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Abstract

There are sex-dependent differences in hematological and biochemical variables in adulthood attributed to the predominant effects of
testosterone in males and estrogen in females. The Twin Testosterone Transfer (TTT) hypothesis proposes that opposite-sex females may
develop male-typical traits due to exposure to relatively higher levels of prenatal testosterone than same-sex females. Additionally, prenatal
testosterone exposure has been suggested as a correlate of current circulating testosterone levels. Consequently, opposite-sex females might
exhibit male-typical patterns in their hematological and biochemical variables. Despite this hypothesis, routine laboratory investigations
assign the same reference range to all females. Our cross-sectional study, conducted in Tamale from January to September 2022, included
40 twins, comprising 10 opposite-sex (OS) males (25%), 10 OS females (25%), and 20 same-sex (SS) females (50%), all aged between 18 and
27 years. Fasting venous blood samples were collected and analyzed using automated hematology and biochemistry laboratory analyzers.
Results indicated that levels of hemoglobin, serum creatinine, gamma-glutamyl transferase, total protein, globulins, and total testosterone were
significantly higher in OS males than OS females. Conversely, total cholesterol and low-density lipoprotein cholesterol were significantly
higher in OS females than OS males. Unexpectedly, levels of low-density lipoprotein cholesterol and total testosterone were significantly
higher in SS females than OS females. Contrary to expectations, opposite-sex females did not exhibit male-typical patterns in their
hematological and biochemical variables. This suggests that the TTT effect may not occur or may not be strong enough to markedly affect
hematological and biochemical variables in OS females.
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There are sex-dependent physiological differences in erythropoi-
esis and lipoprotein metabolism, as well as liver and kidney
function in adulthood (Kasarinaite et al., 2023; Murphy, 2014).
These differences are largely mediated by sex hormones,
principally testosterone and estradiol, the most potent androgen
and estrogen respectively (Kasarinaite et al., 2023; Palmisano et al.,
2018; Palmisano et al., 2017).

Erythropoietic activity is generally higher in males than in
similarly matched females due to the activity of androgens. The
average adult female hemoglobin is about 12% lower than in
similarly matched males (Murphy, 2014). The mechanism of

androgen action on erythropoiesis is not fully understood;
however, it has been observed that testosterone may stimulate
erythrocytosis by increasing the relative concentration of
erythropoietin (EPO) while suppressing hepcidin (Bachman
et al., 2014). The suggested mechanisms may include testoster-
one-stimulating EPO secretion through hypoxic sensing or the
induction of hypoxia. Alternatively, testosterone could participate
in renal physiology by acting on renal peritubular fibroblasts to
release EPO (Bachman et al., 2014). Moreover, testosterone could
also induce erythrocytosis by acting directly on bone marrow
erythroblasts or by increasing red cell survival. EPO activity
increases cell mass or erythrocytosis by suppressing hepcidin to
increase iron availability. These observed androgenic mechanisms,
however, are not universal, as previous studies have indicated
otherwise (Bachman et al., 2014; Guo et al., 2020).

Similarly, sex-dependent physiological lipid homeostasis, liver
functions and kidney functions are mediated by sex hormones. Sex
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hormones exert their influence on hepatic and renal cells through
receptor-dependent signaling via either genomic or nongenomic
pathways (Kasarinaite et al., 2023). Estrogens act on cells through
the alpha (ERα) and beta (ERβ) receptors. Concerning the liver,
mice devoid of ERαwere found to have increased insulin resistance
and increased lipid storage. Androgens act through the androgen
receptors (AR) on cells. The activation of androgen receptors on
hepatocytes results in increased lipid synthesis and reduced fatty
acid β-oxidation (Kasarinaite et al., 2023). The role of estrogen in
lipid homeostasis has been established. Premenopausal women
tend to have reduced cardiovascular risk when compared to
similarly aged men, postmenopausal women r women with
polycystic ovarian syndrome (Palmisano et al., 2018). This is
because estrogen is positively associated with increased hepatic
synthesis of more and larger circulating HDL particles, which are
involved in transporting cholesterol back to the liver for excretion
through their conversion to bile salts in a process known as reverse
cholesterol transport (Palmisano et al., 2018; Palmisano et al.,
2017). Additionally, estrogen facilitates the delivery of triglyceride-
rich VLDL to the liver, enabling the liver to transport triglycerides
to prevent their accumulation. Thus, the production of triglycer-
ides and VLDL may be higher in females than in males; however,
their clearance from circulation is faster in females due to estrogen-
induced lipoprotein lipase activity. Estrogen, unlike testosterone,
may play a hepato-protective role in liver physiology or
pathophysiology (Palmisano et al., 2018; Wang et al., 2011).
There is a sex-dependent difference in kidney physiology and
function in adulthood. The prevalence of chronic kidney diseases
(CKD) is said to be higher in women than in similarly aged men;
however, the prevalence of end-stage renal disease (ESRD) is
relatively higher in men (Bairey Merz et al., 2019). The progression
of renal diseases seems higher in men than in women, although
men have an increased capacity than women to maintain the
glomerular filtration rate (GFR) by increasing the filtration
fraction (Xu et al., 2010). The relatively slow progression of renal
diseases in women is attributable to the reno-protective function of
estrogen (Bairey Merz et al., 2019; Goldberg & Krause, 2016).

