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Abstract. We construct automorphisms of C2, and more precisely transcendental Hénon
maps, with an invariant escaping Fatou component which has exactly two distinct limit
functions, both of (generic) rank one. We also prove a general growth lemma for the norm
of points in orbits belonging to invariant escaping Fatou components for automorphisms
of the form F(z, w) = (g(z, w), z) with g(z, w) : C2 → C holomorphic.
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1. Introduction
We consider the dynamical system generated by the iteration of a holomorphic automor-
phism F : C2 → C

2. A Fatou component is a maximal connected open set U on which
the family of iterates {Fn} is normal, that is, every sequence has a subsequence which
converges uniformly on compact sets to a holomorphic function g : U → P

2, where g may
depend on the subsequence itself (see [ABFP19a] for a discussion about the definition of
normality). Such a function g is called a limit function, and its image g(U) is called a
limit set. If a limit set intersects the line at infinity, then it is in fact contained in it (see
[ABFP19a, Lemmas 2.4 and 4.3]).

It is natural to classify invariant Fatou components both from the point of view of a
dynamical characterization (that is, to which model map the iterates are conjugate to) and
from the point of view of a geometric characterization (that is, to which model manifold
the Fatou component is biholomorphic). The first characterization strongly influences the
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latter; for example, for polynomial automorphisms of C2, any invariant Fatou component
on which the iterates converge to a fixed point is biholomorphic to C

2 [PVW08, RR88,
Ued86]. The dynamical characterization is also very related to which types of limit
functions there can be in the Fatou component, for example, their rank, and whether the
limit sets are in the boundary of the Fatou component or in its interior.

In this paper we consider invariant escaping Fatou components. A Fatou component U
is called escaping if for any of its limit functions g we have g(U) ⊂ �∞, where �∞ is the
line at infinity in the projective space P

2 used to compactify C
2.

In the past three decades, the investigation of the dynamics of holomorphic maps from
C

2 to C
2 has concentrated on studying polynomial automorphisms, and in particular

(polynomial) Hénon maps, that is, automorphisms with constant Jacobian of the form

F(z, w) = (P (z) + δw, z)

with P : C → C polynomial of degree d ≥ 2. Indeed, by results of Friedland and Milnor
[FM89], any polynomial automorphism with non-trivial dynamical behavior can be writ-
ten as a finite composition of polynomial Hénon maps. In this view, studying polynomial
Hénon maps gives a relatively complete picture of the dynamics of polynomial automor-
phisms of C2. For polynomial Hénon maps it is not difficult to see [BS91] that unbounded
forward orbits belong to the Fatou set and converge to the point [1 : 0 : 0] ∈ �∞.
So, in this case, there is always exactly one escaping Fatou component, which can be seen
as the attracting basin of [1 : 0 : 0], and whose structure has been studied for example in
[BS99, HOV94, Mum07]. So for polynomial automorphisms, the matter of existence and
properties of escaping Fatou components is essentially settled.

On the other hand, one-dimensional transcendental dynamics shows that periodic Fatou
components on which the iterates tend to infinity (called Baker domains in this setting)
are nowadays an active research topic (see for example the most recent papers [BFJK15,
BFJK19, BZ12, Rem21, RS18]). One may be tempted to think of Baker domains as
parabolic basins whose parabolic fixed point has been moved to infinity, but in fact,
there can be different dynamical behaviors [Cow81, FH06], only some of which relate
to parabolic dynamics. On the other hand, from the geometric point of view, all Baker
domains for entire functions are simply connected and hence, because of the Riemann
uniformization theorem, biholomorphic to the unit disk D. Inspired by the one-dimensional
examples, a transcendental Hénon map featuring an escaping Fatou component with a
constant limit function and which is not an attracting basin has been constructed in
[ABFP19a, §5].

Our first preliminary result is that orbits in escaping Fatou components cannot grow
too fast under appropriate conditions. This is in analogy with results obtained by Baker
[Bak88, Theorem 1] for Baker domain in one variable, and in contrast to the escaping
points constructed in [ABFP19b], whose orbits converge to infinity faster than any
polynomial. The proof uses methods similar to [ABFP19a, Lemma 5.9].

