. The
construction gives rise to explicit examples in Section 5 which prove Theorem 1.2.

The last two sections take a different approach based on isogenies of elliptic surfaces, say 𝑋 � 𝑋 ′.
We exploit a systematic way to ensure that 𝑋 � 𝑋 ′, thus endowing the surfaces with rational self-maps.
These are then verified to induce RM (or CM). In detail, the 2-isogenies in Section 6 and the 3-isogenies
in Section 7 lead to a proof of Theorem 1.3.

2. Hodge structures and moduli

2.1. Hodge structures

A complex K3 surface X defines a simple polarized weight two Hodge structure

𝑇𝑋 := Pic(𝑋)⊥ ⊂ 𝐻2(𝑋,Z), let 𝑇𝑋,Q := 𝑇𝑋 ⊗Z Q .

The polarized Hodge structure 𝑇𝑋 has dim𝑇2,0
𝑋 = 1. A Q-linear map 𝑎 : 𝑇𝑋,Q → 𝑇𝑋,Q is an en-

domorphism of this Hodge structure if its complexification 𝑎C preserves the Hodge decomposition
𝑇𝑋,C = ⊕𝑇 𝑝,𝑞

𝑋 . Zarhin [Zar, Thm. 1.5.1] showed that the Q-algebra of these endomorphisms

𝐹 := EndHod (𝑇𝑋,Q) =
{
𝑎 ∈ End(𝑇𝑋,Q) : 𝑎C (𝑇 𝑝,𝑞

𝑋 ) ⊂ 𝑇 𝑝,𝑞
𝑋

}

is either a totally real field or a CM field. In the latter case, we say that X has complex multiplication
(CM), but the notion of real multiplication (RM) is usually reserved for those K3 surfaces where 𝐹 ≠ Q
and F is totally real.

Since F is a field, 𝑇𝑋,Q is an F-vector space, and we write

𝑑 = dimQ 𝑇𝑋,Q, 𝑚 := [𝐹 : Q], 𝑙 := 𝑑/𝑚 = dim𝐹 𝑇𝑋,Q.

Since 𝐹 ⊗Q C = ⊕𝜎C, where 𝜎 runs over the complex embeddings of F, the action of F on 𝑇𝑋 is
diagonalizable. The polarization on 𝑇𝑋,Q, which is induced by the intersection form on 𝐻2, has the
property

(𝑎𝑥, 𝑦) = (𝑥, �̄�𝑦) ∀ 𝑥, 𝑦 ∈ 𝑇𝑋,Q, 𝑎 ∈ 𝐹 , (2.1)

where �̄� denotes the complex conjugate of a; of course, �̄� = 𝑎 in case F is totally real.

2.2. Remark

Some authors (for example, [Tae, Def. 9]) define X to have CM by a CM field F only if moreover,
𝑙 = dim𝐹 𝑇𝑋,Q = 1; this setting is of special interest because it comes with the extra feature that X can
be defined over some number field, like the singular K3 surfaces highlighted in 2.3. For recent results,
cf. [Bay]. Our focus is, however, on exhibiting families of K3 surfaces with RM or CM, so we allow for
𝑙 > 1, in agreement with [Zar].
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2.3. Complex multiplication (CM)

A notable example of a K3 surface X with CM is a singular K3 surface (i.e., X has maximal Picard number
𝜌(𝑋) = 20). The CM arises here from the positive definite quadratic form Q on the transcendental lattice
𝑇𝑋 ; in fact, the CM field is 𝐹 = Q(

√
− det(𝑄)). These K3 surfaces form isolated points in moduli.

Other examples of K3 surfaces with CM are easily exhibited by considering surfaces with a purely
non-symplectic automorphism 𝜎 of order 𝑛 > 2, so we require that 𝜎 acts on a holomorphic 2-form 𝜔
as multiplication by a primitive n-th root of unity 𝜁𝑛:

𝜎∗𝜔 = 𝜁𝑛𝜔.

The action of 𝜎∗ on 𝑇𝑋,Q gives this Q-vector space the structure of a Q(𝜁𝑛)-vector space, and thus, X
has CM by a field F containing Q(𝜁𝑛). We shall use this in 4.5 to find examples of RM.

A CM field 𝐹 ⊂ EndHod (𝑇𝑋 ) defines an eigenspace decomposition of 𝑇𝑋,C for the action of F. There
are 𝑚 = [𝐹 : Q] eigenspaces, each of dimension l. Let 𝑉 ⊂ 𝑇𝑋,C be the eigenspace containing 𝐻2,0 (𝑋).
The surjectivity of the period map and the Torelli theorem imply that deforming the subspace 𝐻2,0 in V
deforms X, with the given action of F, in a family of dimension

𝑙 − 1 = dimC P𝑉 =
rank(𝑇𝑋 )
[𝐹 : Q] − 1. (2.2)

In the presence of a purely non-symplectic automorphism of order n, the degree of F overQ is given by
𝜙(𝑛), where 𝜙 is the Euler totient function. In particular, X is isolated in moduli when rank(𝑇𝑋 ) = 𝜙(𝑛).

2.4. Real multiplication (RM)

We shall now compare the CM setting with the RM case following [vG]. If X is a K3 surface with RM by
a totally real field F, then 𝑇𝑋 ⊗R admits a decomposition into eigenspaces for the F-action, each of real
dimension equal to 𝑙 = rank(𝑇𝑋 )/[𝐹 : Q]. These eigenspaces are parametrized by the real embeddings
𝜎 : 𝐹 ↩→ R. We denote by 𝑇𝜎 ⊂ 𝑇𝑋 ⊗R the eigenspace on which 𝑎 ∈ 𝐹 acts as multiplication by 𝜎(𝑎).
Consider the special eigenspace 𝑇𝜖 whose complexification contains the holomorphic 2-form 𝜔; that is,

𝐻2,0 (𝑋) ⊂ 𝑇𝜖 ⊗ C.

Then, by complex conjugation, also 𝐻0,2 (𝑋) ⊂ 𝑇𝜖 ⊗ C (thus, 𝑇𝜖 has signature (2, 𝑙 − 2) whereas the
other eigenspaces are negative definite). The main overall restriction on RM structures is the following:

2.5. Lemma [vG, Lemma 3.2]

In the RM case, one has 𝑙 = dimR 𝑇𝜖 ≥ 3.

Indeed, otherwise, 𝑇𝜖 would be positive definite of dimension two which implies that 𝑇𝑋,Q admits
extra endomorphisms, just like for singular K3 surfaces, and, in fact, X has CM (compare the example
in Proposition 7.7).

2.6. Moduli

As a consequence, a K3 surface with RM (by a field 𝐹 ≠ Q) has a transcendental lattice of rank at least
6 = 2 · 3, so the Picard number satisfies

𝜌(𝑋) ≤ 16. (2.3)
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The deformation space of K3 surfaces with given F-action on 𝑇𝑋,Q has dimension 𝑙 − 2 (see the proof
of [vG, Lemma 3.2]):

𝑙 − 2 = dimR 𝑇𝜖 − 2 =
rank(𝑇𝑋 )
[𝐹 : Q] − 2 ≥ 1. (2.4)

In particular, a K3 surface with RM is never isolated in moduli.

2.7. Families of K3 surfaces with RM

To conclude, if an algebraic K3 surface X has RM by a field F, one has 𝑑 ≤ 21; hence, 𝑙 ≥ 3 implies
that 𝑚 = [𝐹 : Q] ≤ 7. Besides the condition that 𝑚 ≤ 7, we do not know of previous general results on
the problem which totally real fields can be obtained as EndHod(𝑇𝑋,Q) for a K3 surface X, besides the
abstract ones with [𝐹 : Q] = 2 and 𝑙 = 3 in [vG, Example 3.4] and the impressive explicit examples in
the papers [EJ1], [EJ2], [EJ3] and [EJ4] for real quadratic fields and high Picard rank.

2.8. Cyclotomic fields

In this paper, we consider in particular totally real subfields 𝐹 ⊂ Q(𝜁𝑛) of the cyclotomic field of n-th
roots of unity (𝑛 > 2). This CM number field is a Galois extension of Q with Galois group the group
of units (Z/𝑛Z)× in Z/𝑛Z, and it has degree 𝜙(𝑛) over Q, where 𝜙 is again Euler’s totient function.
Complex conjugation on 𝐺𝑎𝑙 (Q(𝜁𝑛)) is given −1 ∈ (Z/𝑛Z)×, and thus, the totally real subfields of
Q(𝜁𝑛) correspond to the subgroups 𝐻 < (Z/𝑛Z)× with −1 ∈ 𝐻; in particular, any such field is contained
in the maximal totally real subfield Q(𝜁𝑛 + 𝜁−1

𝑛 ), of degree 𝜙(𝑛)/2 over Q.

3. General results on RM

3.1. Abstract deformations from CM to RM

Given a K3 surface X with CM by a field 𝐸 = EndHod (𝑇𝑋,Q) of degree m over Q, the totally real
subfield 𝐹 ⊂ 𝐸 , of degree 𝑚/2 over Q, also acts on 𝑇𝑋,Q. In case 𝑙 = dim𝐸 (𝑇𝑋,Q) ≥ 2, one has
dim𝐹 (𝑇𝑋,Q) = 2𝑙 ≥ 4, so the obstruction to RM in Lemma 2.5 is not present, and therefore, X is a
member of a 2𝑙 − 2-dimensional family of K3 surfaces with RM by F.

3.2. Proposition

Let X be a K3 surface with CM by the field E and assume that 𝑙 := dim𝐸 (𝑇𝑋,Q) ≥ 2.
Then there exists a 2𝑙 − 2-dimensional family of K3 surfaces with real multiplication by the totally

real subfield F of E. These K3 surfaces are deformations of X, and for the very general 𝑋𝜂 in this family,
there are isometries 𝑇𝑋𝜂 � 𝑇𝑋 and Pic(𝑋𝜂) � Pic(𝑋).