The Twin Testosterone Transfer (TTT) hypothesis suggests
that opposite-sex (OS) females are exposed to relatively higher
prenatal testosterone than same-sex (SS) females. This occurs as a
female fetus gestates near her male co-twin, who has higher levels
of prenatal testosterone (Ahrenfeldt et al., 2020). It has been
suggested that there could be a fetal-fetal transfer of testosterone
since amniotic fluid can permeate the fetal skin and the placenta
until week 18 of gestation when testosterone production in male
fetuses may peak (Zheng & Cohn, 2011). According to the
Organizational hypothesis, prenatal exposure to testosterone may
cause masculinization in the brain, leading to the development of
male-typical traits. Evidence of male-typical traits in females
exposed to prenatal testosterone can be seen in congenital adrenal
hyperplasia (CAH), a condition characterized by altered steroido-
genesis due to 21-hydroxylase deficiency (Richards et al., 2020).
Aside from developing male-typical cognitive and behavioral
traits, females exposed to excess prenatal testosterone may also
experience male-typical physiological or pathophysiological
functions of the liver, kidney and lipid homeostasis, since prenatal
testosterone exposure may correlate positively with current
circulating testosterone in adulthood (Claahsen-van der Grinten
et al., 2022; Ronalds et al., 2002). These observations, however, are
not universal, as previous findings are either conflicting or
negative, or produced smaller effect sizes (Cohen-Bendahan et al.,
2004; Marczak et al., 2018; Medland et al., 2008)

Traditionally, no separate reference intervals are provided for
SS and OS females when performing routine hematological and
biochemical laboratory investigations. However, if the TTT
hypothesis is true, then it is expected that OS females will have
male-typical reference values due to their relative exposure to
prenatal testosterone. Hitherto, no known study has tested the
TTT hypothesis in Ghana regarding hematological and biochemi-
cal variables. The study aims to explore the differences in
hematological and biochemical variables between SS and OS
females.

Material and Methods

Study Design and Population

The study, conducted from January to September 2022 in Tamale,
employed a cross-sectional design. Tamale, the largest city in the
northern part of Ghana, is characterized by a diverse cultural
landscape, with the major cultural group being the Dagomba,
forming part of the larger linguistic group known as the Mole-
Dagomba. Participants were young adults who were recruited from
the Tamale Metropolitan area of the Northern region by
convenient sampling. Twins who were known to the researchers
and met the eligibility criteria were contacted for their consent
before enlistment to participate in the study. In addition, through
word of mouth from those enlisted or other persons, other twins
were contacted and enlisted. The twins identified ancestrally as
Ghanaians whose parents and grandparents were indigenous
Ghanaians. The study was faced with the logistical challenge of
having young adult twins live separately, often pursuing educa-
tional or professional engagements. The study included 10
dizygotic (DZ) pairs of twins comprising 10 OS males (25%)
and 10 OS females (25%). In addition, 10 pairs of SS females,
comprising 20 individual female twins (50%), were also recruited.
The twins were aged from 18 to 27 years, with no known history of
chronic diseases or hormonal abnormalities that could signifi-
cantly impact hematological and biochemical measurements. The
OS male and OS female pairs were clearly DZ twins. However,
determining the zygosity status of the SS females was not possible
due to the challenges mentioned earlier.