PROPOSITION 1.1. (Slow growth in escaping components) Let F be an automorphism of
C

2 of the form F(z, w) = (g(z, w), z) with an escaping Fatou component U on which the
iterates converge to a function h : U → �∞ uniformly on compact subsets.
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Let K be a compact subset of U, such that h does not take the values [0 : 1 : 0], [1 : 0 : 0]
on K, and fix 0 < ε < minK |h|. Then there exists C = C(K) such that for n large enough
and for any P ∈ K we have

(minK |h| − ε)n

C
≤ ‖Fn(P )‖ ≤ C

(
max

K
|h| + ε

)n

. (1.1)

The main result of this paper is the construction of examples of transcendental Hénon
maps with an escaping Fatou component which has exactly two limit functions, both of
(generic) rank one. Transcendental Hénon maps are automorphisms with constant Jacobian
of the form

F(z, w) = (f (z) + δw, z)

with f : C → C entire transcendental. They have been introduced in [Duj04] to construct
automorphisms with infinite entropy, and have been studied in [ABFP19a, ABFP19b,
ABFP21]. Transcendental Hénon maps always have both escaping and periodic points
(hence non-empty Julia set), infinite entropy, a pseudoconvex Fatou set, and can exhibit a
variety of dynamical behavior ranging from having various types of wandering domains to
the possibility that the Julia set is all of C2.

THEOREM 1.2. (Escaping components with distinct rank-one limit functions) Let f : C →
C be a transcendental entire function which is bounded in a right half plane, and a > 1.
Let F : C2 → C

2 be the transcendental Hénon map defined by

F(z, w) = (f (z) + aw, z).

Then we have the following.
(1) F has an invariant escaping Fatou component U with exactly two distinct limit

functions h1, h2 : U → �∞, both of which have (generic) rank one.
(2) h1(U), h2(U) ⊃ �∞ \ {[1 : 0 : 0], [0 : 1 : 0]}.
(3) F is conjugate to the linear map L(z, w) = (aw, z) on an appropriate subset of U.
(4) If f (z) = e−z, then F is conjugate to L on all of U and U is biholomorphic to H × H.

Several ideas in the proof are taken from [ABFP19a, §5], modified to apply to this
different setting. The escaping component constructed in [ABFP19a] differs from ours
both from the dynamical and from the geometric point of view: indeed, it is biholomorphic
to H × C and the map is conjugate to the linear map G(z, w) = (2z − w, w).

In general, it is very unclear under which conditions and for which types of automor-
phisms it is possible to have invariant Fatou components with limit sets of dimension
one in the boundary. While [LP14] gives conditions under which this cannot happen for
polynomial Hénon maps, there are a few examples of automorphisms sporting a Fatou
component with a rank-one limit manifold in the boundary: see [BTBP21, JL04, Rep21].
All examples are of non-escaping Fatou components, for automorphisms with non-constant
Jacobian, and wherever this has been computed the map in question is conjugate to the
linear map G(z, w) = (z + 1, w), so their dynamics can be considered parabolic. On the
other hand, their complex structures are different: the Fatou components in [BTBP21] are
biholomorphic to C

2 while the ones in [Rep21] are biholomorphic to C
∗ × C (compare

with the construction in [BRS21]).
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Let us finish by remarking that from both the dynamical and the geometric point of
view, the richness of possibilities in 2D as compared to 1D is striking. In one variable,
all periodic and preperiodic Fatou components for entire and meromorphic functions
are fully classified: on each such component, including Baker domains, the dynamics
is semi-conjugate to an appropriate linear map, and, in the entire case, all periodic
components are simply connected hence biholomorphic to the unit disk.

In several variables, recurrent Fatou components for polynomial automorphisms have
been classified in [BS91] (see also [ABFP19a]), but it is currently unknown whether such
components can be biholomorphic to an annulus times C (for convincing evidence that
this may indeed happen see [Bed18]). Several additional geometric possibilities are open
in the transcendental Hénon case: a priori, the rotation surface may be biholomorphic
also to the punctured disk, the punctured plane, or even the plane itself. Non-recurrent
Fatou components have been classified in [LP14] for polynomial automorphisms under
the assumption that the Jacobian is small; however, by removing this assumption, it is not
known what other dynamical behaviors may appear and what would be the geometry of
the limit sets and of the Fatou component.

1.1. Notation. We denote by C the complex plane, by Ĉ = C ∪ {∞} its one-point
compactification (the Riemann sphere), by H the right half plane {Re z > 0}, and by D

the Euclidean unit disk. The complex projective space is denoted by P
2 and the line at

infinity by �∞.
The complex line �∞ is biholomorphic to the Riemann sphere Ĉ, via the biholomor-

phism ϕ which sends [p : q : 0] to p/q. Given a holomorphic map h from a domain of C2

to �∞ we identify it with a holomorphic map h to the Riemann sphere.

