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Introduction. The theory of modular representations of the symmetric 
group was studied first by Nakayama (5, 6), and later by Thrall and Nesbitt 
(11) and Robinson (7, 8, 9). Nakayama built up his elaborate theory of hooks 
for the express purpose of studying this problem, while Robinson's extensive 
work on the various phases of the relationship between Young diagrams, skew 
diagrams and star diagrams on the one hand, and representations of the sym­
metric group on the other, culminating in a set of relations among the degrees 
of the representations, serves as a starting point for this paper. 

Brauer and Nesbitt (2) have shown in the general theory that, for a given 
prime p, the irreducible representations of a group may be separated into a 
number of ^-blocks, each of which is characterized by the maximal power t of 
p which divides the degree of every representation of the block. If g = pag\ 
where g' is prime to p, then the equation t + d = a relates t to the defect d of 
the block. If / = a, the block is of defect 0, while if t = 0, the block is of 
defect a. For the symmetric group Nakayama conjectured that the Young 
diagrams of all the representations of a single £-block had the same p-core 
after the removal of all their £-hooks. This conjecture was proved jointly in 
1947 by Brauer and Robinson (3). 

Brauer (1) also showed that the representations in a £-block of defect 1 can 
be arranged in a chain such that only adjacent members have a single modular 
component (with multiplicity 1) in common. For n < 2p, Nakayama suc­
ceeded in showing that in the case of the symmetric group Sn the ordering in 
the chain is precisely the natural order of the leg lengths r of the p-hooks, 
from r = 0tor = p — l, where each of the p distinct ^-hooks is found in 
exactly one Young diagram. 

The present paper extends Nakayama's result for blocks of defect 1 to values 
of n ^ 2p, and explains the derivation of a set of identities among the modular 
characters of the irreducible representations of a £-block of Sn. The nature of 
their linear dependence is studied in some detail. Notice is taken of the ortho­
gonal relation between the coefficients in these identities and the columns of 
the matrix of decomposition numbers which gives the modular splitting of the 
irreducible representations of 5 n , and this leads to an investigation of the 
nature of indecomposability in the regular representation of Sn. As a first 
step forward from Nakayama's one hook case, the indécomposables of the 
£-block of S2p with zero p-core are obtained in a conclusive manner. 

Received January 8, 1951. This paper contains the substance of a thesis prepared under 
the supervision of Professor G. de B. Robinson and submitted for a Ph.D. degree at the 
University of Toronto in May, 1950. 

309 

https://doi.org/10.4153/CJM-1951-037-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1951-037-6


310 J . H. CHUNG 

1. Background. Let p be a rational prime and p be a fixed prime ideal 
divisor of p in an algebraic number field K. Suppose a group G is represented 
by matrices whose coefficients are taken from the ring o of p-integers of K 
(i.e., numbers of the form a//?, where a and p are integers of K and /5 is prime 
to p), and let Zi, Z2, . . . , Z& be the distinct irreducible representations of G. 
If we let K be the residue class field of o (mod p) and replace every coefficient 
of the Zi by its residue class (mod p), then the resulting modular representa­
tions Zi will, in general, be reducible and will split into irreducible modular 
representations FK with coefficients in K. The splitting may be denoted by 

Zi = E duFt (i = 1 , 2 , . . . , * ) , 

where diK is the multiplicity with which FK appears in Zz. These rational in­
tegers du ^ 0 are called the decomposition numbers (mod p) of G. 

If Z7i, U2, . . . , Uk* are the distinct indecomposable components of R, the 
regular representation of G with entries in K, then 

k* 

UK= E c*Fx (K = 1,2, . . . , * * ) , ' 
x = i 

where the ĉ x, rational integers ^ 0, are the Cartan invariants of G (for p)} 

and are related to the decomposition numbers via the equations 
k 

cK\ = £ diK da. 

There exists a representation (£/K) of G in i£ which, if taken (mod p), becomes 
similar to UK. We then have 

(UK) = E <*/«Zy, 
i = i 

and it is to these representations (UK) that we shall be referring (without ambi­
guity) as the indecomposable representations of G. Such an indecomposable 
representation has the property that its character vanishes for all elements of 
G whose orders are divisible by p, i.e., for all ^-singular elements. In the 
case of the symmetric group Sn a ^-regular element is simply a permutation 
the lengths of whose cycles are all prime to p, while a ^-singular element has 
at least one cycle of length p or a multiple of p. 

Corresponding to the foregoing relations among the representations we have 
character relations which are valid for the p-regular elements of G. If we 
denote by y(l() the character of UKt by $(/t) that of FK, and by £(i) that of Z i t 

these relations are 
k* 

1.1 f(0 = E da$
M 

x = i 
k 

1.2 V(K) = E <**£">. 
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Regarding (diK) as a matrix with i as row index and K as column index, relations 
1.1 and 1.2 indicate that the rows of this matrix give the splitting of the 
ordinary irreducible representations into their modular irreducible components, 
while the columns give the indecomposable representations of G in K as linear 
combinations of the ordinary irreducible representations with non-negative 
coefficients. It is this latter interpretation which will prove useful in the 
determination of the modular splitting of the irreducible representations of Sn. 