Data Collection and Measurements

Socio-demographic data were collected through an interviewer-
administered semi-structured questionnaire. Measurements of
standing height and body weight were taken with a stadiometer
and body weighing scale to the nearest 0.1 cm and 0.1 kg
respectively. Each participant stood bare-foot with the hills,
buttocks, back and the back of the head touching the scale. The
hands were on the side and the head was positioned in the
Frankfort plane. The stadiometer plate was then lowered gently to
touch the head and the height was then recorded. The body weight
was measured with the participant wearing light clothing, and bare
foot with the hands on the side. The body mass index (BMI) was
then calculated using the formula body weight/(height (m)2.
Fasting venous blood samples were collected into ethylenediami-
netetraacetic acid (EDTA) and gel-separator tubes for a complete
blood count analysis using the Norma Icon-5 automated
hematology analyzer. Serum samples, obtained by clotting the
gel-separator tube samples, were stored at −20°C until analysis.
Serum testosterone levels were measured using the ELISA
technique (Monobind Inc., Lake Forest, CA, USA), while
biochemical variables were determined using a BT 1500 automated
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biochemistry analyzer (Biotechnica Instruments, SPA, Italy). All
sample collections were conducted between 8:00 am and 12:00 pm
local time to minimize diurnal variability.

Statistical Analysis

Data were entered into an Excel spreadsheet and analyzed using
SPSS (v27). The distribution of data was assessed with the Shapiro-
Wilk test, and categorical data were summarized as frequency
(percentage), while parametric continuous variables were pre-
sented as mean ± standard deviation. It was expected that OS male
variables would either be higher or lower for hematological or
biochemical parameters. Similarly, OS female variables were
expected to follow male-typical patterns. Therefore, a one-tailed
t tests was performed. SPSS lacks a dedicated procedure or dialog
box specifically designed for conducting a one-tailed test for
differences in means. The process for a one-tailed test aligns with
that of a two-tailed test. To obtain the significance for a one-tailed
test, the displayed significance is divided by two. Given the
symmetrical distribution of the t statistic, the ‘significant’ tails in a
two-tailed test, where a .05 criterion signifies a .025 significance in
each tail, will be equivalent. As we are only interested in one of
these tails, the significance is halved to determine the statistical
significance of the t statistic. However, the differences in the
distribution of age and BMI data between groups were assessed
using the unpaired t test (2 tailed). A p value < .050 was considered
statistically significant. The standardized mean differences
(Cohen’s d) were also calculated given to the relative smaller
sample size. Cohen’s d was interpreted as: similar (d< 0.20), small
(0.20 ≤ d < 0.50), moderate (0.50 ≤ d< 0.80), large (d≥ 0.80)
(Cahan & Gamliel, 2011).

Results

Sociodemographic Characteristics

The sociodemographic characteristics of the study population are
summarized in Table 1. Male twins constituted 25% of the total
study population, while the remaining participants were OS female
(25.0%) and SS female (75%) twins. The majority of the study
population belonged to the Mole-Dagomba cultural group (65%),
and the majority identified as Muslim (57.5%).

Male and Female Twin Variabilities

Hematological and biochemical variables between male and female
twins were compared (Table 2). Male twins exhibited significantly
higher levels of red blood cell (RBC) count (p = .031), hemoglobin
(p < .001), serum creatinine (p = .009), gamma-glutamyl transferase
(p = .001), total protein (p = .005), globulins (p = .002), and total
testosterone (p < .001). However, fasting total cholesterol (p = .025)
and low-density lipoprotein (LDL) (p = .013) were significantly
higher in female twins. The significant findings had medium (0.50 ≤
d≤ 0.80) to large (d> 0.80) effect sizes.

Same-Sex and Opposite-Sex Female Twin Variabilities

Variabilities in hematological and biochemical variables between
OS and SS female twins were compared (Table 3). Serum total
bilirubin (TBiL) (p = .006), indirect bilirubin (IBil) (p = .005),
fasting LDL (p= .008), and circulating total testosterone (p= .007)
were significantly higher in SS than OS female twins. However,
serum alanine transaminase (ALT) and albumin levels were
significantly higher in OS than SS female twins.

Discussion

The study sought to determine variabilities in hematological and
biochemical variables between OS and SS females. The levels of
total testosterone, hemoglobin, serum creatinine, total protein and
gamma-glutamyl transferase were significantly higher in males
than females. However, these variables were not significantly
higher in OS than SS females as was expected.