2. Slow growth in escaping components
Using hyperbolic geometry, Baker [Bak88, Theorem 1] proved that, if z is in a Baker
domain for an entire transcendental function f : C → C, then log |f n(z)| = O(n) as
n → ∞. We show an analogous result for periodic escaping components for transcendental
Hénon maps, establishing Proposition 1.1. This is in contrast to the escaping points
constructed in [ABFP19b], whose orbits converge to infinity faster than any polynomial.
This result, which we believe to be of independent interest, is used in §3.3.

We restate Proposition 1.1 for convenience. The proof uses methods similar to
[ABFP19a, Lemma 5.9].

PROPOSITION 2.1. (Slow growth in escaping components) Let F be an automorphism of
C

2 of the form F(z, w) = (g(z, w), z) with an escaping Fatou component U on which the
iterates converge to a function h : U → �∞ uniformly on compact sets.

Let K be a compact subset of U, such that h does not take the values 0, ∞ on K, and fix
0 < ε < minK |h|. Then there exists C = C(K) such that for n large enough and for any
P ∈ K we have

(minK |h| − ε)n

C
≤ ‖Fn(P )‖ ≤ C

(
max

K
|h| + ε

)n

. (2.1)
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Proof. Let Pn = (zn, wn) = (zn, zn−1) by the special form of F. Since Fn(P ) → �∞ and
h does not take the values 0, ∞, we can assume that |zn|, |wn| �= 0 for all n large enough.
Since Fn → h uniformly on K, there exists nε such that for all n ≥ nε and all P ∈ K

we have ∣∣∣∣ zn

wn

− h(P )

∣∣∣∣ =
∣∣∣∣ zn

zn−1
− h(P )

∣∣∣∣ < ε,

and hence, using the triangular inequality,

min
K

|h| − ε ≤
∣∣∣∣ zn

zn−1

∣∣∣∣ ≤ max
K

|h| + ε,

from which it follows (adding the multiplicative factor c±1 to account for n ≤ nε)

(minK |h| − ε)n

c
≤ |zn| ≤ c

(
max

K
|h| + ε

)n

.

Since wn = zn−1, the analogous inequality holds for |wn| = |zn−1| and the claim for ‖Pn‖
follows for some constant C.

The proof is easily generalized to obtain the following.

PROPOSITION 2.2. (Slow growth general version) Let F be as in Proposition 2.1 with an
escaping Fatou component U with finitely many limit functions hi : U → �∞. Suppose
that there exists a partition of N into finitely many subsequencesNi such that for each i the
iterates of F converge to the limit function hi along the subsequenceNi . Let K be a compact
subset of U such that none of the hi attains the value 0, ∞ on K, and let ε < minK ,i |hi |.
Then there exists C such that for any P ∈ K and n large enough we have

(minK ,i |hi | − ε)n

C
≤ ‖Fn(P )‖ ≤ C

(
max
K ,i

|hi | + ε
)n

. (2.2)

We note the following corollary that we will use in §3.3, and which follows from the
proof of Proposition 2.1 and Proposition 2.2.

COROLLARY 2.3. Let U be an escaping Fatou component for F as in Proposition 2.1, such
that F 2n → h1, F 2n+1 → h2. Then for any K compact subset of U with hi �= 0, ∞ on K
there exists C such that for n large enough and every P ∈ K we have

(minK |hi | − ε)n

C
≤ |zn| ≤ C

(
max

K
|hi | + ε

)n

, (2.3)

where (zn, wn) := Fn(P ).

3. A transcendental Hénon map with an invariant escaping Fatou component with two
distinct limit functions of rank one
In this section we construct a family of transcendental Hénon maps, each of which has an
invariant escaping Fatou component with exactly two limit functions, both of which have
(generic) rank one. Recall that the rank of a holomorphic functions h at a point P is the
rank of its differential at P.
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PROPOSITION 3.1. Let a > 1 and let f : C → C be a nonlinear entire function which
is bounded in a right half plane. Let F : C2 → C

2 be the transcendental Hénon map
defined by

F(z, w) = (aw + f (z), z).

Then F has an invariant escaping Fatou component U with exactly two distinct limit func-
tions h1, h2 : U → �∞, both of which have generic rank one and such that F 2n(z, w) →
h1(z, w), F 2n+1(z, w) → h2(z, w) as n → ∞, uniformly on compact subsets of U.

Observe that the condition that f is nonlinear, entire and bounded in a right half plane
implies that f is transcendental, and that the function f (z) = Ae−kz satisfies the hypothesis
of the proposition for every A ∈ R, k > 0, as well as any finite linear combination of
such function. Many more examples, even with the stronger assumption that |f | → 0 as
Re z → ∞, can be constructed using tangential approximation, for example, the following
relatively elementary result (see [Gai87, Theorem 2

′
, pp. 142 and 153]).