3.3. Proof

This follows from 2.4; we provide some details (cf. [vG, Proof of Lemma 3.2]). The inclusion 𝐹 ↩→
EndHod (𝑇𝑋,Q) induces a splitting of the real vector space 𝑇𝑋,R as a direct sum of [𝐹 : Q] eigenspaces
for the action of 𝐹R := 𝐹 ⊗Q R, each of dimension 2𝑙. Let

𝑉 = 𝑇𝜖 ⊂ 𝑇𝑋,R

be the eigenspace with 𝐻2,0(𝑋) ⊂ 𝑉C. The intersection form on 𝐻2 (𝑋,Z) induces a bilinear form (·, ·)𝑉
on V of signature (2+, (2𝑙 − 2)−). The deformations 𝑋𝜂 of X with 𝐹 ⊂ EndHod(𝑋𝜂) are parametrized
by the one-dimensional subspaces 〈𝜔𝜂〉 of 𝑉C with (𝜔𝜂 , 𝜔𝜂)𝑉 = 0 and (𝜔𝜂 , 𝜔𝜂)𝑉 > 0. In this way,
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one obtains a 2𝑙 − 2-dimensional family of deformations of X. Since 2𝑙 − 2 > 0 by assumption, the
very general member in this family has 𝐹 = EndHod (𝑋𝜂) since overfields of F give families with fewer
moduli.

3.4. Maximal families

Recall that a K3 surface X with RM by a field F of degree 𝑚(> 1) has a transcendental lattice of rank
𝑑 = 𝑙 · 𝑚 for some 𝑙 ≥ 3 and 𝑑 ≤ 21, and then X is a member of an (𝑙 − 2)-dimensional family of K3
surfaces with RM by F. In case 𝑚 = 2, 5, the maximal l is 20/𝑚 = 10, 4, respectively, and Theorem 3.5
shows that for any totally real field of such a degree, a family of maximal dimension exists.

In case 𝑚 = 3, the maximal l is 𝑙 = 7, whereas for 𝑚 = 4, it is 𝑙 = 5, and for 𝑚 = 6, 7, it is 𝑙 = 3.
We will show in Theorems 3.15 and 3.19 that there exist K3 surfaces having RM with fields of these
degrees with these values of l. Finding succinct conditions on which totally real fields of these degrees
and these l occur as EndHod (𝑋) for a K3 surface X goes beyond the scope of the present paper; it was
subsequently achieved, using the full framework of quadratic forms, in [BvGS].

3.5. Theorem [= Theorem 1.1]

Let F be a totally real field of degree 1 < 𝑚 ≤ 5. Let 𝑙 = � 20
𝑚 � for 𝑚 ≠ 4 resp. 𝑙 = 4 for 𝑚 = 4. Then

there is an (𝑙 − 2)-dimensional family of K3 surfaces with RM by F.

3.6. Proof

Given F, we embed it in a CM field E as follows. Let K be any CM field of degree l over Q such that
𝐾 ∩ 𝐹 = Q, the intersection taken with respect to any embeddings 𝐹, 𝐾 ↩→ C. (Note that 𝑙 > 2 is even,
assuring the existence of such K; one can take K to be composed of any imaginary quadratic field with
almost any another field of complementary degree.) Then the composite field 𝐸 := 𝐹𝐾 is a CM field of
degree 𝑚𝑙 ≤ 20 with 𝐹 ⊂ 𝐸 . Taelman proved that there exists a K3 surface X with 𝐸 = EndHod(𝑇𝑋,Q)
and dim𝐸 (𝑇𝑋,Q) = 1 (see [Tae, Thm. 4]). Then dim𝐹 (𝑇𝑋,Q) = 𝑙 ≥ 4, and as 𝑙 ≥ 3, this guarantees the
existence of the family of the K3 surfaces that are deformations of X, with RM by F.

The examples we construct below use the following proposition. It is a converse for the results
discussed in the previous section.

3.7. Proposition

Let V be aQ-vector space with a nondegenerate bilinear form (·, ·) such that the quadratic form it defines
on 𝑉R has signature (2, 𝑛 − 2). Let F, 𝐹 ≠ Q, be a totally real number field and assume that V also has
the structure of an F-vector space such that the following two conditions hold true:

◦ there is an eigenspace 𝑉𝜖 ⊂ 𝑉R for the F-action on 𝑉R on which the signature of the restriction of the
bilinear form is (2, 𝑒) for some e;

◦ the adjoint property (𝑎𝑥, 𝑦) = (𝑥, 𝑎𝑦) holds for all 𝑎 ∈ 𝐹 and all 𝑥, 𝑦 ∈ 𝑉 .

Then a positive definite oriented 2-plane in 𝑉𝜖 defines a Hodge structure of K3 type on V with
𝐹 ⊂ EndHod (𝑉); this Hodge structure is simple if the 2-plane is very general. If dim𝐹 𝑉 ≥ 3, then
𝐹 = EndHod (𝑉) for a very general V, so V has RM by F.

3.8. Proof

Let 𝜔 ∈ 𝑉𝜖 ,C be an eigenvector for the rotation by 𝜋/2 in the 2-plane such that the orientation is given
by 𝜔 + �̄�, (1/𝑖) (𝜔 − �̄�). The Hodge structure on V is defined by

𝑉2,0 = C𝜔, 𝑉0,2 = C�̄�, 𝑉1,1 = 〈𝜔, �̄�〉⊥ ⊂ 𝑉C.
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Then (𝑉, (·, ·)) is a polarized weight two Hodge structure of K3 type. To see that 𝐹 ⊂ EndHod (𝑉), notice
that 𝑎𝑉2,0 = 𝑉2,0, 𝑎𝑉0,2 = 𝑉0,2 since their bases lie in an eigenspace of a. Next, we use the adjoint
property: for 𝑥 ∈ 𝑉1,1, one has

(𝑎𝑥, 𝜔) = (𝑥, 𝑎𝜔) = (𝑥, 𝜖 (𝑎)𝜔) = 𝜖 (𝑎) (𝑥, 𝜔) = 0,

and similarly for �̄�. Hence, 𝑎𝑥 ∈ 𝑉1,1, and we have 𝐹 ⊂ EndHod (𝑉). That for a very general 2-plane
one has equality follows by considering the Mumford Tate group of the Hodge structure V as in [vG].

3.9. Maximal families of K3 surfaces with RM by quadratic fields

For any real quadratic field F, we can directly show the existence of algebraic K3 surfaces with a genus
one fibration that have RM by F. Such a K3 surface X must have 𝑑 = dim𝑇𝑋,Q ≤ 20. Thus, the maximal
dimension of a family of such K3 surfaces is 𝑙 − 2 = (20/2) − 2 = 8. The existence of families of
this dimension is a consequence of Theorem 3.5. Here, we provide an alternative proof which provides
families with nontrivial geometrical information on the K3 surfaces X and an explicit description of the
action of F on 𝑇𝑋 . We do not know of other families of maximal dimension, but their existence is quite
likely.

3.10. Theorem

For any squarefree 𝑑 > 0 and any 𝑟 > 0, there is an 8-dimensional family of K3 surfaces with a genus
one fibration such that the very general member X has

Pic(𝑋) � 𝑈 (𝑟) :=
(
Z2,

( 0 𝑟
𝑟 0

) )

and has RM by Q(
√
𝑑).

3.11. Proof

Consider a K3 surface with Pic(𝑋) = 𝑈 (𝑟). Then 𝑇𝑋 = 𝑈 ⊕ 𝑈 (𝑟) ⊕ 𝐸2
8 , where 𝐸8 is the unique

unimodular even negative definite lattice of rank 8. The linear system of an isotropic vector in Pic(𝑋)
endows X with a genus one fibration which very generally only admits multisections of degree divisible
by r. The theorem for a squarefree 𝑑 > 0 thus follows as an application of the surjectivity of the period
map and the Torelli theorem once we endow 𝑇𝑋,Q with a suitable action byQ(

√
𝑑). This can be achieved

as follows. On any 𝑈 (𝑟) (𝑟 ∈ Z, 𝑟 ≠ 0), we define an endomorphism

𝜏 : 𝑈 (𝑟) −→ 𝑈 (𝑟), (𝑢, 𝑣) ↦−→ (𝑑𝑣, 𝑢),

such that 𝜏2 = 𝑑; that is, 𝜏2 acts as multiplication by d. Notice that, for the diagonal action, the eigenspace

(𝑈R +𝑈 (𝑟)R)𝜏=
√
𝑑 = R(1,

√
𝑑, 0, 0) ⊕ R(0, 0, 1,

√
𝑑)

has indeed signature (2, 0), as required by 2.4. On 𝐸2
8 , we consider the same map, (𝑢, 𝑣) ↦→ (𝑑𝑣, 𝑢)

now with 𝑢, 𝑣 ∈ 𝐸8. The diagonal action of these maps 𝑀 : 𝑇𝑋,Q → 𝑇𝑋,Q is such that 𝑀2 acts as
multiplication by d and thus defines an action of Q(

√
𝑑) which satisfies 𝑞(𝑀𝑥, 𝑦) = 𝑞(𝑥, 𝑀𝑦), where

𝑞(·, ·) is the polarization on𝑇𝑋,Q. The family of K3 surfaces is the one whose periods lie in an eigenspace
of M in 𝑇𝑋,C.
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3.12. Remark

Alternatively, one can use the following method for 𝐸2
8 . To find real multiplication structures by all

√
𝑑

on a given lattice L, it suffices to assume that Aut(𝐿) contains 4 anti-commuting involutions 𝑔1, . . . , 𝑔4.
Then (in End(𝐿))

(𝑎1𝑔1 + . . . + 𝑎4𝑔4)2 = 𝑎2
1 + . . . + 𝑎2

4 ∀ 𝑎𝑖 ∈ Z,

so the endomorphism 𝑀 = 𝑎1𝑔1 + . . . + 𝑎4𝑔4, which satisfies 2.1, endows 𝐿Q with the structure of
Q(

√∑
𝑎2
𝑖 ) vector space. Using Lagrange’s four-square theorem, this gives RM on L by any real Q(

√
𝑑).

To conclude, one verifies that the required anti-commuting involutions can be found in the Weyl group
𝑊 (𝐸8). We omit the details.