A result in the modular theory which will also prove to be particularly 
useful is embodied in the following two formulae of Nakayama (2, p. 582): 

1.3 T?(K)* = 5Z a*x 77(x) ( f° r ^-regular elements of G), 
x 

1.4 <P(X) = Y, <*«x <P(K) (for ^-regular elements of H). 
K 

Observe that the same coefficients aK\, which are positive integers or zero, 
appear in both formulae. The first states, in the notation of characters, that 
the representation of G induced by an indecomposable representation of a 
subgroup II of G, can be expressed as a linear combination of indecomposable 
representations of G, while the second states that if we restrict our attention 
to the element of a subgroup H of G, any modular irreducible representation 
of G becomes equivalent to a sum of modular irreducible representations of H. 

A. Young showed that there exists a one-to-one correspondence between the 
irreducible representations of the symmetric group Sn and his tableaux or 
* 'diagrams", so that the same symbol can be used interchangeably for a Young 
diagram and for the corresponding irreducible representation. A generaliza­
tion of the notion of a Young or right diagram is a skew diagram [a] — [($], 
introduced by Robinson (9), which consists of the nodes left after removing 
from the corner of a Young diagram [a] nodes which themselves make up a 
Young diagram [/?]. If the skew diagram consists of disjoint constituents with 
no row or column in common, it is called a disjoint diagram. To every such 
diagram corresponds an induced representation; of particular significance are 
disjoint diagrams whose constituents are right diagrams. If, for example, 
there are two constituent right diagrams [fi] and [7], where [/5] is a representa­
tion of Si and [7] a representation of Sm, then the resulting Kronecker product 
representation of the subgroup Si X Sm is written [/3] X [7], and the represen­
tation of the symmetric group Si+m on / + m distinct symbols induced by 
this Kronecker product representation is written [0] • [7]. It is to [0] • [7] 
that the forementioned diagram corresponds, and its reduction into irreduc­
ible components [a] of Sn (n = I + m) takes the form 

[/3] • [y] = Z *V W. 
a 

The aX/37 are obtained via the Littlewood-Richardson rule (4, p. 119) for 
writing down the irreducible components of [/3] • [7]. 

It seems unnecessary to summarize here the theory of hooks as developed 
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in the papers of Nakayama and Robinson already referred to. We note in 
conclusion a recent paper by Nakayama and Osima (Nagoya Math. J. vol. 2 
(1951), 111-117) in which an alternative proof is given of Nakayama's con­
jecture (cf. 3). 

2. The removal of the restriction n<2p in Nakayama's one hook case. In 
studying the modular splitting of ordinary irreducible representations of Sn 

via his notion of a hook, Nakayama naturally started with the case of p-cores 
of n nodes and immediately reached the conclusion that the corresponding 
irreducible representations wTere also modular irreducible and that each of 
them formed by itself a block of defect 0. Further study along these lines 
led him to the result that each block of defect 1 contained exactly p represen­
tations, namely, those having Young diagrams with a given p-core of n — p 
nodes and p-hooks of leg lengths 0, 1, 2, . . . , p — 1, respectively—a result 
that he was able to prove only for the case n < 2p, but which followed directly 
for all n as soon as his conjecture (6, p. 423) was proved. For such a block 
he stated the following theorem (re-phrased) : 

2.1. Let To be a p-core of n — p nodes and let Totr be the (unique) diagram 
of n nodes with p-core To and one p-hook of leg length r. Then the irreducible 
representation [(3]r of Sn associated with T0,r possesses exactly one irreducible 
modular component (with multiplicity 1) in common with To,r+\(r ^ p — 1), 
one in common with Toj-i (r9^0), and none in common with TotS (s ^ r — 1, 
r + 1). 

To prove this theorem for n<2p, Nakayama utilized a result of Brauer (1) in 
the general modular theory concerning the arrangement in a chain of the repre­
sentations in a block of defect 1, in which only neighbouring representations 
have a modular component (with multiplicity 1) in common, in order to identify 
his diagrams with the corresponding representations in the chain. His reason 
for considering values of n < 2p was simply that only in this range could he be 
certain of having to contend only with blocks of defects 0 and 1. 

To prove the theorem for all values of n, we accept the truth of the result 
for n = p (Nakayama's proof covers this value), i.e., for a p-core of zero nodes. 
This means that the portion Dv of the jD-matrix appropriate to the corres­
ponding p-block of Sp is of the form 

Wo "1 0 0 . . 0 0 
[a]i 1 1 0 . . 0 0 

[«]» 0 1 1 . . 0 0 

W p - 2 0 0 0 . . . 1 1 

[a]j>-i _0 0 0 . . . 0 1 

where [a]r is the representation of the block whose Young diagram is a p-hook 
of leg length r. The columns of Dp give the indecomposable components of 
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the regular representation that belong to the block, so that in particular [a]r 

appears in two indecomposable components, namely [a]r_i + [a]r and [a] r+ [a]r+i-

Let [p0] be the representation of Sn-P {n ^ p + 1) whose Young diagram is 
the p-core T0, so that [Po] is modular irreducible and also forms by itself a 
£-block of Sn-p of defect 0. Denote by [p]r and [/3]r+i the two representations 
of the £-block of Sn of defect 1 with p-core [Po] whose Young diagrams have 
p-hooks of leg lengths r and r + 1 respectively. In order to show that 
[P]r + [P]r+\ is a n indecomposable component of the regular representation of 
Sn, we prove first a preliminary lemma. 