THEOREM 3.2. (Approximation) Let S ⊂ C be a closed set such that Ĉ \ S is connected
and locally connected at infinity. Let h be holomorphic in the interior of S and continuous
on S (the closure of S in C). Let ε > 0. Then there exists g entire such that

|g − h| < ε on S and |g(z) − h(z)| <
1
|z| as |z| → ∞ on S.

Indeed, if we set h = 0 on the right half plane and anything you like in, say,
a finite collection of topological disks with pairwise disjoint closure (which do not
intersect the right half plane), then the approximating g will satisfy the assumptions of
Proposition 3.1.

From the perspective of the identification of �∞ with Ĉ that associates to the point
[p : q : 0] ∈ �∞ the point (p/q) ∈ Ĉ, with p, q ∈ C, the limit functions hi are holomor-
phic functions from U to Ĉ.

Proof of Proposition 3.1. Given (z0, w0) in C we define (zn, wn) := Fn(z0, w0). For
R > 0 we define the set

WR := {(z, w) ∈ C
2 : Re z, Re w > R}. (3.1)

Fix ε > 0. Since f is bounded in a right half plane, for any R sufficiently large we have that
|f (z)| < (a − 1)R − ε for all z with Re z > R. Let W = WR for any R which satisfies this
condition. Then for (z0, w0) ∈ W we have

Re z1 = a Re w0 + Re f (z0) > aR − R + R − |f (z0)| > R + ε,

Re w1 = Re z0 > R,

and hence W is forward invariant and Re zn, Re wn → ∞ if z0, w0 ∈ W . It follows that
Fn(z0, w0) → �∞.

We now show convergence of the subsequences F 2n and F 2n+1 on W, implying that W
is contained in an escaping Fatou component.
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A recursive computation gives that

F 2n(z0, w0) =
(

anz0 + an
n∑

j=1

a−j f (z2j−1), anw0 + an
n∑

j=1

a−j f (z2j−2)

)
, (3.2)

F 2n+1(z0, w0) =
(

an+1w0 + an+1
n+1∑
j=1

a−j f (z2j−2), anz0 + an
n∑

j=1

a−j f (z2j−1)

)
.

(3.3)

Consider the ratio

z2n

w2n

= anz0 + ∑n
j=1 an−j f (z2j−1)

anw0 + ∑n
j=1 an−j f (z2j−2)

= z0 + ∑n
j=1 a−j f (z2j−1)

w0 + ∑n
j=1 a−j f (z2j−2)

, (3.4)

and the ratio

z2n+1

w2n+1
= an+1w0 + an+1 ∑n+1

j=1 a−j f (z2j−2)

anz0 + an
∑n

j=1 a−j f (z2j−1)
= a(w0 + ∑n+1

j=1 a−j f (z2j−2))

z0 + ∑n
j=1 a−j f (z2j−1)

. (3.5)

Set

� := max
(∣∣∣∣

∞∑
j=1

a−j f (z2j−1)

∣∣∣∣,
∣∣∣∣

∞∑
j=1

a−j f (z2j−2)

∣∣∣∣
)

. (3.6)

Using the assumption that |f (z)| is bounded for Re z > R we get that

� ≤
∞∑

j=1

|a−j/2f (zj )| < sup
Rez>R

|f (z)|
∞∑

j=1

|a−j/2| < ∞. (3.7)

Hence we can take the limit as n → ∞ in (3.4) and (3.5) to obtain

h1(z0, w0) := lim
n→∞

z2n

w2n

= z0 + ∑∞
j=1 a−j f (z2j−1)

w0 + ∑∞
j=1 a−j f (z2j−2)

, (3.8)

h2(z0, w0) := lim
n→∞

z2n+1

w2n+1
= aw0 + a

∑∞
j=1 a−j f (z2j−2)

z0 + ∑∞
j=1 a−j f (z2j−1)

= a

h1
. (3.9)

Both the numerator and the denominator in h1, h2 are non-constant holomorphic functions
from W to C; indeed, by taking two points (z0, w0), (z′

0, w′
0) ∈ W with |z0 − z′

0|, |w0 −
w′

0| > 2� we have that hi(z, w) �= hi(z
′, w′). So h1 and h2 are holomorphic functions

from W to Ĉ.
We now show that h1, h2 are non-constant. By Sard’s Theorem, and since hi(W) is

contained in the line at infinity, it follows that h1, h2 have generic rank one. Since h1 =
a/h2, this also implies that h1 �= h2. Suppose for a contradiction that |h1| = c is constant.
Then one has

|z0| − � ≤
∣∣∣∣z0 +

∞∑
j=1

a−j f (z2j−1)

∣∣∣∣ = c

∣∣∣∣w0 +
∞∑

j=1

a−j f (z2j−2)

∣∣∣∣ ≤ c|w0| + c�,
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and hence

|z0| ≤ c|w0| + (c + 1)�,

contradicting the fact that (z0, w0) could be any point in W, which is unbounded in the z
direction for any choice of w.