The higher levels of serum creatinine, gamma-glutamyl
transferase and hemoglobin and lower fasting lipids in men than
women is consistent with previous studies. These sex-dependent
variabilities are attributable to the differential activities of
testosterone and estrogen on erythropoiesis, kidney and liver
physiology as well as lipid homeostasis (Kasarinaite et al., 2023;
Murphy, 2014; Palmisano et al., 2018). The circulating testosterone
in average adult men is about 2−3 times higher than similarly aged
premenopausal women. Testosterone is synthesized from choles-
terol, primarily in the Leydig cells of the testes in men and the
ovaries in women, while estrogen is synthesized in various tissues,
including the ovaries in women (Alemany, 2022). Sex-dependent
variabilities are not apparent before puberty but become more
pronounced during adolescence, where there is a surge in
testosterone in males and estrogen in females. After puberty, sex
hormone levels begin to decline, with corresponding effects on
physiological processes (Palmisano et al., 2018).

It was expected that androgen-dependent hematological and
biochemical variables would be higher in OS females than in SS
females. However, this expectation was not met in the current study.
Instead, fasting total cholesterol and LDL levels were higher in the SS
females. This, however, aligns with the finding that total testosterone
was also relatively higher in the latter than in the former.

The test of the TTT hypothesis is inconclusive. Previous studies
have relied on phenotypic traits as the measure of prenatal
testosterone exposure, as the direct measurement is problematic
due to the occurrence of the effect primarily in the first trimester of
pregnancy (Zheng & Cohn, 2011).

The second-to-fourth (2D:4D) digit ratio is considered the
putative marker of prenatal testosterone exposure; however, other
cognitive, behavioral and pathologies may also serve as alternatives
(Manning et al., 1998; Zheng & Cohn, 2011). The 2D:4D ratio is
negatively correlated with prenatal testosterone exposure. While
some previous twin studies provided evidence for the TTT
hypothesis, subsequent validation studies in larger twin popula-
tions found no support (Cohen-Bendahan et al., 2004; Medland

Table 1. The socio-demographic characteristics of the study population

Variable Frequency Percent

Sex

OS male 10 25.0

OS female 10 25.0

SS female 20 50.0

Cultural group

Mole-Dagomba 26 65.0

Others 14 35.0

Religion

Christianity 17 42.5

Islam 23 57.5

Note: The results are summarized as frequency and percentages.
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et al., 2008; van Anders & Hampson, 2005; Voracek & Dressler,
2007). Several explanations have been offered for the lack of
evidence for the TTT. First, much of the evidence has been derived
from animal studies, and some authorities argue that findings from
these studies cannot be directly extrapolated to humans. Moreover,
strong evidence of TTT has been observed only in female litters of
nonhuman mammals gestating between two male litters
(Ahrenfeldt et al., 2015). Second, amniotic testosterone levels
may peak at a time when the effect of prenatal testosterone on the
developing brain has already passed. Lastly, amniotic fluid
testosterone levels may be too low to exert an effect on the
developing fetal brain, as OS twins show no genital virilization

when compared to individuals with congenital adrenal hyperplasia
(Medland et al., 2008).

The current study possesses several strengths. First, it is likely the
first of its kind to test the TTT hypothesis in an indigenous Black
African twin population, specifically examining hematological and
biochemical variables. Second, the inclusion ofOSmales in the study
aimed to ascertain sex-dependent variabilities in these variables,
providing evidence for the potential role of testosterone in the
observed differences. Lastly, to avoid assumptions from previous
studies, current testosterone levels were estimated, ensuring a more
accurate representation of hormonal profiles. However, the study
faced limitations, notably a relatively smaller sample size compared

Table 2. Comparison of hematological and biochemical variables between male and female twins