3.13. Remark

The same argument as in 3.11 applies to imaginary quadratic fields (i.e., to 𝑑 < 0), resulting in
9-dimensional maximal families of K3 surfaces with CM. By [BvGS, Prop. 12.1], any such family
exclusively comprises K3 surfaces admitting genus one fibrations (but the analogous statement for RM
does not hold).

3.14. Maximal families of K3 surfaces with RM by fields of degree 3, 4, 6, 7

For a K3 surface with RM by the field F, after identifying 𝑇Q = 𝐹𝑙 , the property 2.1 is equivalent to the
property that the intersection form on 𝐻2(𝑋,Q), restricted to 𝑇𝑋,Q, is given by

(𝑥, 𝑦) = Trace𝐹/Q(𝑡𝑥Δ𝑦), 𝑥, 𝑦 ∈ 𝐹𝑙 ,

for some 𝑙× 𝑙 matrix Δ with coefficients in F. It is easy to see that any such bilinear form has the property
2.1, and for the converse, one can argue as in the proof of [BL, Proposition 9.2.3] (cf. [BvGS] for details).

To find the examples, we will restrict ourselves to the case that 𝑇𝑋,Q is Q-isometric to (Q𝑑 , I𝑝,𝑞),
where I𝑝,𝑞 is the diagonal matrix with p diagonal coefficients equal to +1 and q diagonal coefficients
equal to −1. Besides ‘well-known’ fields given in Theorem 3.19, we found many more examples using
the same methods. However, only for cyclic cubic fields did we find a general lattice criterion for
the construction of K3 surfaces with RM (which is now superseded by the results from [BvGS] that
extensively use quadratic forms). We discuss the fields in question first to demonstrate our approach.

3.15. Theorem

Let F be a totally real cyclic cubic field with class number one. Then there is a 7-dimensional family of
K3 surfaces with RM by F.

3.16. Proof

As we have seen, it suffices to find an action of F on 𝑇𝑋,Q, satisfying (2.1) and the signature condition
from 2.4, for some algebraic K3 surface X with Picard rank one. As Pic(𝑋) = Zℎ with ℎ2 = 𝑒 for an
even positive integer e, one finds that 𝑇𝑋 � Z𝑣 ⊕𝑈2 ⊕ 𝐸8(−1)2 with 𝑣2 = −𝑒. In case 𝑒 = 𝑘2 is a square,
(1/𝑘)𝑣 ∈ 𝑇𝑋,Q has square −1. Hence, the lattice generated by (1/𝑘)𝑣 and 𝑈2 ⊕ 𝐸8(−1)2 is odd and
unimodular, and thus, since dim𝑇𝑋,Q = 21, we have isometries

𝑇𝑋,Q � 〈1〉2 ⊕ 〈−1〉19

� (〈1〉 ⊕ 〈−1〉2)2 ⊕ (〈−1〉3)5 . (3.1)
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Let O𝐹 be the ring of integers of F; it is a free Z-module of rank 3 = [𝐹 : Q]. For 𝑦 ∈ 𝐹, the values of
Trace𝐹/Q(𝑥𝑦) are in Z for all 𝑥 ∈ O𝐹 iff 𝑦 ∈ 𝔡−1, where 𝔡 ⊂ O𝐹 is an ideal called the different. So the
dual lattice of O𝐹 with respect to the trace form is the fractional ideal 𝔡−1 ⊂ 𝐹. By assumption, 𝔡 is a
principal ideal, and we choose a generator 𝛿 ∈ O𝐹 . Then the bilinear form 𝑏𝛿 on O𝐹 defined by

𝑏𝛿 : O𝐹 ×O𝐹 −→ Z, 𝑏𝛿 (𝑥, 𝑦) := Trace𝐹/Q(𝛿−1𝑥𝑦)

is unimodular, and thus, there is an isometry (𝐹, 𝑏𝛿) � (Q3, I𝑝,𝑞) for certain 𝑝 + 𝑞 = 3. For any unit
𝑢 ∈ O𝐹 , also 𝑢𝛿 is a generator, and we use this to find bilinear forms 𝑏𝑢𝛿 with the correct signatures to
match (3.1).

Recall that 𝐹 ⊗Q R � R3, where 𝑥 ⊗ 𝜆 maps to 𝜆(𝜎1(𝑥), . . . , 𝜎3(𝑥)), where the 𝜎𝑖 are the three
embeddings 𝐹 ↩→ R. As

𝑇𝑟𝐹/Q(𝛿−1𝑥2) =
∑

𝜎𝑖 (𝛿−1)𝜎𝑖 (𝑥)2,

the signature of the R-linear extension of this quadratic form is determined by the signs of the 𝜎𝑖 (𝛿).
It follows from [AF] (recently extended to higher degree fields in [BVV, Cor. 4.3.5]) that F has full
unit signature rank. That is, for any 𝑝, 𝑞 with 𝑝 + 𝑞 = 3, there is a 𝑢 ∈ O×

𝐹 such that 𝜎𝑖 (𝑢𝛿) assumes p
positive and q negative values for 𝑖 = 1, . . . , 3. In particular, we may assume that 𝑏𝛿 is negative definite
and that 𝑏𝑢𝛿 has signature (1+, 2−) for a certain unit u.

The isometry 𝑇𝑋,Q � (𝐹, 𝑏𝑢𝛿)2 ⊕ (𝐹, 𝑏𝛿)5 and the diagonal action of F on the right-hand side gives
the desired action of F on 𝑇𝑋,Q.

3.17. Remark

The crucial property that 𝔡 is a principal ideal also holds generally whenever there is a single element
𝛼 ∈ 𝐹 such that O𝐹 = Z[𝛼]. For these cases, the above proof applies whenever the totally real cyclic
cubic field F has odd class number since it allows one to use [BVV, Cor. 4.3.5] again.

3.18. Example

In the totally real cubic subfield 𝐹 = Q(𝛼) of Q(𝜁7) with 𝛼 = 𝜁 + 𝜁−1, one can take 𝛿 = −𝛼2 − 3𝛼 − 4
totally negative, so (𝐹, 𝑏𝛿) � (Q3, I0,3) and 𝑢𝛿 = 2𝛼2 − 𝛼 − 6 such that (𝐹, 𝑏𝑢𝛿) � (Q3, I1,2).

Using the same approach as above, we now cover real fields of the remaining degrees:

3.19. Theorem

For 𝑚 = 4, 6, 7 and 𝑙 = 5, 3, 3 respectively, there exist (𝑙 − 2)-dimensional families of K3 surfaces such
that the very general member X has RM by the field 𝐹𝑚, where 𝐹𝑚 is defined by the polynomial 𝑓𝑚 or
𝑔𝑚 in Table 1.

3.20. Proof

We start by setting up the K3 surfaces in question by specifying their Picard and transcendental lattices.
For 𝑚 = 7, we take exactly the same lattices as in the proof of Theorem 3.15.
For 𝑚 = 4, let 𝑟 ∈ N and Pic(𝑋) = 𝑈 (𝑟) as in Theorem 3.10. Then, as a quadratic space,

𝑇𝑋,Q � 𝑈 ⊕ 〈4𝑟2〉 ⊕ 〈−4𝑟2〉 ⊕ 𝐸2
8 � 〈1〉2 ⊕ 〈−1〉18.
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Table 1. Totally real fields with suitable generators of the different ideal..

𝑓4 = 𝑥4 + 𝑥3 − 6𝑥2 − 𝑥 + 1,
𝛿 = −14𝛼3 − 19𝛼2 + 76𝛼 + 46,

𝑢 𝛿 = (3𝛼3 − 2𝛼2 − 26𝛼 − 5)/2,

𝑔4 = 𝑥4 − 6𝑥2 + 4,
𝛿 = 3𝛼3 − 2𝛼2 − 14𝛼 + 16,

𝑢 𝛿 = 𝛼3 − 2𝛼2 − 8𝛼 + 16,

𝑓6 = 𝑥6 + 𝑥5 − 5𝑥4 − 4𝑥3 + 6𝑥2 + 3𝑥 − 1,
𝛿 = 10𝛼5 + 4𝛼4 − 55𝛼3 − 7𝛼2 + 72𝛼 − 21,

𝑢 𝛿 = −2𝛼5 + 7𝛼4 + 11𝛼3 − 22𝛼2 − 4𝛼 − 1,

𝑔7 = 𝑥7 + 𝑥6 − 18𝑥5 − 35𝑥4 + 38𝑥3 + 104𝑥2 + 7𝑥 − 49,
𝛿 = (48274𝛼6 − 25217𝛼5 − 830561𝛼4 − 425142𝛼3 + 2481943𝛼2 + 1241898𝛼 − 1553433)/7

𝑢𝛿 = (138𝛼6 − 582𝛼5 − 1418𝛼4 + 6270𝛼3 + 1455𝛼2 − 15145𝛼 + 7749)/7

𝑓7 = 𝑥7 − 2𝑥6 − 5𝑥5 + 9𝑥4 + 7𝑥3 − 10𝑥2 − 2𝑥 + 1,
𝛿 = 2𝛼6 − 3𝛼5 − 13𝛼4 + 7𝛼3 + 15𝛼2 − 3𝛼 − 6,

𝑢 𝛿 = 4𝛼6 − 13𝛼5 − 2𝛼4 + 33𝛼3 − 11𝛼2 − 20𝛼 − 6

For 𝑚 = 6, let 𝑟 ∈ N and Pic(𝑋) = 𝑈 ⊕ 〈−4𝑟2〉2. Then 𝑇𝑋 � 〈4𝑟2〉2 ⊕ 𝐸2
8 , so as a quadratic space,

𝑇𝑋,Q � 〈1〉2 ⊕ 𝐸2
8 � 〈1〉2 ⊕ 〈−1〉16.

In summary, each case has dim𝑇𝑋,Q = 𝑙𝑚, and thus,

𝑇𝑋,Q � (〈1〉 ⊕ 〈−1〉𝑚−1)2 ⊕ (〈−1〉𝑚)𝑙−2.