3.1. Image of the limit functions h1, h2. In this section we show that the image of the
limit functions h1, h2 contains the line at infinity minus 0, ∞.

PROPOSITION 3.3. Let F , U , h1, h2 be as in Proposition 3.1. Then

h1(U), h2(U) ⊃ �∞ \ {[0 : 1 : 0], [1 : 0 : 0]}.

The idea of the proof is to show that h1 is close enough to the model function
h0(z, w) := z/w on suitable disks contained in W, and then to use the fact that h0(W)

satisfies the claim together with Rouché’s Theorem to deduce the claim for h1. The claim
for h2 follows because h2 = a/h1.

THEOREM 3.4. (Rouché’s Theorem) Let D ⊂ C be a Jordan domain, and f , g be
holomorphic in a neighborhood of D. Assume that c ∈ g(D) and that

|f − g| < dist(c, g(∂D)) on ∂D.

Then c ∈ f (D).

Observe that, for c ∈ C, the complex line Lc = {(cw, w) : w ∈ C} passing through the
origin is mapped to the point c under the map h0(z, w) = z/w. Similarly, the preimage of
c = ∞ under h0 is the line L∞ := ({(z, 0) : z ∈ C}). We first need a lemma about the size
of disks contained in W whose center is a point (cw0, w0) ∈ Lc and which is contained in
a line orthogonal to Lc, that is, a line of the form {(cw0, w0) + (−w, cw)} with w ∈ C.
Let Dδ denote the Euclidean disk of radius δ centered at the origin.

LEMMA 3.5. For c ∈ C, δ > 0, and (cw0, w0) ∈ W , let Dc,δ(w0) be the disk of radius√
1 + |c|2δ defined as

Dc,δ(w0) = {(z, w) ∈ C
2 : (z, w) = (cw0, w0) + t (−1, c), t ∈ Dδ}.

Then Dc,δ(w0) ⊂ W for

δ = min
( |Re w0 − R|

|c| , |Re c Re w0 − Im c Im w0 − R|
)

.

Proof. A point (z, w) ∈ ∂W satisfies either Re w = R or Re z = R, so to find the maximal
δ such that Dc,δ(w0) ⊂ W we impose the conditions

Re(cw0 − t) = R,

Re(w0 + tc) = R
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and find the minimal δ for which one is verified for some |t | = δ. The above equations are
equivalent to

Re c Re w0 − Im c Im w0 − Re t = R,

Re w0 + Re c Re t + Im c Im t = R.

By setting Re t = x, Im t = y, finding the minimal δ is equivalent to finding the distance
in R

2 from the origin of two lines of the form

Ax + By + C = 0.

For the first equation A = −1, B = 0, C = Re c Re w0 − Im c Im w0 − R. The distance of
such a line from the origin is given by

|C|√
A2 + B2

= |Re c Re w0 − Im c Im w0 − R|.

For the second equation A = Re c, B = Im c, C = Re w0 − R, and the distance of such a
line from the origin is

|C|√
A2 + B2

= |Re w0 − R|
|c| ,

hence the theses.

Proof of Proposition 3.3. We will show that h1(W), h2(W) ⊃ �∞ \ {0, ∞}, which implies
the claim. Let h0(z, w) := z/w. It is easy to check that h0(W) = �∞. We use this fact to
show that for any c ∈ Ĉ \ {0, ∞}, c ∈ h1(W).

In view of Rouché’s Theorem, it is enough to find r > 0 and a one-dimensional disk
D ⊂ W such that:
• h0(D) contains a disk of radius r centered at c in �∞ \ {0, ∞};
• |h1 − h0| < r on ∂D.
Let

w0 = M + R + i
(M + R) Re c − 2M − R

Im c
if Im c �= 0

or

w0 = 2M + R if Im c = 0.

We claim that for M > 0 sufficiently large, the disk D := Dc,δ(w0) centered in (cw0, w0)

with δ = (M − 1) min(|c|, 1/|c|) is contained in W and satisfies the requirements.
We first check that D ⊂ W . In view of Lemma 3.5, we only need to check that

δ ≤ min
( |Re w0 − R|

|c| , |Re c Re w0 − Im c Im w0 − R|
)

.

If Im c �= 0, |Re w0 − R|/|c| = (M/|c|) > δ and |Re c Re w0 − Im c Im w0 − R| =
2M > δ for all choices of M > 0.