2.2. If [Po] is a p-core of n — p nodes, and Hr = [p — r, lr] a p-hook of leg 
length r, then of all the diagrams [p] of n nodes that can be obtained by building Hr 

on [Po] in accordance with the Littlewood-Richardson rule, there is only one which 
has [Po] as p-core, namely the (unique) diagram which contains the p-hook Hr and 
p-core [Po], 

Proof. Nakayama demonstrated the existence of exactly one diagram [p]r 

of n nodes which possesses the desired £-hook and /?-core, but we need to 
show that it actually arises as a result of building in accordance with the 
Littlewood-Richardson rule. The nodes of the p-hook in question can be thought 
of as being added along the rim of the p-core [Po] so as to form a skew hook 
equivalent to the right hook Hr, and the only point that needs verification is 
that this building on [p0] does not violate any of the restrictions laid down 
in the Littlewood-Richardson rule. 

We observe that the first and last nodes of a skew hook (starting from the 
top right and going to the bottom left) correspond respectively to the head 
and foot of the equivalent right hook Hr, so that there are exactly as many 
rows (r + 1) and columns (p — r) represented in the skew hook as in the 
right hook. Then, since no two added symbols from a given row of Hr may 
appear in the same column of the resultant diagram \P], the p — r nodes in 
the first row of Hr must be assigned, in order, one to each column of the skew 
hook. Likewise, since each node of the first column of Hr must appear in a 
later row of [p] than its predecessors of that column, the nodes of the first 
column of Hr must be assigned, in order, one to each row of the skew hook. 

Suppose that we designate the nodes of the right hook Hr in the following 
way: 

C\ C2 Cz . . . Cs 

R3 

Rr+l 
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where s = p — r and G = Ri. Now consider the skew hook obtained by 
building on [/30] with Hr\ from the preceding paragraph it is clear that there 
will be exactly one R per row ( G = R\) and exactly one C per column. Since 
none of the restrictions involved in the Littlewood-Richardson rule have been 
violated, [p]r can thus be obtained from this building process. To show that 
it appears only once, we notice that in the skew hook neither the C s nor the 
R's can be interchanged among themselves without violating the rule. Further 
no C can be interchanged with an R, for otherwise we would have two C s in a 
column of the product diagram. Finally [/3}r is the only diagram which con­
tains Hr as a p-hook and [#0] as its p-core. 

To show that the process does not yield a diagram [0] t containing a p-hook 
Ht (t ?£• r) and p-core [/30], we observe that such a diagram [/3]t will contain 
a skew hook Ht equivalent to Hu containing t + 1 rows and p — t columns. 
If such a skew hook is to arise from building on [£0] with Hrj we shall have 
more than one C in at least one column of Ht il t > r, and more than one R 
in at least one row of Ht if t < r. In either case a restriction in our building 
process is violated, and hence such a diagram [&]t cannot arise. This proves 
the lemma. 

Proof of 2.1 for n > p: Since [a]r + [a]r+i is an indecomposable represen­
tation of Sp (mod p), and [/30] (a p-core) is a modular irreducible representa­
tion of Sn-p, then 

(Mr + [a]r+i) X [/So] 

is an indecomposable Kronecker product representation of the direct product 
subgroup Sp X Sn-p of Sn- Further, by Nakayama's formula (1.3), the 
corresponding induced representation of Sn 

[o]r • Wo] + [a] r + i • Wo] 

is a sum of indecomposable representations of 5 n , whose irreducible components 
are obtained via the Littlewood-Richardson rule applied to the induced 
representations [a]r • [0O] and [a]r+i • [/?0]. Now the only components that we 
are interested in are those that belong to the p-block with p-core [/30], and the 
preliminary lemma tells us that there wall be exactly two such irreducible 
representations, one obtained from [a]r • [/3o] and the other from [a]r+i • [,#0]. 
Denoting the representations or the corresponding Young diagrams by [(3]r 

and [j8]r+if we observe that [p]r and [/3]r+i each contain one p-hook, of leg 
length r and r + 1 respectively; hence, by the Murnaghan-Nakayama re­
cursion formula, their characters cannot vanish for all elements of Sn of the 
type P . V, where P is a cycle of length p. Since the vanishing of the character 
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for all ^-singular elements of Sn is a necessary condition for indecomposability, 
it follows that neither \fi]r nor [0]r+i is an indecomposable representation. How­
ever, since the £-hooks in [0\r and [jS]r+i have parities of opposite signs, the 
character of the sum [fi]r + [&]r+i vanishes for all ^-singular elements; inas­
much as these are the only representations in the block under consider­
ation, the sum [0\r + [0]r+i must be an indecomposable representation of Sn 

(r 7* p — 1). It follows in exactly the same way that [/3]r-i + [P]r is an 
indecomposable representation of Sn (r 9e 0). Hence for any p-core [0Q] the 
ordering of the representations in the associated £-block of Sn of defect 1, 
such that only adjacent representations have a modular component in common, 
is the same as in the case of the [a]'s; i.e., the part of the D-matrix correspond­
ing to this block is again Dp. This completes the proof. 