As in the proof of Theorem 3.15, it remains to find a totally negative generator 𝛿 of 𝔡 and a unit 𝑢 ∈ O×
𝐹

such that (𝐹, 𝑏𝑢𝛿) is hyperbolic.
This can be achieved with the help of Magma [BCP] as follows. The table below gives a defining

polynomial 𝑓𝑚 or 𝑔𝑚 of the field 𝐹𝑚. Let 𝛼 ∈ 𝐹𝑚 be a root of 𝑓𝑚 resp. 𝑔𝑚; then we write our choices of
𝛿 and 𝑢𝛿 as linear combinations of the 𝛼𝑖 .

The fields defined by 𝑓3, 𝑓6 are the totally real subfields of Q(𝜁7) and Q(𝜁13), respectively, with
𝛼 = 𝜁 + 𝜁−1.

The field defined by 𝑓4 is the degree 4 totally real subfield ofQ(𝜁17), with 𝛼 = 𝜁 + 𝜁4 + 𝜁−4 + 𝜁−1, thus
cyclic over Q, while 𝑔4 defines the biquadratic field Q(

√
2,
√

5) = Q(𝛼) for 𝛼 = 𝜁3 + 𝜁13 + 𝜁−13 + 𝜁−3

inside Q(𝜁40).
The field defined by 𝑓7 is not a Galois extension, but the field defined by 𝑔7 is Galois as it is the

degree 7 totally real subfield of Q(𝜁43), with 𝛼 = 𝜁 + 𝜁6 + 𝜁7 + 𝜁−6 + 𝜁−7 + 𝜁−1.
In each case, we have by the choice of 𝛿, 𝑢 that

𝑇𝑋Q � (𝐹, 𝑏𝑢𝛿)2 ⊕ (𝐹, 𝑏𝛿)𝑙−2.

Endowing this with the natural diagonal F-action gives the theorem.

3.21. Remark

In Sections 5, 6 and 7 we will exhibit explicit families of RM K3 surfaces using jacobian elliptic
fibrations. However, the dimensions of the families will sometimes be smaller then the maximum
allowed for by the degree of the field and the Picard number of the general member.
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4. Dickson polynomials and 𝐷𝑛-type covers P1 → P1

4.1. The dihedral group 𝐷𝑛

Let 𝐷𝑛 be the dihedral group of order 2𝑛. We denote by 𝜏, 𝜎 ∈ 𝐷𝑛 an element of order two, n
respectively, so that

𝐷𝑛 = 〈𝜎, 𝜏 | 𝜎𝑛 = 𝜏2 = 1, 𝜎𝜏 = 𝜏𝜎−1〉.

We refer to [CP] for general results on 𝐷𝑛-covers of algebraic varieties. The 𝐷𝑛-action on certain
varieties allows us to obtain K3 surfaces with RM by the totally real subfield ofQ(𝜁𝑛). For this, we need
the deformations of cyclic covers provided by the Dickson polynomials.

4.2. Dickson polynomials and 𝐷𝑛-type covers of P1

The Dickson polynomial of degree n with parameter a is the (unique) degree n polynomial 𝑝𝑛,𝑎 (𝑥) ∈
Z[𝑎] [𝑥] satisfying, in the Laurent ring Z[𝑎] [𝑣, 𝑣−1],

𝑝𝑛,𝑎 (𝑣 + 𝑎/𝑣) = 𝑣𝑛 + (𝑎/𝑣)𝑛.

In particular, for 𝑎 = 0, we get 𝑝𝑛,0 = 𝑥𝑛, so 𝑝𝑛,0 : P1
𝑥 → P1

𝑢 , 𝑢 = 𝑥𝑛, is a cyclic cover. One easily
verifies that

𝑝𝑛,𝑎2 (𝑎𝑥) = 𝑎𝑛𝑝𝑛,1 (𝑥).

The following Dickson polynomials will be used in this paper:

𝑝3,𝑎 = 𝑥3 − 3𝑎𝑥,
𝑝5,𝑎 = 𝑥5 − 5𝑎𝑥3 + 5𝑎2𝑥,
𝑝7,𝑎 = 𝑥7 − 7𝑎𝑥5 + 14𝑎2𝑥3 − 7𝑎3𝑥,
𝑝9,𝑎 = 𝑥9 − 9𝑎𝑥7 + 27𝑎2𝑥5 − 30𝑎3𝑥3 + 9𝑎4𝑥,
𝑝11,𝑎 = 𝑥11 − 11𝑎𝑥9 + 44𝑎2𝑥7 − 77𝑎3𝑥5 + 55𝑎4𝑥3 − 11𝑎5𝑥.

4.3. Lemma

For any 𝑛 > 2 and for any nonzero 𝑎 ∈ C, the map defined by a degree n Dickson polynomial 𝑝𝑛,𝑎,

𝑓 : P1
𝑥 −→ P1

𝑢 , 𝑥 ↦−→ 𝑢 := 𝑝𝑛,𝑎 (𝑥),

is a degree n covering with monodromy group 𝐷𝑛. This covering is totally ramified over ∞ ∈ P1
𝑢 .

4.4. Proof

For a nonzero a, we define an action of 𝐷𝑛 on P1
𝑣 by

𝜎, 𝜏 : P1
𝑣 −→ P1

𝑣 , 𝜎 : 𝑣 ↦−→ 𝜁𝑛𝑣, 𝜏 : 𝑣 ↦−→ 𝑎/𝑣.

Consider the composition

𝑓 : P1
𝑣 −→ P1

𝑥 −→ P1
𝑢 , 𝑢 := 𝑣𝑛 + (𝑎/𝑣)𝑛,

where the first map has degree 2 and is given by 𝑥 = 𝑣 + 𝑎/𝑣. The induced map P1
𝑥 → P1

𝑢 is thus given
by 𝑢 = 𝑝𝑛,𝑎 (𝑥); hence, it is the map f. Notice that P1

𝑥 = P1
𝑣/𝜏 and P1

𝑢 = P1
𝑣/𝐷𝑛. For 𝑛 > 2, the subgroup
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〈𝜏〉 ⊂ 𝐷𝑛 is not a normal subgroup, and thus, the degree n cover 𝑓 : P1
𝑥 → P1

𝑢 is not a Galois cover.
The Galois closure of f is 𝑓 , a 𝐷𝑛-cover; hence, f has monodromy group 𝐷𝑛.

4.5. Real multiplication on elliptic K3 surfaces

Lemma 4.3 provides, for any nonzero 𝑎 ∈ C, a deformation of a cyclic degree n cover of P1 to a cover
with monodromy group 𝐷𝑛. We apply these deformations to cyclic covers of prime degree of jacobian
elliptic surfaces.

Let E → P1
𝑢 be an elliptic surface and assume that its Weierstrass model is defined by a minimal

Weierstrass equation (with 𝛼, 𝛽 ∈ C[𝑢]):

E : 𝑌2 = 𝑋3 + 𝛼(𝑢)𝑋 + 𝛽(𝑢). (4.1)

Then E is rational if deg(𝛼) ≤ 4 and deg(𝛽) ≤ 6. (cf. [SS, Prop. 5.51]). Similarly, E is a K3 surface if it
is not rational, deg(𝛼) ≤ 8 and deg(𝛽) ≤ 12 and the fibration is relatively minimal. In particular, if for
𝑛 > 1 the equation

E : 𝑌2 = 𝑋3 + 𝛼(𝑥𝑛)𝑋 + 𝛽(𝑥𝑛) (4.2)

defines a K3 surface, then (4.1) defines a rational surface which is the quotient E/𝜎0 (with quotient map
that sends 𝑥 ↦→ 𝑢 = 𝑥𝑛) by the purely non-symplectic automorphism 𝜎0 of order n given by

𝜎0 : E −→ E , 𝜎0(𝑋,𝑌, 𝑥) = (𝑋,𝑌, 𝜁𝑛𝑥). (4.3)

That 𝜎0 is non-symplectic can also be seen by computing 𝜎∗
0 of the regular 2-form 𝑑𝑋 ∧ 𝑑𝑥/𝑌 on E .

4.6. Proposition

Let 𝑛 ∈ {5, 7, 11} and 𝑎 ∈ C×. Assume that E , defined by (4.2), is a K3 surface. Then the deformation
E𝑎 of E defined by the Weierstrass equation

E𝑎 : 𝑌2 = 𝑋3 + 𝛼(𝑝𝑛,𝑎 (𝑥))𝑋 + 𝛽(𝑝𝑛,𝑎 (𝑥)) (4.4)

is again an elliptic K3 surface, and the totally real subfield 𝐹 = Q(𝜁𝑛 + 𝜁−1
𝑛 ) of Q(𝜁𝑛) acts by Hodge

endomorphisms on 𝑇E𝑎 , so 𝐹 ⊂ EndHod(𝑇E𝑎 ).

4.7. Proof

To see this, let Ẽ𝑎 be the (relatively minimal) elliptic surface obtained as the pull-back of E𝑎 along the
double cover 𝑓 : P1

𝑣 → P1
𝑥 defined by 𝑥 := 𝑣 + 𝑎/𝑣. It has a Weierstrass equation

Ẽ𝑎 : 𝑌2 = 𝑋3 + 𝛼(𝑣𝑛 + (𝑎/𝑣)𝑛)𝑋 + 𝛽(𝑣𝑛 + (𝑎/𝑣)𝑛).

Then 𝐷𝑛 acts on the Weierstrass model via its action on P1
𝑣 – that is, by

𝜎(𝑋,𝑌, 𝑣) = (𝑋,𝑌, 𝜁𝑛𝑣), 𝜏(𝑋,𝑌, 𝑣) = (𝑋,𝑌, 𝑎/𝑣).