If Im c = 0, |Re w0 − R|/|c| = (2M/|c|) > δ and |Re c Re w0 − Im c Im w0 − R| =
|(2M + R) Re c − R| ≥ (2M + R)|Re c| − R ≥ δfor M large enough.
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From now on, it is no longer necessary to divide the two cases. We now compute the
distance |h0(∂D) − c|. Let t ∈ C, |t | = δ and (z, w) = (cw0, w0) + t (−1, c) ∈ ∂D. Then

|h0(z, w) − c| =
∣∣∣∣cw0 − t

w0 + ct
− c

w0 + ct

w0 + ct

∣∣∣∣ = |t |(1 + |c|2)
|w0 + ct | =: A.

We want to compare this with |h0 − h1| on ∂D. Let us define

k1 = k1(z, w) :=
∞∑

j=1

a−j f (z2j−1), k2 = k2(z, w) :=
∞∑

j=1

a−j f (z2j−2),

and note that |k1|, |k2| are bounded uniformly in W (see (3.7)). Let (z, w) ∈ ∂D as before.
Then

|(h1 − h0)(z, w)| =
∣∣∣∣ z + k1

w + k2
− z

w

∣∣∣∣ =
∣∣∣∣ k1w − k2z

w(w + k2)

∣∣∣∣
= |(k1 − ck2)w0 + (ck1 − k2)t |

|w0 + ct ||w0 + ct + k2| =: B.

By calculating the ratio A/B we see that

A

B
= |t |(1 + |c|2)|w0 + ct + k2|

|(k1 − ck2)w0 + (ck1 − k2)t | → ∞ as M → ∞,

since the numerator is a polynomial of degree two in M and the denominator is a
polynomial of degree 1 in M (indeed, both |t | and Re w0 grow linearly in M). This implies
that for M large enough, D satisfies the requirement for Rouché’s Theorem, and hence
h1(W) ⊃ �∞ \ {[1 : 0 : 0], [0 : 1 : 0]}. Since h2 = a/h1, the same holds for h2.

Remark 3.6. If R > supWR
|�|, then we have precisely that hi(WR) = �∞ \ {[0 : 1 : 0],

[1 : 0 : 0]}, because the numerator and the denominator in (3.8) cannot attain the exact
value 0. If WR is an absorbing domain for U as in §3.3, then hi(U) = �∞ \ {[0 : 1 : 0],
[1 : 0 : 0]}.

3.2. Conjugacy of F to a linear map.

PROPOSITION 3.7. Let F be as in Proposition 3.1. Then for R sufficiently large, F is
conjugate to the linear map L(z, w) = (aw, z) on the set

⋃
n≥0 F−n(W), where W =

W(R) = {(z, w) ∈ C
2 : Re z, Re w > R}.

Proof. Recall that |f (z)| is bounded by some constant, say M, for R large enough
and Re z > R. Let W := W(R) for such R. It is easy to check that L−n(z, w) =
(z/an/2, w/an/2) if n is even and L−n(z, w) = (w/(a(n−1)/2), z/(a(n+1)/2)) if n is odd;
hence by a direct computation, using the fact that a > 1, for any n ∈ N and for any P ∈ C

2

we have that ‖L−n(P )‖ ≤ a−((n−1)/2)‖P ‖.
Let ϕn : C2 → C

2 be the automorphisms defined as

ϕn := L−n ◦ Fn.
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We will show that the ϕn converge to a map ϕ : C2 → C
2 uniformly on W. Since the ϕn

satisfy the functional equation ϕn+1 = L−1 ◦ ϕn ◦ F , the map ϕ is a conjugacy between F
and L.

Using the explicit expressions for the iterates of F given by (3.2) and (3.3) we compute

ϕ2k(z, w) =
(

z +
k∑

j=1

a−j f (z2j−1), w +
k∑

j=1

a−j f (z2j−2)

)
, (3.10)

ϕ2k+1(z, w) =
(

z +
k∑

j=1

a−j f (z2j−1), w +
k+1∑
j=1

a−j f (z2j−2)

)
, (3.11)

and taking the limit we obtain

ϕ(z, w) =
(

z +
∞∑

j=1

a−j f (z2j−1), w +
∞∑

j=1

a−j f (z2j−2)

)
,

which is a biholomorphism between W and ϕ(W) since both series converge because f is
bounded in a right half plane. It is injective by the Hurwitz theorem because the maps ϕn

are injective and their limit has rank two (see [Kra01, Exercise 3, p. 310]).
For any P ∈ F−k(W) we extend ϕ as ϕ(P ) = L−k ◦ ϕ ◦ Fk(P ). Since F is an

automorphism and since ϕ ◦ F = L ◦ ϕ, the extension of ϕ (which we still denote by ϕ) is
well defined as a biholomorphism from

⋃
n≥0 F−n(W) to

⋃
n≥0 L−n(ϕ(W)).