Before proceeding to investigate the modular splitting of representations 
whose Young diagrams contain two or more ^-hooks, we deduce in the next 
section a number of relations among the characters of any particular block, 
which hold for all p-regular elements. It is these relations which play a vital 
role in our subsequent analysis. 

3. Character relations for ^-regular elements of 5 n . In (9) Robinson 
obtained some relations among the degrees of irreducible representations [a] of 
Sn belonging to a p-block characterized by a p-core of zero nodes namely 

3.1 £ xaa\ = 0, 
a 

where xa denotes the degree of [a]; a = (— l)Zr* = ± 1 is the product of the 
parities of the p-hooks removable from the diagram [a] to yield the zero 
£-core;and Xis an integer ^ 0 which gives the multiplicity with which the star 
diagram [a]% of [a] contains a chosen representation [b] as an irreducible 
component. 

For each choice of [b] there arises an identity 3.1. In a recent paper by 
Todd (12) the same identities appear in another form, namely, as the expan­
sions of the "new multiplication" of two Schur or 5-functions of degrees m 
and n in terms of 5-functions of degree mn, where the 5-functions of degree 
n are the characters of irreducible representations of order n of the full linear 
group. 

One can show that 3.1 actually admits of a more general interpretation 
with the degree of [a] replaced by its character %a, so that 3.1 becomes an 
identity among the modular components of the irreducible representations. 
Furthermore, these identities also exist for ^-blocks characterized by non-zero 
£-cores. 

Robinson's line of attack, however, does not yield the larger set of relations 
which arise from a consideration of the removal of just one hook from each of 
the Young diagrams of a given p-block, where this hook may be of length 
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p, 2p, . . . , or bp. Suppose we start with the character relation 

3-2 £ x.(*)x.(S) = 0, 
a 

where R and 5 do not belong to the same conjugate set of 5 n . Let R = V.Pk, 
where Pk is a single cycle of length kp (1 ^ fe^6), and V is any permutation 
on the remaining n — kp symbols. By the Murnaghan-Nakayama recursion 
formula 

3.3 x . ( ^ P * ) = £ ( - l ) r « X n ( ^ ) = E a*,kXyk(V), 
yk yk 

where the summation extends over all representations [yk] of Sn-kp whose 
Young diagrams are obtainable from [a] by the removal of a single &p-hook Hi, 
and Yi is the leg length of Hi. Multiply 3.2 by x^CO» where [(3k] is one of 
the irreducible representations of Sn-kP which appear in the right hand side 
of 3.3, and sum over all V: 

Hxh(V)Exa(S)ZaaykXy]c(V) = 0 . 
V a yk 

Since the summation over V of the product x/s&(T0 • Xyk(V) yields zero in all 
cases except when [7^] = [(3k]y we obtain 

Y. x*(S) H m(V)aam(V) = 0. 
a V 

This gives 

3.4 2 > a ^ X a ( S ) = 0 (fe = 1,2, . . . , & ) , 
a 

where a ^ is the parity of the &p-hook which is removed from [a] to yield [£*], 
and [/3/c] ranges over all diagrams of Sn-kp which appear as residual diagrams 
of [a]. Observe that the [0k] are those diagrams of Sn-kP with the same p-core 
as the original block of [a]'s. For each [(3k], 3.4 is a linear relation among 
the characters Xa of r fixed £-block which holds for all ^-regular elements 
5 of Sn, i.e., an identity among the modular components of these characters. 
A similar procedure applied to each of the other p-blocks yields further iden­
tities of the same type. 

Example. The representations of S% which belong to the 2-block with 
2-core [0] are [8], [7,1], [6,2], [6,12], [5,3], [5,P], [42], [4,3,1], [4,22], [4,2,12], [4,1*], 
[32,2] [32,12], [3,22,1], [3,P], [24], [23,12], [22,14], [2,16], [l8]. The necessary 
information for producing the identities appropriate to this 2-block is con­
tained in the following table, in which the column labels are the various [0k] 
which appear after the removal of hooks of length 2k (k = 1, 2, 3, 4) from 
the row labels [a], and the entries are the parities of these hooks: 
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II O T-H T-H • T — I - T - H 

I " 
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II 
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The columns of this table then give rise to the following identities: 

k = l: (i) [8] + [6,2] - [6,1*] = 0 
(ii) [7,1] + [5,3] - [5,1*] = 0 

(iii) [6,2] + [42] + [4,22] - [4,2,1*] = 0 
(iv) [6,1*] + [4,3,1] - [4,22] - [4,P] = 0 
(v) [5,3] - [42] + [32,2] - [3*,1*] = 0 