This action extends to Ẽ𝑎, and Ẽ𝑎/𝐷𝑛 is birational to the rational surface E .
Consider the Hodge substructure 𝑇E𝑎 ,Q ⊂ 𝐻2(E𝑎,Q) defined by the transcendental lattice of the K3

surface E𝑎; it is simple and has dimC 𝑇2,0
E𝑎

= 1. After pull-back to a desingularization of the base change
and push-foward along blow-downs to obtain the relative minimal model Ẽ𝑎, one obtains a Hodge
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substructure 𝑇𝑎 ⊂ 𝐻2(Ẽ𝑎,Q) with an isomorphism of Hodge structures 𝑇𝑎
�−→ 𝑇E𝑎 ,Q. It suffices to

show that 𝐹 ⊂ EndHod (𝑇𝑎).
Since the rational map Ẽ𝑎 → E𝑎 is birational to the quotient by 𝜏, one has 𝑇𝑎 ⊂ 𝐻2 (Ẽ𝑎,Q)𝜏

∗ , the
subspace of 𝜏∗-invariants, and 𝐻2,0 (Ẽ𝑎)𝜏

∗
� 𝐻2,0 (E𝑎). Since E𝑎 is a K3 surface, we see that 𝐻2,0(Ẽ𝑎)𝜏

∗

is one-dimensional, and hence,𝑇𝑎 is the unique simple Hodge substructure of 𝐻2(Ẽ𝑎,Q)𝜏
∗ with nonzero

(2, 0)-component.
Since 𝜎𝜏 = 𝜏𝜎−1, the endomorphisms 𝜎∗+(𝜎−1)∗ and 𝜏∗ of 𝐻2 (Ẽ𝑎,Q) commute. Thus, 𝜎∗+(𝜎−1)∗

defines an endomorphism of the subspace of 𝜏∗-invariants 𝐻2 (Ẽ𝑎,Q)𝜏
∗ . This endomorphism maps 𝑇𝑎

into itself since the automorphisms 𝜎, 𝜎−1 preserve the Hodge structure, and by the unicity of 𝑇𝑎. In
particular, 𝜎∗ + (𝜎−1)∗ ∈ EndHod (𝑇𝑎).

Since (𝜎∗)𝑛 is the identity on 𝐻2(Ẽ𝑎,Q) and n is prime, the subalgebra of End(𝐻2 (Ẽ𝑎,Q)) it
generates is a quotient of Q[𝑇]/(𝑇𝑛 − 1) � Q × Q(𝜁𝑛). The subalgebra generated by 𝜎∗ + (𝜎−1)∗ is
therefore a quotient of Q × 𝐹 and 𝐹 � Q since 𝑛 > 3. To show that 𝑇𝑎 is an F-vector space, it suffices
to show that 𝜎∗ + (𝜎−1)∗ acting on 𝑇𝑎 has no eigenvalue 𝜆 ∈ Q. An eigenspace of 𝜆 ∈ Q is a Hodge
substructure of 𝑇𝑎, which contradicts that 𝑇𝑎 is simple, unless it is all of 𝑇𝑎. Since the eigenvalues of 𝜎∗

can only be 𝜁 𝑘𝑛 , 𝑘 = 0, . . . , 𝑛 − 1, and 𝑛 > 3 is an odd prime, this implies that 𝜆 = 2 and that 𝜎∗ induces
the identity map on 𝑇𝑎. As 𝜏∗ is also the identity on 𝑇𝑎, we find that 𝐷𝑛 acts trivially on 𝑇𝑎. But then 𝑇𝑎
is isomorphic to a Hodge substructure of Ẽ/𝐷𝑛. However, this is a rational surface whereas 𝑇2,0

𝑎 ≠ 0.
The Hodge endomorphism 𝜎∗ + (𝜎−1)∗ thus generates a subalgebra of EndHod (𝑇𝑎) which is isomor-

phic to F. In particular, F acts by Hodge endomorphisms on 𝑇𝑎 � 𝑇E𝑎 ,Q.

4.8. Cycles inducing the real multiplication

The real multiplication by 𝜁𝑚 + 𝜁−1
𝑚 on 𝑇E𝑎 ,Q is a Q-linear endomorphism which is induced by the

corresponding endomorphism of 𝐻2(Ẽ𝑎,Q). For 𝑘 ∈ {0, 1, . . . , 𝑛 − 1}, let

Γ𝑘 := {(𝑥, 𝜎𝑘 (𝑥)) ∈ Ẽ𝑎 × Ẽ𝑎 : 𝑥 ∈ Ẽ𝑎}

be the graph of the order n automorphism 𝜎 ∈ 𝐷𝑛 of Ẽ𝑎.
Let [Γ𝑘 ] ∈ 𝐻4 (Ẽ𝑎× Ẽ𝑎,Q) be the cohomology class of the subvariety Γ𝑘 . Using the Künneth formula

[Γ𝑘 ] =
∑
𝑖

[Γ𝑘 ]2𝑑−𝑖 ∈
⊕
𝑖

𝐻2𝑑−𝑖 (Ẽ𝑎,Q) ⊗ 𝐻𝑖 (Ẽ𝑎,Q),

and Poincaré duality 𝐻2𝑑−𝑖 ( �̃� ′,Q) � 𝐻𝑖 ( �̃� ′,Q)∗, one finds

𝐻2𝑑−𝑖 ( �̃� ′,Q) ⊗ 𝐻𝑖 ( �̃� ′,Q) � End(𝐻𝑖 ( �̃� ′,Q)).

The endomorphism of 𝐻2 (Ẽ𝑎,Q) defined by the Künneth component [Γ𝑘 ]2 lies in EndHod (𝐻2(Ẽ𝑎,Q))
since it has Hodge type (2, 2) and one has [Γ𝑘 ]2 = (𝜎−𝑘 )∗; the inverse is due to the definition of
the action of the group 𝐷𝑛 on the cohomology, which is defined by 𝑔 · 𝑣 := (𝑔−1)∗𝑣 to assure that
𝑔 · (ℎ · 𝑣) = (𝑔ℎ) · 𝑣.

In particular, the action of 𝜁𝑛 + 𝜁−1
𝑛 on 𝐻2(Ẽ𝑎,Q) is induced by the cycle Γ1 + Γ−1 on Ẽ𝑎 × Ẽ𝑎. This

cycle induces a cycle on E𝑎 × E𝑎 which defines the real multiplication on 𝑇𝑋,Q.

4.9. Remark

In general, if X is a K3 surface with RM by Q(𝜁𝑚 + 𝜁−1
𝑚 ), then there is a priori no reason to assume that

the real multiplication is induced by a cycle with two irreducible components as we found for the E𝑎.
This suggests that such K3 surfaces are quite special among those with RM. This is confirmed by the
fact that in various examples, we do not find maximal families of RM K3 surfaces (the dimension of the
deformation space is given by Proposition 3.2). Assuming the Hodge conjecture, there must be a cycle
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inducing the RM, but the general member of such a maximal family probably has a more complicated
cycle than in the case we considered here.

4.10. Remark

Dickson polynomials have the special feature of being permutation polynomials for certain finite fields,
only depending on the degree (but not on a). The elliptic K3 surfaces considered in Proposition 4.6
therefore satisfy certain congruences for their point counts over finite fields; this relates to the approach
towards RM taken in [EJ3, Thm 1.1].

5. Examples

5.1. The case where n is prime

We consider elliptic surfaces with purely non-symplectic automorphisms of order n. In case n is a
prime number, we use the deformations given by Dickson polynomials as in Proposition 4.6 to construct
explicit families of elliptic K3 surfaces with RM. A slight modification allows us to also handle the case
𝑛 = 9. In case 𝑛 = 5, we find a much larger family using a variation of Proposition 4.6 in Section 5.9.

5.2. The case 𝑛 = 5, approached via elliptic fibrations

Consider the rational elliptic surfaces given by the Weierstrass form

𝑆 : 𝑦2 = 𝑥3 + 𝑎1𝑥 + 𝑎2, 𝑎𝑖 ∈ 𝑘 [𝑡], deg(𝑎𝑖) ≤ 𝑖. (5.1)

This family is 3-dimensional since the 𝑎𝑖 have 2 + 3 = 5 coefficients, but there are the scalings
(𝑥, 𝑦) ↦→ (𝜆2𝑥, 𝜆3𝑦) and 𝑡 ↦→ 𝜇𝑡 to take into account. The elliptic fibration on S has a singular fibre of
Kodaira type IV∗ at ∞ and generally Mordell–Weil lattice MWL � 𝐴∨

2 (see [SS, Table 8.2, No. 27]). In
fact, solving for 𝑥 = const. such that the RHS of (5.1) is a perfect square leads exactly to 6 sections of
height 2/3, corresponding to the minimal vectors of 𝐴∨

2 .
Base change by 𝑡 = 𝑠5 gives rise to a 3-dimensional family of K3 surfaces with

◦ a non-symplectic automorphism 𝜎0 of order 5,
◦ (generally) a singular fibre of type IV at 𝑠 = ∞, so NS ⊃ 𝑈 ⊕ 𝐴2,
◦ Mordell–Weil lattice MWL ⊇ 𝐴∨

2 (5), the original Mordell–Weil lattice of S scaled by 5,

so 𝜌 ≥ 6 with very general equality by 2.3. One can show that this family corresponds to the second
family in [AST, Table 2], listed under 𝑆(𝜎) = 𝐻5⊕𝐴4 (the invariant lattice under 𝜎∗

0 acting on 𝐻2(𝑋,Z),
isometric to the very general Néron–Severi lattice).

We can deform the above family by considering the K3 surface 𝑋𝑎 obtained as the base change of
S by 𝑡 = 𝑝5,𝑎 (𝑠) for 𝑎 ∈ C. This results in a 4-dimensional family of K3 surfaces with the same very
general Néron–Severi lattice (since the sections and reducible fibre deform). By Proposition 4.6, one
hasQ(

√
5) ⊂ EndHod (𝑇𝑋𝑎 ,Q). To see that this is an equality very generally, assume that there is a strictly

larger field F such that 𝐹 ⊂ EndHod (𝑇𝑋𝑎 ,Q) very generally. Then 𝑚 = [𝐹 : Q] ≥ 4, so by 2.3, 2.6, the
4-dimensional family would force rank(𝑇𝑋 ) ≥ 𝑚 · (4 + 1) = 20, which is impossible since 𝜌 ≥ 6.

5.3. The case 𝑛 = 7

According to [AST, §6], there are two 2-dimensional families of K3 surfaces admitting a non-symplectic
automorphism of order 7 (and this is the maximal dimension of such families). The dimension of the
Q(𝜁7)-vector space 𝑇𝑋,Q is then 𝑙 = 3 for the general X in either family. By Proposition 3.2, there exist
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two 2𝑙 − 2 = 4-dimensional families of K3 surfaces with RM by the cubic field 𝐹 = Q(𝜁7 + 𝜁−1
7 ).