Remark 3.8. If |f (z)| → 0 as Re z → ∞, instead of just being bounded, and since the
real parts of z, w are increasing under iteration, we have that ϕ(z, w) tends to the identity
as Re z, Re w → ∞. However, in general, this may not be the case.

3.3. Geometric structure of U for f (z) = e−z. In this section we prove that, in the
special case that f (z) = e−z, the Fatou component U is the union of the backwards
images of W. As a corollary, using the linearization results from §3.2 we obtain that U
is biholomorphic to H × H. In fact, the proof holds for any f satisfying the hypothesis
of Theorem 3.9 as long as |f (z)| grows fast enough for Re z → −∞. It is based on a
modification of the plurisubharmonic method used in [ABFP19a, §5].

PROPOSITION 3.9. Let F(z, w) = (aw + e−z, z), and U be as in Proposition 3.1. For
R sufficiently large and W = {(z, w) ∈ C : Re z, Re w > R}, the set W is an absorbing
domain for U, that is

U = A :=
⋃
n∈N

F−n(W).

In view of Remark 3.6, we obtain the following.

COROLLARY 3.10. If F(z, w) = (aw + e−z, z), then h1(U) = h2(U) = �∞ \ {[1 : 0 : 0],
[0 : 1 : 0]}.

The proof of Proposition 3.9 goes by contradiction, by assuming that there is a point
P ∈ U \ A. We first show that we can assume that P ∈ U ∩ ∂A and that h1(P ) �= 0, ∞.
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LEMMA 3.11. If U �= A, there exists P ∈ ∂A ∩ U such that h1(P ) �= 0, ∞.

Proof. If U �= A, since U ⊃ A, and also U is connected and open, we have that ∂A ∩
U �= ∅. Since U is a Fatou component, the function h1 is well defined on all of U (though
the numerator and the denominator in expression (3.8) may not necessarily converge
independently). Let Z be the subset of U such that h1 takes the value 0, and P the
subset of U such that h1 takes the value ∞. Suppose for the sake of contradiction that
∂A ∩ U is a subset of X. For P ∈ ∂A ∩ U consider a neighborhood V ⊂ U of P. Since
X is an analytic set we have that V \ X is connected (see for example Proposition 7.4
in [KK83]). Since P ∈ ∂A and A is open, we have that A ∩ V �= ∅. Since V \ X is
connected and ∂A ∩ U ⊂ X by the contradiction assumption we get that V \ X ⊂ A. Since
h1 is not constant, X := Z ∪ P is locally a finite union of complex curves and of finitely
many points (see e.g. [Chi85, §§5.1 and 5.2]). It follows that there are infinitely many
directions such that a sufficiently small Euclidean disk D tangent to that direction satisfies
D \ {P } ⊂ A.

We now show that the existence of such D implies that P ∈ A. Indeed, the sequence
of harmonic functions gn : (z, w) → Re zn = Re πz(F

n(z, w)) converges to infinity on
compact subsets of A, hence, since D \ {P } ⊂ A, it converges to infinity uniformly on the
boundary of a subdisk of D, and therefore converges to infinity on its center P by Cauchy’s
formula. Hence the real parts of the first coordinate of iterates of P converge to infinity, as
well as the real parts of the second coordinate (since wn = zn−1), which implies P ∈ A.
This contradicts the fact that P ∈ U \ A, and hence the assumption that (∂A ∩ U) ⊂ X is
false and there is a point P as in the claim.

From now on we consider P with the properties of Lemma 3.11. Since h1 �= 0, ∞ in P,
the same is true for h2 = a/h1, and hence by continuity h1, h2 do not take the values 0, ∞
in some small closed ball B centered at P.

Hence we can define the quantities

M := max
B

(max(|h1|, |h2|)) < ∞,

m := min
B

(min(|h1|, |h2|)) > 0.

Note that M > 1 because h2 = a/h1 and a > 1. By Corollary 2.3, if 0 < ε < m there
exists a constant C such that for every P = (z0, w0) ∈ B,

|zn| ≤ C(M + ε)n. (3.12)

Recall that wn = zn−1 to get

|wn| ≤ C(M + ε)n−1. (3.13)

The proof of Proposition 3.9 relies on the following technical lemma.