(vi) [5,P] + [32,P] - [3,22,1] - [3,1s] = 0 
(vii) [4,22] - [32,2] + [2*] - [23,P] = 0 

(viii) [4,2,1*] - [32,P] - [24] - [22,14] = 0 
(ix) [4,P] - [2M2] - [2,1«] = 0 
(x) [3,1*] - [22,P] - [P] = 0 

k = 2: (xi) [8] + [42] - [4,3,1] + [4,2,P] - [4,P] = 0 
(xii) [7,1] - [42] - [32,2] + [3,22,1] - [3,1»] = 0 

(xiii) [6,2] - [5,3] + [23,P] - [2*,1<] = 0 
(xiv) [6,P] - [4,3,1] + [32,2] + [2<] - [2,P] = 0 
(xv) [5,1»] - [4,2,1*] + [3,2*,1] - [2*] - [P] = 0 

k = 3: (xvi) [8]-[5,3]+[4,3, l]-[32 , l2]+[22 ,P]-[2,P] = 0 
(xvii) [7,1] - [6,2] + [4,22] - [3,22,1] + [23,P] - [P] = 0 

k = 4: (xviii) [8] - [7,1] + [6,1*] - [5,1«] + [4,P] 
- [3,1*] + [2,P] - [P] = 0 

In general the identities that we have just derived will not be linearly in­
dependent. To establish their linear dependence, consider the character of a 
representation [a] for an element R = P„ . Pv . W, where Pu is a cycle of length 
up, Pv is a second cycle (distinct from P„) of length vp (u ^ v), and W is any 
permutation on the remaining n — p(u + v) symbols. We assume that [a] 
contains hooks of length up and vp, and that u + v ^ b, where b is the number 
of successive £>-hooks removable from [a] to yield its p-core. Applying the 
Murnaghan-Nakayama recursion formula twice, we obtain 

X.(-K) = £ a«0„ Xffu (Pv • W) 
Pu 

= Ha"fiu Z a'f>uf>u+v XPU+V(W), 
Pu Pu +v 

if we think of removing a hook of length up first, and 

Xa(R) = Z a«mr x$v (Pu • W) 
Pv 

= Z aativ Z a"evt)u+v xeu+v (W), 
Pv Pu +v 

if we remove a vp-\\ook first. Here [@u], [0V], [0U+V] are representations of 
respectively, and ar&u$u+v (a"pv(3u+v) is the parity of 
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the hook which must be removed from [&u] ([#„]) in order to yield [/?M+V]. Since 
these are expressions for the same character, we have, for each appropriate 
[a] of the £-block, 

3.5 IXi3w L a'fiufiu+v Xf*u+v(W) = I X ^ L a"pv0u+v x/»tt+t,(WO, 

a linear relation among the ordinary irreducible characters of Sn-P(u+v) for 
all elements W of 5n-p(w+v). The linear independence of these characters 
then implies 

for each [£„+„]. Observe that, if u = v, no relation of this kind arise, since 
3.5 becomes simply an identity. Multiplying through 3.6 by Xa(S), where 5 
is a ^-regular element of Sn, and summing over the [a]'s of the block under 
consideration, we obtain 

£ a'PuVu+v Ha*fiu X o ( 5 ) = Z &"Wu+v S a*£v Xa(S). 
&u a &v a 

For each [I3U+V] this is a relation among the identities arising from the [jffM]'s 
and those arising from the [frj's, where u 9^ v. 

Referring to our previous example, the only values of u and v (u 9e v) satis­
fying u + v ^ by where b = 4 in this particular block, are 1,2 and 1,3, so that 
the number of relations among our identities is simply the number of [fiz]'s 
and [jSj's, namely 3. The relation arising from [2] is obtained by multiplying 
(i), (ii), . . . , (x) by 1, 0, 0, 0, —1, 0, 0, 1, —1, 0 respectively (namely, the 
parities of the 4-hooks which must be removed from [6], [5,1], . . . , [l6] to yield 
[2], and 0 if no such 4-hook exists); (xi), (xii,) . . . , (xv) by 1, 0, 1, — 1, 0 
respectively (namely, the parities of the 2-hooks removable from [4], [3,1], 
. . . , [l4] to yield [2]) ; and equating the two linear combinations to yield 

(i) — (v) + (viii) - (ix) = (xi) + (xiii) - (xiv). 

Similarly, corresponding to [l2] and [0], we obtain: 

(ii) - (iii) + (vii) - (x) = (xii) - (xiii) - (xv), 

(i) - (ii) + (iv) - (vi) + (ix) - (x) = (xvi) - (xvii). 