Using one of these families and Proposition 4.6, we find an explicit 3-dimensional family of elliptic K3
surfaces with RM by F.

5.4. Proof of Theorem 1.2 (7)

One of the families from [AST] is given by the Weierstrass forms

𝑦2 = 𝑥3 + (𝑏1𝑡
7 + 𝑏0)𝑥 + (𝑐1𝑡

7 + 𝑐0), 𝑏𝑖 , 𝑐𝑖 ∈ C (5.2)

(this is a 2-dimensional family once we account for scalings). Generally, such a fibration has only one
reducible singular fibre (of Kodaira type III, located at 𝑡 = ∞). There is also a section (𝑥(𝑡), 𝑦(𝑡)) with
𝑥 = −𝑐1/𝑏1, of height 7/2. Hence, a general X in the family has Pic(𝑋) = 𝑈 ⊕ 𝐾7, a lattice of rank
𝜌 = 4 in the notation of [AST], and 𝑇𝑋 = 𝑈2 ⊕ 𝐴6 ⊕ 𝐸8.

We deform (5.2) by replacing 𝑡7 by 𝑝7,𝑎 (𝑡), with 𝑎 ∈ C as in (4.4), to obtain a 3-dimensional family
of K3 surfaces 𝑋𝑎 with 𝐹 = Q(𝜁7 + 𝜁−1

7 ) ⊂ EndHod (𝑇𝑋𝑎 ,Q). If 𝐹 ≠ 𝐸 := EndHod (𝑇𝑋𝑎 ,Q), then E must
be a field of degree at least 6, and dim𝐸 𝑇𝑋𝑎 ,Q ≤ 3; hence, there would be at most 3 − 1 = 2 moduli if E
is CM or 3 − 2 = 1 moduli if E is totally real, contradicting the count of 3 moduli we found.

As the singular fibre types stay the same generally and the section obviously deforms, we infer that
for the general deformation, Pic(𝑋𝑎) = 𝑈 ⊕ 𝐾7. Thus, the remaining claim of Theorem 1.2 (7) about
the very general Picard number follows.

5.5. The case 𝑛 = 9

A complete classification of the K3 surfaces X with a non-symplectic automorphism 𝜎 of order 9 w.r.t.
the fixed locus of 𝜎 is given in [ACV]. We use deformations of a 1-dimensional family to find an explicit
2-dimensional family with RM by the degree 3 totally real field Q(𝜁9 + 𝜁−1

9 ).

5.6. Proof of Theorem 1.2 (9)

A one-dimensional family (denoted by D2 in [ACV]) of elliptic K3 surfaces with very general 𝜌 = 10
(hence, 𝑑 = dimQ(𝑇𝑋,Q) = 12) admitting a purely non-symplectic automorphism of order 9 is given by

𝑦2 = 𝑥3 + 𝑏𝑥 + 𝑐1𝑡
9 + 𝑐0, 𝑏, 𝑐1, 𝑐0 ∈ C. (5.3)

For very general X, one has Pic(𝑋) = 𝑈 ⊕ 𝐴4
2, but this becomes visible on the above fibration only

indirectly – namely, through the fibre of type I∗0 at 𝑡 = ∞ and through the Mordell–Weil lattice
MWL(𝑋) = 𝐷∨

4 (3), which is induced from the rational elliptic surface given by 𝑠 = 𝑡3, which is
intermediate to the cyclic cover given by 𝑢 = 𝑡9. (See [SS, Table 8.2, No. 9] for the intermediate rational
elliptic surface.)

We deform (5.3) by replacing 𝑡9 by 𝑝9,𝑎 (𝑎 ∈ C). To show that the Picard lattice is preserved by
the deformation, note that the fibre at ∞ is clearly preserved. As for the Mordell–Weil lattice, it is
well-known that

𝑝𝑚𝑛,𝑎 (𝑡) = 𝑝𝑚,𝑎𝑛 (𝑝𝑛,𝑎 (𝑡)).

Presently, with 𝑚 = 𝑛 = 3, this implies that also the deformation factors through a rational elliptic
surface with MWL = 𝐷∨

4 . Hence, we get the same very general Pic as before.
To show that one obtains a 2-dimensional family of elliptic K3 surfaces with RM by 𝐹 = Q(𝜁9 +

𝜁−1
9 ), one modifies the proof of Proposition 4.6 by splitting 𝐻2 (Ẽ𝑎,Q) into three summands that are
𝐷𝑛-representations on which 𝜎 acts with eigenvalues 1, primitive cube roots of unity and primitive
nineth-roots of unity, respectively. One shows that𝑇𝑎 lies in the last summand using that the intermediate
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𝐷3-cover is rational.
The family is maximal since the Picard lattice is preserved by the deformation.

5.7. The case 𝑛 = 11

According to [AST, §7], there are two 1-dimensional families of K3 surfaces admitting a non-symplectic
automorphism of order 11 (and this is the maximum dimension of such families). Since [Q(𝜁11) : Q] =
10, the dimension of the Q(𝜁11)-vector space 𝑇𝑋,Q is 2 for the general X in either family. By Proposition
3.2, there exist two 2𝑙 − 2 = 2-dimensional families of K3 surfaces with RM by 𝐹 = Q(𝜁11 + 𝜁−1

11 ).
Using one of these families and Proposition 4.6, we find an explicit 2-dimensional family of elliptic K3
surfaces with RM by F.

5.8. Proof of Theorem 1.2 (11)

We consider the family of elliptic K3 surfaces given by the Weierstrass form

𝑦2 = 𝑥3 + 𝑏𝑥 + (𝑐1𝑡
11 + 𝑐0), 𝑏, 𝑐1, 𝑐0 ∈ C. (5.4)

This is a 1-dimensional family once we account for scalings, and thus, for the general X, we find
dimQ(𝜁11) 𝑇𝑋,Q ≥ 2. For dimension reasons, we must then have equality, and so the general X has Picard
number two, and thus, Pic(𝑋) = 𝑈 and 𝑇𝑋 = 𝑈2 ⊕ 𝐸2

8 . Generally, there is only one additive singular
fibre (of Kodaira type II, located at 𝑡 = ∞), all other fibres having Kodaira type I1.

We deform (5.4) by replacing 𝑡11 by 𝑝11,𝑎 (𝑎 ∈ C) as in (4.4) to obtain a 2-dimensional family
of K3 surfaces with RM by 𝐹 = Q(𝜁11 + 𝜁−1

11 ) as before; note that this is a maximal family since
𝑙 = dim𝐹 𝑇𝑋,Q = 4, and thu,s there are 𝑙 − 2 = 2 moduli. Theorem 1.2 (11) follows.

5.9. Proof of Theorem 1.2 (5)

In [AST, §5], one finds a description of a family A (case 5A) of K3 surfaces with a non-symplectic
automorphism 𝜎 of order five. Whereas in Proposition 4.6 we found such deformations by base change
of an elliptic fibration, we now have to consider a generalization of the proof which is based on a
𝐷𝑛-type deformation of the quotient map 𝑋 ↦→ 𝑋/𝜎 for a general member of this family.

The general member in the family A has Picard rank two, and the Picard lattice 𝐻5 is generated
by the classes of two smooth rational curves (cf. [AST, §1]). The very general transcendental rational
Hodge structure 𝑇𝑋 is thus a Q(𝜁5)-vector space of dimension 𝑙 = (22 − 2)/4 = 5, and the family has
𝑙 − 1 = 4 moduli.

The general member A𝑝 of the family A is defined as the double cover of P2, with homogeneous
coordinates (𝑥0 : 𝑥1 : 𝑥2), branched over a smooth sextic curve 𝐶𝑝 , where 𝑝 ∈ C[𝑥0, 𝑥1] is a degree 6
polynomial with six distinct zeroes in P1

(𝑥0:𝑥1) , not divisible by 𝑥1:

𝐶𝑝 : 𝑝(𝑥0, 𝑥1) + 𝑥1𝑥
5
2 = 0. (5.5)

(Changing the coordinate 𝑥0, p can be put in the form 𝑥0 (𝑥0 − 𝑥1)
∏4

𝑖=1(𝑥0 − 𝜆𝑖𝑥1), thus making the 4
moduli apparent. We can also observe the generators of Pic(𝑋) as the components of the pull-back of
the line {𝑥1 = 0} ⊂ P2.) The automorphism 𝜎 on A𝑝 is induced by the automorphism

�̄� : P2 −→ P2, (𝑥0 : 𝑥1 : 𝑥2) ↦−→ (𝑥0 : 𝑥1 : 𝜁5𝑥2).

These surfaces were described in [GP, 7.2] as product-quotient surfaces. The quotient 𝑌 = P2/〈�̄�〉 is
the (singular) weighted projective space P(1, 1, 5) which is isomorphic to a cone in P6 over a rational
normal curve of degree 5. After blowing up the fixed point (0 : 0 : 1) ∈ P2 and the singular point of
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𝑌 � P(1, 1, 5), one obtains a cyclic degree 5 cover of the Hirzebruch surfaces F1 → F5.
We deform the family A by replacing 𝑥5

2 in (5.5) by the Dickson polynomial 𝑝5,𝑎 (𝑥2), where
𝑎 ∈ C[𝑥0, 𝑥1] is homogeneous of degree 2, so that 𝑝5,𝑎 (𝑥2) ∈ C[𝑥0, 𝑥1, 𝑥2] is homogeneous of degree
5. One obtains a covering map F1 → F5 with monodromy group 𝐷5. This induces a degree 5 covering
between the double covers, and similar to the proof of Proposition 4.6, one finds that any A𝑝 deforms
to a K3 with RM by Q(

√
5).

Since the transcendental rational Hodge structure of a general deformation still has dimension 20
over Q, it has dimension 𝑙 = 20/2 = 10 over Q(

√
5) = Q(𝜁5 + 𝜁−1

5 ). Therefore, the deformations of K3
surfaces in the family A with RM by Q(

√
5) have 𝑙 − 2 = 8 moduli. However, the 𝐷𝑛-type deformations

depend on 3 parameters, the coefficients of a, so we get 4 + 3 = 7 moduli for the 𝐷𝑛-type deformations.
Since these K3 surfaces have Picard number 2, they should be (very special) members of an 8-

dimensional family of K3 surfaces with RM by Q(
√

5). Unfortunately, we do not know the general
member in such an 8-dimensional family explicitly.