Variable OS males OS and SS females t p value Cohen’s d

Anthropometric

Age (years) 21 ± 3 22 ± 3 −0.866 .392 0.32*

BMI (Kg/m2) 21.1 ± 2.6 22.3 ± 3.2 −1.079 .288 0.39*

Hematological variables

RBC (x106/μL) 5.2 ± 0.5 4.7 ± 0.7 1.925 .031 0.70**

HGB (g/Dl) 13.5 ± 1.2 11.7 ± 1.3 3.777 .001 1.38***

WBC (x103/μL) 4.1 ± 1.6 5.1 ± 2.9 −1.014 .159 0.37*

LYMP (x103/μL) 2.8 ± 1.6 2.5 ± 0.8 0.782 .220 0.29*

PLT (x103/μL) 364 ± 86 344 ± 91 0.624 .269 0.23*

Biochemical variables

Urea (mmol/L) 2.3 ± 0.5 2.6 ± 0.9 −0.953 .174 0.35*

CRT (μmol/L) 70.3 ± 15.8 58.8 ± 11.5 2.499 .009 0.91***

Potassium (mmol/L) 4.5 ± 0.5 4.4 ± 0.6 0.488 .314 0.18

Sodium (mmol/L) 146 ± 2 144 ± 8 0.934 .178 0.34*

Chloride (mmol/L) 104 ± 1 104 ± 2 −0.366 .358 0.13

eGFR (min/mL/1.73 m2) 127 ± 14 122 ± 14 0.914 .183 0.33*

AST (IU/L) 25.2 ± 4.2 25.1 ± 7.0 0.048 .481 0.02

ALT (IU/L) 17.7 ± 7.6 19.4 ± 9.9 −0.478 .318 0.18

ALP (IU/L) 187 ± 86 187 ± 110 −0.001 .500 0.00

GGT (IU/L) 33.1 ± 10.8 21.4 ± 8.6 3.485 <.001 1.27***

Total protein (g/L) 78.0 ± 4.5 70.1 ± 8.6 2.763 .005 1.01***

Albumin (g/L) 42.0 ± 5.8 44.1 ± 2.8 −1.538 .066 0.56**

Globulins (g/L) 35.0 ± 7.7 27.0 ± 6.7 3.155 .002 1.15***

TBiL (mmol/L) 11.9 ± 2.6 10.6 ± 3.6 1.051 .150 0.38*

DBIL (mmol/L) 3.5 ± 0.8 3.3 ± 1.4 0.389 .350 0.14

IBIL (mmol/L) 8.3 ± 2.4 7.8 ± 3.6 0.410 .342 0.15

TCHOL (mmol/L) 3.8 ± 1.1 4.8 ± 1.5 −2.038 .025 0.74**

HDL (mmol/L) 1.6 ± 0.3 1.6 ± 0.3 0.211 .417 0.08

LDL (mmol/L) 1.8 ± 1.1 2.9 ± 1.4 −2.315 .013 0.85***

VLDL (mmol/L) 0.5 ± 0.4 0.4 ± 0.2 0.877 .193 0.32

TRIG (mmol/L) 1.0 ± 0.8 0.8 ± 0.5 0.698 .245 0.26*

TT (nmol/L) 4.6 ± 1.6 0.6 ± 0.3 13.087 <.001 4.78***

Note: The results are summarized as mean ± SD. The differences between the groups were determined by unpaired t test (2-tailed) for anthropometric variables and unpaired t test (1-tailed) for
hematological and biochemical variables. OS: opposite-sex, SS: same-sex; RBC, red blood cell count; HGB, hemoglobin; WBC, white blood cell count; LYMP, lymphocytes; PLT, platelets; CRT,
creatinine; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline phosphate; CGT, gamma-glutamyl transferase; TBiL, serum total bilirubin; DBiL, direct bilirubin; IBiL,
indirect bilirubin; TCHOL, total cholesterol; HDL, high-density lipoprotein; LDL, low-density lipoprotein; VLDL, very low density lipoprotein; TRIG, triglycerides; TT, total testosterone.
Cohens d: similar (d< 0.20), *small (0.20 ≤ d< 0.50), **medium (0.50 ≤ d≤ 0.80) and ***large (d> 0.80).
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to other studies (Medland et al., 2008). This limitation arose from
the challenge of gathering adult twins, many of whom are separated
due to educational or work commitments. In addition, determining
the zygosity status of the SS females was not possible due to logistical
challenges.