LEMMA 3.12. Define the sequence of harmonic functions un from a neighborhood of B to
R as un(z) := (− Re zn)/n. Then we have the following.
(1) un ≤ log M in U for n large enough.
(2) un → −∞ uniformly on compact subsets of A.
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(3) Let P ∈ U \ A. Then for every ε > 0 there exists a subsequence nk such that
unk

(P ) > −ε.

Proof. (1) Suppose that there is a subsequence (nk) and points (zk , wk) ∈ B such that

− Re zk
nk

nk

> β

for some β and let us show that log M is an upper bound for β. It follows that Re zk
nk

<

−nkβ. Since f (z) = e−z we have (using the triangular inequality in the second step and
(3.12) for wk

nk
in the third step) that

|zk
nk+1| = |e−zk

nk + awk
nk

| ≥ |e−zk
nk | − |awk

nk
| > e+nkβ − aC(M + ε)nk−1.

On the other hand, again using (3.13), we have that

|zk
nk+1| ≤ C(M + ε)nk ,

hence

enkβ − aC(M + ε)nk−1 < C(M + ε)nk ,

which gives (using M > 1)

enkβ < (a + 1)C(M + ε)nk ,

from which (using nk → ∞ and ε → 0) we obtain β ≤ log M .
(2) Let K be a compact subset of A. Then there exists n such that Fn(K) ⊂ W , and so

it is enough to show the claim for a compact subset of W. By the explicit expression for
z2n, z2n+1 given by (3.2), (3.3) we get that Re zn ≥ an(R − �) as defined in (3.6). Hence
by assuming that R is chosen large enough so that R − � > 0, we get that

un ≤ −an(R − �)

n
→ −∞.

(3) If not, there exists ε > 0, N ∈ N such that

un(P ) ≤ −ε for all n ≥ N .

Hence if Fn(P ) = (zn, wn) we have that ((− Re zn)/n) ≤ −ε for all n ≥ N , so
Re zn ≥ nε > R for n large since ε > 0. Since wn = zn−1, (zn, wn) ∈ W and (z0, w0) ∈
F−n(W) ⊂ A.

Remark 3.13. We only use the assumption f (z) = e−z to prove (1), that is, that the un are
bounded from above. In fact, it is enough to assume that |f (z)| grows sufficiently fast as
Re z → −∞.

Proof of Proposition 3.9. Let P as in Lemma 3.11, B be a ball centered in P as
described above, and let D be a one-dimensional Euclidean disk compactly contained
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in B, intersecting A, and passing through P. Consider the real one-dimensional Lebesgue
measure on ∂D. Let K be a compact subset of A such that the measure in ∂D of K ∩ ∂D

is strictly positive. This can be done because A is open, and hence A ∩ ∂D is open in the
topology of ∂D. Let μgood > 0 be the measure of the set ∂D ∩ K and μbad be the measure
of the set ∂D ∩ (U \ K). Since U contains B, ∂D = (∂D ∩ K) ∪ (∂D ∩ (U \ K)), and,
since K is compact and U is open, the sets in question are measurable.

By Lemma 3.12 for any given M > 0 there exists N such that uN ≤ −M on K,
uN(P ) ≥ −ε for ε arbitrarily small since P ∈ U \ A, and uN(P ) ≤ log M on U. By the
mean value property for uN we have

−ε ≤ uN(P ) =
∫

∂D

uN(ζ ) dζ =
∫

∂D∩K

uN(ζ ) dζ +
∫

∂D∩(U\K)

uN(ζ ) dζ

≤ −Mμgood + log Mμbad.

SinceM is arbitrarily large, this gives a contradiction.

COROLLARY 3.14. Let F(z, w) = (aw + e−z, z), and U be as in Proposition 3.1. Then U
is biholomorphic to {(z, w) ∈ C : Re z, Re w > 0}.

Proof. Let WR = {(z, w) ∈ C : Re z, Re w > R} with R large enough so that Proposition
3.9 holds and so that R − � > 0 with � defined as in (3.6), with f (z) = e−z. Then, by
Proposition 3.9, WR is an absorbing domain for U, and, by the explicit form of ϕ,

WR+� = {(z, w) ∈ C : Re z, Re w > R + �} ⊂ ϕ(W)

⊂ {(z, w) ∈ C : Re z, Re w > R − �} = WR−�.

Since R ± � > 0 we have that
⋃
n

L−n(WR+�) =
⋃
n

L−n(WR−�) = {(z, w) ∈ C : Re z, Re w > 0}.

It follows that
⋃
n

L−n(ϕ(WR)) = {(z, w) ∈ C : Re z, Re w > 0}.

Since ϕ is a biholomorphism between
⋃

n L−n(ϕ(WR)) and
⋃

n F−n(WR) = U , the claim
follows.
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