5.10. Relation between Section 5.2 and Theorem 1.2 (5)

The K3 surfaces with CM by Q(𝜁5) from Section 5.2 which arise from (5.1) by a cyclic degree 5 base
change form a codimension one subfamily of the CM family A in the proof of Theorem 1.2 (5). In
terms of the standard form of the polynomial p given just below (5.5), it is given by 𝜆1 · · · 𝜆4 = 0 (which
imposes an 𝐴4 singularity on (5.5)). Indeed, with this condition, (5.5) can be considered, in the affine
chart 𝑥0 = 1, as a quartic in 𝑥1 over C(𝑥2); the double cover thus describes an elliptic curve (with two
rational points at 𝑥1 = 0) which transforms to the Weierstrass form from (5.1).

Turning to the deformations with RM byQ(
√

5), we exhibited a 7-dimensional family in 5.9 depending
on the homogeneous polynomials 𝑝, 𝑎 ∈ C[𝑥0, 𝑥1] of degree 4 resp. 2. Along the same lines as above,
imposing an 𝐴4 singularity at [0, 1, 0] amounts to 𝜆1 · · · 𝜆4 = 0 and 𝑥0 | 𝑎. Thereby, we obtain a 5-
dimensional family of elliptic K3 surfaces with 𝜌 ≥ 6 and RM by Q(

√
5), again 1 dimension short

of being maximal. The 4-dimensional family from 5.2 is encoded in the extra condition 𝑥2
0 | 𝑎 which

allows one to realize the RM K3 surfaces as base change of the rational elliptic surfaces in (5.1).

6. An approach using isogenies

Exploiting isogenies forms a classical approach toward exhibiting explicit elliptic curves with CM.
More generally, it is very useful for the study of Q-curves. We shall explore similar ideas for the elliptic
fibrations over P1 below in order to find K3 surfaces with RM (induced by suitable rational self-maps).

6.1. Degree 2 isogenies

If E is an elliptic curve with a 2-torsion point P over a field K of characteristic ≠ 2, then E can be
converted to the standard form, with 𝑃 = (0, 0):

𝐸 : 𝑦2 = 𝑥(𝑥2 + 2𝑎𝑥 + 𝑏), 𝑎, 𝑏 ∈ 𝐾, 𝑏(𝑎2 − 𝑏) ≠ 0. (6.1)

Quotienting by translation by the 2-torsion section P, E admits a 2-isogeny ([S1, III.4.5])

𝐸
𝜓

−→ 𝐸 ′, (𝑢, 𝑣) =

(
𝑦2

𝑥2 ,
𝑦(𝑥2 − 𝑏)

𝑥2

)

to the elliptic curve 𝐸 ′ given by

𝐸 ′ : 𝑣2 = 𝑢(𝑢2 − 4𝑎𝑢 + 4(𝑎2 − 𝑏)).
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Asking for E and 𝐸 ′ to be isomorphic over �̄� generally leads to the CM-curves with j-invariants
1728,−3375 and 8000 ([S2, II.2]. In the realm of elliptic surfaces (i.e., with 𝐾 = 𝑘 (𝑡)), we can set
up the fibration (6.1) to be isotrivial with general fibre one of the above three elliptic curves E. Then
the surface automatically acquires CM (and in the K3 case, at least for 𝑗 ≠ 1728, it turns out to be a
Kummer surface for the product of E with another elliptic curve).

However, there is more flexibility since requiring that the underlying surfaces X and 𝑋 ′ are isomorphic
does not imply that the isomorphism acts as identity on the base of the fibration; it need not even preserve
the fibration. In what follows, we impose the condition that there is an automorphism 𝜎 of P1 such that
the fibration 𝜋 on X and the twisted fibration 𝜎 ◦ 𝜋′ on 𝑋 ′ are isomorphic as elliptic fibrations:

𝑋
𝜋−→ P1 and 𝑋 ′ 𝜎◦𝜋′

−→ P1. (6.2)

For this, note that, generally, X will have singular fibres of type I2 at the zeroes of b, and of type I1 at
the zeroes of 𝑎2 − 𝑏, as displayed below.

On 𝑋 ′, the singular fibres are interchanged, so we basically want to undo this using 𝜎. In practice,
we will take 𝜎 as an involution of P1

𝑡 which we normalize to be 𝜎(𝑡) = −𝑡. Then for (6.2) to give
isomorphic elliptic surfaces requires that

𝑎 = ±𝑎𝜎 and 𝑏 + 𝑏𝜎 = 𝑎2.

Now we restrict to the K3 setting with 𝑘 ⊂ C and draw the desired consequences for RM and CM.

6.2. Proposition

Let 𝛼, 𝛽 ∈ C[𝑥] with deg(𝛽) ≤ 3. Then,

◦ if deg(𝛼) ≤ 2, the 5-dimensional family of elliptic K3 surfaces

𝑦2 = 𝑥
(
𝑥2 + 2𝛼(𝑡2)𝑥 + 1

2
𝛼(𝑡2)2 + 𝑡𝛽(𝑡2)

)

has CM by Q(
√
−2), and very generally, the Picard rank is 𝜌 = 10;

◦ if deg(𝛼) ≤ 1, the 4-dimensional family of elliptic K3 surfaces

𝑦2 = 𝑥
(
𝑥2 + 2𝑡𝛼(𝑡2)𝑥 + 1

2
𝑡2𝛼(𝑡2)2 + 𝑡𝛽(𝑡2)

)

has RM by Q(
√

2), and very generally, the Picard rank is 𝜌 = 10.

In particular, the second point implies Theorem 1.3 (2).
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6.3. Remark

The K3 surfaces in Proposition 6.2 admit rational self-maps of degree 2, as we will see in the proof.
They should thus be of independent interest; cf. [Ded].

6.4. Proof of Proposition 6.2

The degree bounds ensure that the elliptic surfaces are K3 surfaces for general 𝛼, 𝛽 (cf. [SS, Prop. 5.51]).
In the first case, 𝑎𝜎 (𝑡) = 𝛼((−𝑡)2) = 𝑎(𝑡) and 𝑏𝜎 (𝑡) = 1

2𝛼((−𝑡)
2)2 + (−𝑡)𝛽((−𝑡)2)) = 1

2𝛼(𝑡
2)2 −

𝛽(𝑡2)); hence, (𝑏𝜎 + 𝑏) (𝑡) = 𝛼(𝑡2)2 = 𝑎2 (𝑡), and we can extend 𝜎 to an isomorphism

𝜑 : 𝑋 ′ �−→ 𝑋

(𝑢, 𝑣, 𝑡) ↦→ (−2𝑢, 2
√
−2𝑣,−𝑡).

Thus, we obtain a self-map 𝜑 ◦ 𝜓 of X of degree 2. Since the isogeny 𝜓 preserves the regular 2-forms,
(𝜑 ◦ 𝜓)∗ acts on 𝜔 = 𝑑𝑥 ∧ 𝑑𝑡/𝑦 as multiplication by

√
−2. This proves the claimed CM by Q(

√
−2).

In the second case, 𝑎𝜎 = −𝑎 and 𝑏𝜎 + 𝑏 = 𝑎2, so the analogous argument applies to the isomorphism

𝜑′ : 𝑋 ′ �−→ 𝑋

(𝑢, 𝑣, 𝑡) ↦→ (2𝑢, 2
√

2𝑣,−𝑡).

Hence, Q(
√

2) ⊂ EndHod (𝑇𝑋 ) by inspection of the degree 2 self-map 𝜑′ ◦ 𝜓 of X and its induced action
on 𝜔.

We continue by verifying the stated moduli dimensions. They amount to a simple parameter count,
compared against the 2 degrees of freedom left by scaling on the one hand t and on the other hand
admissibly (𝑥, 𝑦) (since the Möbius transformations have to preserve the fixed points 0,∞ of the
involution 𝜎). Thus, the stated moduli dimensions follow.

The bounds for the Picard numbers are an immediate application of the Shioda-Tate formula: gener-
ally, at the zeroes of b, there are 8 reducible fibres of Kodaira type I2 in the CM case of setup (1), resp. 6
fibres of Kodaira type I2 and two fibres of type III in the RM case of setup (2), so in either case, we have

NS(𝑋) ⊃ 𝑈 ⊕ 𝐴8
1

of rank 10 at least. But then, taking into account the moduli dimensions, EndHod (𝑇𝑋 ) can be at most
quadratic by (2.2), (2.4). Therefore, we obtain very generally 𝜌 = 10 and CM by Q(

√
−2) resp. RM by

Q(
√

2).

6.5. Remark

We emphasize that with the given Picard number (or lattice polarization), Proposition 6.2 exhibits
maximal dimensional families of K3 surfaces with RM or CM, again by (2.2), (2.4).

6.6. Noether–Lefschetz loci

One can easily exhibit several Noether–Lefschetz loci of the above family. Concentrating on the RM case
from Proposition 6.2, there are three fibres of types I1, I2, III merging to I∗0 when 𝑡 | 𝛽 or deg(𝛽) < 3.
This gives 3-dimensional families with very general 𝜌 = 12, again with RM by Q(

√
2) by construction.