We should not assume, however, that every relation among the identities 
which arises in this way is distinct from every other one; it may happen that 
one relation is simply a restatement of two or more other relations. Consider 
an element of the type Pu . Pv . Pw . Q, where the P's are defined as before 
and Q is any permutation on the remaining n — p(u + v + w) symbols, 
u 7* v 7̂  w. Assuming that u + v + w ^ b, we obtain, by the same reasoning 
as before, the relations 
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(<2) 
&u Pu +v +w 

= D tto^w Z) a"'0«;/*u+îH-t*> X/3M+v+w; ((?), 

and once again the linear independence of the characters xpu+v+woî Sn-P(u+v+w) 
yields 

&u &v &w 

for each [0U+V+W]. That is, for each [/?M+v+w;] only two of the three apparent 
relations which exist among the three sets of identities arising from the [/3u]'s, 
[iSv]'s, and [pw]'s (namely, the relations between the sets taken in pairs) are 
distinct: the remaining relation is implied by the other two. The generaliza­
tion of this to the case where we have #1, u2, Uz, u±, . . . , satisfying ux + 
u2 + uz + u± + . . . ^ b and u\ ^ u2 9e u% ^ w4. . . , presents no added 
difficulty. 

The following interpretation of the above relations among the identities 
may prove useful in understanding them. Since the number of modular 
irreducible characters of a group is less than the number of ordinary irreducible 
ones, there must exist a number of linear relations among the ordinary char­
acters which hold for all ^-regular elements (that is, identities among their 
modular components) in order to make up the difference. The number of 
modular characters of Sn being effectively the number of distinct partitions 
of n which contain neither p nor its multiples, the number of such identities 
must be the number of those partitions which contain p or its multiples, or the 
number of conjugate sets of ^-singular elements. The identities that we have 
derived from all the blocks clearly correspond to those partitions of n which 
contain summands of length p, 2p, 3p> . . . or bp, and the fact that the latter 
classification is not mutually exclusive (i.e. a partition may contain more than 
one multiple of p) means that we have more identities than there are partitions 
of this category. The relations among the identities serve to remove the 
duplications: however, their independence requires further study. 

In our previous example, there were 16 ^-singular conjugate sets and 19 
identities( the modular characters of [5,2,1] and [3,2,13] of the block with 
2-core [3,2,1] satisfy the remaining identity [5,2,1] - [3,2,l3] = 0), so that the 
three relations among the identities (namely the three relations corresponding 
to [2], [l2], and [0]) make up the difference. The three relations may be 
accounted for by the conjugate sets [6,2], [4,22], [4,2,l2], which in a sense give 
rise to two identities each. 

An examination of the number of identities in those ^-blocks of Sn for which 
b is fixed leads to the following conjecture1: 

^ h i s has now been proved by G. de B. Robinson. 
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The number of indécomposables and the number of ordinary irreducible 
representations in a ^-block of Sn characterized by a p-core of a nodes 
are the same as the corresponding numbers in a £-block of Sm with a 
p-core of a' nodes, where n = a -\- bp, m= a'+ bp, i.e., where the same 
number of £-hooks are removable to yield a p-core. However, the cor­
responding blocks of the Z)-matrices will in general be different. 

We conclude this section with two results which arise from the relations 3.4. 
Since these relations hold for all ^-regular elements, we may replace the 
ordinary characters by their modular components $\ and obtain 

E &afik E daK $\(S) = 0. 
a X 

The linear independence of the <£'s then implies that 

3.7 E a<a$kda\ = 0, 
a 

X ranging over the modular characters of the block. Accordingly, if we think 
of the modular splitting of the [a]'s as represented by a D-matrix (mod p) 
with the [a]'s as row labels and the modular characters as column labels, we 
may state the following corollary to 3.7: 

3.8. The coefficients in the identities 3.4 are orthogonal to the columns of the 
D-matrix. 

Again, an indecomposable representation of the above block is a certain 
linear combination of ordinary irreducible representations, or, in terms of 
characters, 

*7\ = E da\ Xa-

Since the character Xa for any element of the type R = Pk . V takes the value 
E dafik X0k (TOi we have 

V\(R) = HdaxX aafik x(ik (V) 
a ^k 

= E Œ,aa$kda\) xpk (V) 
H <>• 

= 0 by 3.7. 

Since this holds for k = 1, 2, . . . , b and all ^-singular elements of Sn are of 
the form Pk . V for some integer &, we have a new proof of the following 
known result: 

3.9. The characters of the indecomposable representations of Sn vanish for all 
psingular elements. 

4. The indecomposable representations of S2p. We proceed with our in­
vestigation into the nature of the indécomposables for />-blocks of defects other 
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than 0 and 1 by applying Nakayama's induction formula 

x 

which operates on an indecomposable of a subgroup of Sn to produce a sum of 
indécomposables of 5 n , to the particular case where the subgroup in question 
is S2p_i and Sn is S2P- This serves to effect a passage from ^-blocks of defects 
0 and 1 to ^-blocks of higher defects, characterized by more than one £-hook 
in their Young diagrams. 