Conclusion

The findings did not lend support to the TTT hypothesis, as OS
females did not display male-typical patterns in hematological and
biochemical variables. It appears that the TTT effect may either not
occur in OS females or may not be potent enough to significantly
influence these variables.
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Table 3. Comparison of hematological and biochemical variables between same- and opposite-sex female twins

Variable OS female SS female t p value Cohen’s d

Anthropometric

Age (years) 20.9 ± 3.3 22.3 ± 2.7 −1.269 .215 0.49*

BMI (Kg/m2) 22.0 ± 2.7 22.5 ± 3.4 −0.413 .683 0.16

Hematological variables

RBC (x106/μl) 4.7 ± 0.3 4.7 ± 0.8 −0.065 .474 0.03

HGB (g/Dl) 11.9 ± 0.5 11.6 ± 1.6 0.627 .268 0.24*

WBC (x103/μl) 4.0 ± 1.3 5.6 ± 3.3 −1.465 .077 0.57**

LYMP (x103/μl) 2.6 ± 0.7 2.5 ± 0.9 0.441 .332 0.17

PLT (x103/μl) 369 ± 30 331 ± 108 1.078 .145 0.42*

Biochemical variables

Urea (mmol/L) 2.4 ± 0.5 2.7 ± 1.0 −0.790 .218 0.31*

CRT (μmol/L) 58.0 ± 15.0 59.2 ± 9.7 −0.275 .393 0.11

Potassium (mmol/L) 4.4 ± 0.5 4.5 ± 0.6 −0.398 .347 0.15

Sodium (mmol/L) 145.8 ± 2.4 142.4 ± 9.3 1.122 .136 0.43*

Chloride (mmol/L) 103.8 ± 2.4 103.7 ± 2.0 0.084 .467 0.03

GFR (min/mL/1.73 m2) 122 ± 17 122 ± 13 −0.071 .472 0.03

AST (IU/L) 27.6 ± 6.6 23.9 ± 7.1 1.402 .086 0.54**

ALT (IU/L) 27.7 ± 11.6 15.2 ± 5.5 4.044 <.001 1.57***

ALP (IU/L) 225 ± 162 168 ± 70 1.358 .093 0.53**

GGT (IU/L) 24.1 ± 11.5 20.1 ± 6.6 1.184 .124 0.46*

Total protein (g/L) 70.1 ± 9.6 70.1 ± 8.4 −0.003 .499 0.00

Albumin (g/L) 42.9 ± 2.7 44.7 ± 2.7 −1.740 .047 0.67**

Globulins (g/L) 27.2 ± 8.8 26.9 ± 5.6 0.101 .460 0.04

TBIL (mmol/L) 8.4 ± 3.2 11.8 ± 3.4 −2.676 .006 1.04***

DBIL (mmol/L) 2.9 ± 1.2 3.6 ± 1.5 −1.299 .102 0.50**

IBIL (mmol/L) 5.5 ± 2.7 8.9 ± 3.5 −2.746 .005 1.06***

TCHOL (mmol/L) 4.0 ± 1.1 5.3 ± 1.4 −2.534 .009 0.98***

HDL (mmol/L) 1.6 ± 0.3 1.6 ± 0.4 0.142 .444 0.06

LDL (mmol/L) 2.0 ± 1.1 3.3 ± 1.3 −2.601 .008 1.01***

VLDL (mmol/L) 0.4 ± 0.2 0.4 ± 0.3 −0.656 .259 0.25*

TRIG (mmol/L) 0.8 ± 0.4 0.9 ± 0.6 −0.382 .353 0.15

TT (nmol/L) 0.4 ± 0.1 0.7 ± 0.3 −2.649 .007 1.03***

Note: The results are summarized asmean ± SD. The differences between the groups were determined by unpaired t test (2-tailed) for anthropometric variables and unpaired t test (1-tailed) for
hematological and biochemical variables. OS: opposite-sex, SS: same-sex; RBC, red blood cell count; HGB, hemoglobin; WBC, white blood cell count; LYMP, lymphocytes; PLT, platelets; CRT,
creatinine; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline phosphate; CGT, gamma-glutamyl transferase; TBiL, serum total bilirubin; DBiL, direct bilirubin; IBiL,
indirect bilirubin; TCHOL, total cholesterol; HDL, high-density lipoprotein; LDL, low-density lipoprotein; VLDL, very low density lipoprotein; TRIG, triglycerides; TT, total testosterone.
Cohens d: similar (d< 0.20), *small (0.20 ≤ d< 0.50), **medium (0.50 ≤ d≤ 0.80) and ***large (d> 0.80).
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from all participants, and voluntary participation with the option to opt-out at
any stage was emphasized. Participationwas not limited by religious, cultural, or
political affiliations.
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