Analogous results hold when we merge two pairs of I2’s and I1’s to I4 and I2 (which is easily
implemented by solving for b to admit a 4-fold zero at 𝑡 = 1 as the resulting equations are linear in the
coefficients of 𝛽) or when we impose additional sections (which is tedious, but doable for height 2, for
instance).
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6.7. Higher CM strata

We can also find subfamilies with CM by fields of a higher degree. Notably, this occurs when 𝛼 ≡ 0
as then the generic fibre of (6.1) acquires an automorphism of order 4 and thus has CM itself. Hence,
we obtain a 2-dimensional family with CM by Q(

√
2,
√
−1) = Q(𝜁8) (and very general 𝜌 = 10 for

dimension reasons).
Specializing further so that 𝑡𝛽(𝑡2) = 𝑝5,𝑎 (𝑡) resp. 𝑝7,𝑎 (𝑡), we obtain isolated K3 surfaces (since we

can normalize 𝑎 = 1) with CM by Q(
√

2,
√
−1,

√
5) resp. Q(

√
2,
√
−1, 𝜁7 + 𝜁−1

7 ).
Similarly, at 𝛼 = 1, 𝛽 = 𝑡2, the K3 surface admits a non-symplectic automorphism of order 3, so it

has CM by Q(
√

2,
√
−3). Since it has singular fibres of type I∗0 at 𝑡 = 0 and III∗ at 𝑡 = ∞, we conclude

that 𝜌 = 18.
Along the same lines, for 𝛼 = 1, 𝛽 = 𝑡3, the K3 surface admits a non-symplectic automorphism of

order 5, so there is CM by 𝐾 = Q(
√

2, 𝜁5). As 𝜌 ≥ 10 by construction, 𝑇𝑋,Q can presently only have
dimension [𝐾 : Q] = 8 by 2.3, and thus, 𝜌 = 14.

7. Higher degree isogenies

It turns out that an isogeny between elliptic surfaces with torsion points of higher order that are rational
over the base does not give rise to K3 surfaces with RM (partly because those isogenies force a relatively
large Picard number, whereas (2.3) shows that the Picard rank is at most 16 if a K3 has RM), but isogenies
still do the job since we only need a subgroup, the kernel of the isogeny, to be rational. For brevity, we
focus on the degree 3 case.

7.1. Degree 3 isogenies

Following [Top] (or [Fri, II.4 §2]), one can write an elliptic curve E admitting a 3-isogeny over a field
K of characteristic ≠ 2, 3 as

𝐸 : 𝑦2 = 𝑥3 + 27𝑎(𝑥 − 4𝑏)2, 𝑎, 𝑏 ∈ 𝐾.

Here, the isogenous curve 𝐸 ′ is given by

𝐸 ′ : 𝑣2 = 𝑢3 − 272𝑎(𝑢 − 108(𝑎 + 𝑏))2,

and the 3-isogeny is

(𝑥, 𝑦) ↦→
(

9
𝑥2

(
2𝑦2 + 2𝑎𝑏2 − 𝑥3 − 2

3
𝑎𝑥2

)
, 27

𝑦

𝑥3 (−4𝑎𝑏𝑥 + 8𝑎𝑏2 − 𝑥3)
)
.

Following the approach of 6.1, we obtain the analogous cases in which 𝐸 � 𝐸 ′ in terms of auxiliary
polynomials 𝛼, 𝛽 ∈ 𝑘 [𝑡]:

(1) 𝑎 = 𝛼(𝑡2), 𝑏 = − 1
2𝑎 + 𝑡𝛽(𝑡2);

(2) 𝑎 = 𝑡𝛼(𝑡2), 𝑏 = − 1
2𝑎 + 𝛽(𝑡2).

In the K3 setting, we derive the following two families for 𝑘 ⊂ C, one for each above case:

7.2. Proposition

Assume 𝑎, 𝑏 ∈ 𝑘 [𝑡] from one of the above case.

(i) If deg(𝛼) ≤ 2 and deg(𝛽) ≤ 1, setup (1) leads to a 3-dimensional family of K3 surfaces with
𝜌 ≥ 10 and CM by Q(

√
−3);
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(ii) if deg(𝛼) ≤ 1 and deg(𝛽) ≤ 2, setup (2) leads to a 3-dimensional family of K3 surfaces with 𝜌 ≥ 10
and RM by Q(

√
3).

As before, the second point implies most of Theorem 1.3 (3).

7.3. Proof of Proposition 7.2

The proof follows the same lines as 6.4. Note that, generally, X has

◦ 4 fibres of type II at the zeroes of a;
◦ 4 fibres of type I3 at the zeroes of b;
◦ 4 fibres of type I1 at the zeroes of 𝑎 + 𝑏.

Hence, Shioda–Tate again gives 𝜌 ≥ 10 since NS(𝑋) ⊃ 𝑈 ⊕ 𝐴4
2, and the claimed very general Hodge

endomorphisms algebra follows from the analogous parameter count using (2.2), (2.4).

7.4. Proof of Theorem 1.3 (3)

The theorem follows almost completely from Proposition 7.2. There is only the statement about the very
general Picard number missing. To prove this, it suffices to exhibit a special member X of the family
with 𝜌(𝑋) = 10. This can be achieved by computing 𝜌(𝑋 ⊗ F̄𝑝) at a prime p of good reduction. By
the (proven) Tate conjecture, the Picard number of 𝑋 ⊗ F̄𝑝 is encoded in the zeta function which can
be computed using Magma’s built-in functionality for elliptic curves over function fields [BCP], for
instance.

In detail, if 𝛼 = 1 + 2𝑡 and 𝛽 = 3 + 4𝑡 + 𝑡2, then the characteristic polynomial of Frobenius at 𝑝 = 7
on 𝐻2

ét(𝑋 ⊗ F̄𝑝 ,Qℓ (1)) (ℓ ≠ 𝑝) is

(𝑇 − 1)3(𝑇 + 1) (𝑇2 + 1) (𝑇4 + 1)
(
𝑇12 + 8

7
𝑇10 + 6

7
𝑇8 + 𝑇6 + 6

7
𝑇4 + 8

7
𝑇2 + 1

)
.

Since the last factor is irreducible, but not integral, it cannot be cyclotomic, so we deduce 𝜌(𝑋⊗ F̄𝑝) = 10
(since we knew that 𝜌 ≥ 10 anyway). This completes the proof of Theorem 1.3 (3).

7.5. Remark

The 3-dimensional family with CM by Q(
√
−3) in Proposition 7.2 (i) also fails to be maximal. As in

7.4, this can be shown by exhibiting a special member X with 𝜌(𝑋) = 10, so the maximal dimension of
the deformation space is (12/2) − 2 = 4.

Let 𝛼 = 3 + 4𝑡 + 𝑡2 and 𝛽 = 1 + 3𝑡. This leads to the characteristic polynomial of Frobenius at 𝑝 = 5
on 𝐻2

ét(𝑋 ⊗ F̄𝑝 ,Qℓ (1)) (ℓ ≠ 𝑝) being

(𝑇 − 1)6(𝑇2 + 𝑇 + 1)2
(
𝑇12 − 𝑇10 + 𝑇8 − 7

5
𝑇6 + 𝑇4 − 𝑇2 + 1

)
.

Again, we infer that 𝜌(𝑋 ⊗ F̄𝑝) = 10.

7.6. Higher degrees

The analogous approach for isogenies of degree 5 or 7, based on the classical Fricke parametrizations
(cf. [Fri, II.4 §3]), gives 1-dimensional families with CM by Q(

√
−5) and Q(

√
−7), which we will not
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give here. An isolated member of a one dimensional family with 𝜌 = 16 and RM by Q(
√

7) is given by

𝑦2 = 𝑥3 − 𝑎(𝑡)𝑥 + 𝑏(𝑡),
𝑎(𝑡) = 27(𝑡2 + 13𝑡 + 49) (𝑡2 + 5𝑡 + 1) (𝑡2 − 49)2,

𝑏(𝑡) = 54(𝑡2 + 13𝑡 + 49) (𝑡4 + 14𝑡3 + 63𝑡2 + 70𝑡 − 7) (𝑡2 − 49)3.

This admits a self-map of degree 7 induced by 𝑡 ↦→ 49/𝑡 which respects the common factors of a and
b. It acts on the regular 2-form as multiplication by

√
7, thus providing the RM structure.

Using 5-isogenies, we also find the following proposition:

7.7. Proposition

The K3 surface

𝑋 : 𝑦2 = 𝑥3 − 27
(
𝑡2 − 125

)2 (
𝑡2 + 10𝑡 + 5

) (
𝑡2 + 22𝑡 + 125

)
𝑥

− 54
(
𝑡2 + 4𝑡 − 1

) (
𝑡2 − 125

)3 (
𝑡2 + 22𝑡 + 125

)2

has Picard number 18 and CM by Q(
√

5,
√
−2).

7.8. Proof

The elliptic K3 surface X admits a rational self-map g of degree 5 given by a 5-isogeny which acts as
𝑡 ↦→ 125/𝑡 on the base and as multiplication by

√
5 on the regular 2-form. By construction, we thus have

Q(
√

5) ⊂ EndHod (𝑇𝑋,Q).
The singular fibre types I5, I1, III twice and I∗0 twice imply that

NS(𝑋) ⊇ 𝑈 ⊕ 𝐴4 ⊕ 𝐴2
1 ⊕ 𝐷2

4.

By the Shioda–Tate formula, this gives 𝜌(𝑋) ≥ 16 which would still be compatible with X having RM.
However, the Picard number turns out to be 𝜌(𝑋) = 18, and consequently, X has CM, as evidenced by
the following:

On the one hand, the elliptic fibration admits a section of height 2 with x-coordinate
−3

(
𝑡2 − 125

) (
𝑡2 + 16𝑡 + 35

)
(and the pull-back by 𝑔∗ of height 10), so 𝜌(𝑋) ≥ 18.

On the other hand, the characteristic polynomial of Frobenius on 𝐻2
ét(𝑋 ⊗ F̄𝑝 ,Qℓ (1)) at the ordinary

prime 𝑝 = 11 admits the irreducible factor

ℎ = 𝑇4 − 12
11

𝑇3 + 18
11

𝑇2 − 12
11

𝑇 + 1,

so 𝜌(𝑋) ≤ 𝜌(𝑋 ⊗ F̄11) ≤ 18, yielding the claimed equality.
It follows from 2.4 that X has CM by a field F of degree 4 containing Q(

√
5). As h splits completely

over Q(
√

5,
√
−2), by [Tae], it can only have CM by this degree 4 CM field.

7.9. Remark

As exploited in the proof of Proposition 7.7, all the K3 surfaces from Propositions 7.2, 7.7 and from 7.6
admit rational self-maps of degree 3, 5, 7, respectively (which are not induced from the generic fibres
of some isotrivial elliptic fibration).
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