It is necessary to consider only the £-block of 5 2 p characterized by a p-core 
of zero nodes, inasmuch as the theory is now complete for the one £-hook and 
the p-core cases. We shall verify that all the indecomposable representations 
of such a £-block may be obtained, via the inducing process, from the following 
two types of indécomposables of S2P-i: 

(i) the indécomposables of the ^-blocks of S2p-i with p-core [p — r, P - 1 ] 
r = 1,2,...,p - 1; 

(ii) the indecomposable (and modular irreducible) representation [p, P - 1 ] , 

The p — 1 indécomposables of the £-block of S2p~i with p-core [p — r, P - 1 ] 
are: 

(1) [2p - r, I'-*] + \p,p-r + l, P~2] (r ^ 1) 

(la) [2p - 1] + [(p - l)2 , 1] (r - 1) 

(2) [p-s,p-r + 1, 2s, r-«~2] + \ p - s - l , p - r + 1, 
28+1, lr-8~3] (s = 0, 1, 2, . . . , r - 3) 

(3) [p-r + 2,p-r + l, 2'~2] + [(p - r)\ 2"\ 1] 

(4) \p-r,p-r - t, 2 ' ~ \ l1+<] + [p-r, p-r-t-1, 2r~\ l2+<] 
(/ = 0, 1,2, . . . ,p - r - 3) 

(5) [p - r, 2', I*-'"1] + [p - r, I**'"1] (r ^ £ - 1) 

(5a) [3, 2*~2] + [l2*-1] (r =p-l) 

Neglecting all representations of S2p except those belonging to the ^-block 
with zero p-core, we can express the result of inducing on each of the above 
indécomposables of S2P-i by the following notation : 

(1)' [2p-r, F"1] + \p, p-r+1, r~2] Î [2p-r+l, P"1] + [2p-r, P] 
+ [p, p-r+2, l r_2] + IP, P-r+1, lr-1] = [a1] + [b1] + [a] + [d1] 

( la) ' [2^~ l ] + [ (^ - l ) 2 , l ]T[2^] + [ 2 ^ - l , l ] + b , ^ - l , l ] + [ (^- l ) 2 ,2 ] 

(2)' \p-s,p-r+l,2; V-'-^ + lp-s-l, p-r+1, 2°+\ P" ' " 3 ] 
T \ps, p-r+2, 2°, lr~s~'] + [p-s, p-r+1, 2*, P"*"1] 
+ [p-s-1, p-r+2, 2*+1, Y-*-*\ + \p-s-l, p-r + 1, 2°+\ P"*"2] 

(s = 0 ,1 ,2 , ...,r - 3 ) 

(3)' [p-r+2, p-r+1, 2^}+[{p-rY, 2'"1 , 1] Î [{p-r+2)\ 2'"2] 
+\p-r+2, p-r + 1, 2*-\ l] + [p-r + l, p-r, 2*~\ l] + [(p-ry, 2r] 
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(4)' [p-r, p-r-t, 2*~\ V+t] + [p-r, p-r-t-1, 2r~\ P+'] 
Î [p-r+1, p-r-t, 2r'\ l1+t] + [p-r, p-r-t, 2', V] 
+[p-r + l,p-r-t-l,2*-\V+t]+[p-r, P-r-t-1, 2', V+t] 

(t = 0,1,2, .. , p - r - 3) 

(5)' [p-r, 2r, p - ^ - ' J + ^ - r , I**—1] Î [p-r + 1, 2\ l»-r~l] 
+[p-r, 2r+\ p - ' - 2 ] + b - r + l , lv+'-Wp-r, lp+r) 

(5a)' [3, 2 " - 2 ] + [ 1 2 P - 1 ] î [32, 2p-3]+[3, 2"-\ l ]+[2 , pp-2]+[l2?] 

The existence of an orthogonal relation 3.7 between the coefficients in the 
identities and the columns of the £>-matrix suggests, as a first step towards 
building up our indécomposables from their irreducible components in any of 
the foregoing cases, the setting up of such a table as the following: 

(1)': [p] [ p - f + l , r - i ] [ p - r , l ' ] [0] 

[ai] [" . 0 . r - 1~| 
[bi] • • O r 
lei] \ r - 2 1 
[<2i] VJ - 1 . 1 . J 

For convenience in writing, the entries are not the parities (~ l ) r * ,bu t the 
actual leg lengths r* of the £-hooks and 2^-hooks which are removable from 
the row labels to yield the column labels. 

This differs from the table whose columns give us our identities for the p-
block of representations of S2p with £-core [0] in that the row labels of the 
latter table comprise all the representations of the £-block in question, while 
the table shown here contains only those representations of the £-block which 
arise from inducing on a single indecomposable of *S2î,-i. Since 0 and the 
even integers (leg lengths) yield coefficients of + 1 in the identities, and the 
odd integers coefficients of — 1 , it is clear that any linear combination of 
irreducible representations making up an indecomposable must contribute to 
each of these columns a number of odd integers equal to the number of even 
integers, if it contributes at all. The fact that the set of contributors to these 
columns is a sum of indécomposables means that the odd and even integers in 
each column do balance each other, so that the problem is to determine what 
further characterizations are needed to ensure that any subset of these con­
tributors, possessing the same property, is actually an indecomposable. 

Suppose we start by building the indecomposable to which [a J belongs. The 
condition that we have imposed on our building process requires that [cj be 
included in the combination in order that its 1 in column [p — r + 1, l*""1] 
balance the 0 of [aJ. We say that these two £-hooks or, equivalently, the 
two entries which represent them, namely 0 and 1, are linked in column 
[p — r + 1, l r _ 1 ] . Passing on to column [0], we observe that [&i] now must 
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be included in order that its r balance the r — 1 of [ai] ; likewise in column [p] 
we observe that [di\ must be included in order that its r — 1 balance the r — 2 
of [cj. At the same time the entries in [p ~ r, lr] are linked. Since this 
brings into the fold all the representations at our disposal, the result is that 
the combination [a J + [6 J + [cj + d\] is not a sum of indécomposables of 
S2p, but an indecomposable by itself. 

An indecomposable, then, appears to possess the property of having complete 
linkages in the columns of what we shall henceforth call its linkage matrix. 
In the case where only one £-hook can be removed from each of the Young 
diagrams of a ^-block of Sn, such a matrix for an indecomposable of this^-block 
consists of only one column (headed by the p-core of the block) and two rows, 
and the entries are of the form r and r + 1 for r = 0, 1, 2, . . . , p — 2. Hence 
the linkage matrix is a generalization of this latter case, where two representa­
tions of the block can be combined to form an indecomposable if and only if 
their ^-hooks are linked, i.e., have consecutive leg lengths. The generalization 
lies in the presence of the linkage property in more than one column, where 
these additional columns stem from the fact that, when we deal with ^-blocks 
of representations with Young diagrams containing more than one £-hook, 
more than one residual diagram arise after the removal of an initial £-hook; 
also the removal of hooks of length kp (k > 1) needs to be considered. So 
far as satisfying a necessary condition for indecomposability is concerned 
(namely, that the character of an indecomposable representation vanishes for 
all ^-singular elements), it would be sufficient that the number of even leg 
lengths balance the number of odd in each column of the linkage matrix; the 
only justification for our definition that linkage takes place, not haphazardly 
between hooks of odd and even leg lengths, but between hooks of consecutive 
leg lengths, is that, so far as the indécomposables of SÏV are concerned, our 
^-hooks and 2^>-hooks occur only in such pairs. 

Linkage matrices (with leg lengths as entries) similar to that for (1)' set 
out above show that likewise in each of the remaining cases all of the irredu­
cible components must be taken in order to form a combination which is ortho­
gonal to the identities. 

Inducing on the indecomposable representation [p, lp_1] in (ii) yields 

[p + 1, l*-i] + [p, 2, P~2] + \p, IP] = [a] + [6] + [c] 

with linkage matrix; 

[p] [ip] [0] 
[a] [ . 0 p - 1 
[b]\p-2 1 
[c]lp - I . p \ 

so that [a] + [b] + [c] clearly forms by itself an indecomposable of Sip- Ob-
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serve that, whereas each of the preceding indécomposables had four irreducible 
components, this last one is composed of only three. 

Thus a single indecomposable of the ^-block with zero p-core arises in each 
of these cases. There is, however, a certain amount of duplication as r ranges 
over its integral values. For instance, r = 3 gives the same indecomposable 
for case (2), s = 0, as r = 1 for case (4), t = 0; similarly r — 4 yields the same 
indecomposable for case (2), 5 = 1, as r — 2 for case (4) / = 0, and the same 
indecomposable for case (2), 5 = 0, as r = 1 for case (4), / = 1. The number 
of duplications (regarding an indecomposable as a duplication on its second 
appearance) is 0, 0, 1, 2, 3, . . . , p — 3, as r takes the values 1, 2, 3, 4, 5, 
. . . , p — 1 respectively, or \{p — 2){p — 3) in all. Hence the number of 
distinct indécomposables belonging to the designated £-block that arise in 
this way is 

(p - 1)2+ l -h{p- 2){p - 3) = h(P ~ DiP + 2). 

The ordinary representations of the £-block in question include the following: 

[2p], [ 2 ^ - 1 , 1 ] , . . . , [p + 1,1*"1]; 

&],\P,P-hi],\P,p-2, i2],.. . ,LMpJ; 
[{p-l)\ 2], [p-1, p-2y 2, 1], [p-1, £ - 3 , 2, l2], . . . , 

[ £ - l , 2 2 , P" 3 ] , [ p - 1 , l*+i]; 
[{p-2)\ 2% [p-2, p-3, 2\ 1], [p-2, p-4, 2\ P], . . . , 

b - 2 , 2 3 , P" 4 ] , [/>-2, 1*+*]; 

[32, 2*-% [3, 2*~2
f 1], [3, 1**-*]; 

[2p], [2, l2^-2]; 
[i2p]; 

so that their number is £ + £ + ( £ - l ) + ( £ - 2 ) + . . . + 3 + 2 + l 
= P + iP(P + 1) = è£(£ + 3). The number of identities that the characters 
of these representations must satisfy for all ^-regular elements is simply the 
number of diagrams of Sp with zero £-core (i.e., the number of distinct £-hooks) 
together with the diagram of 0 nodes, or p + 1 in all. That these are linearly 
independent follows from the fact that there is no solution in positive integers 
of the inequality u + v ^ 2, u 7± v, since only these values of u and v can give 
rise to relations among the identities. Hence the number of modular irreducible 
representations or, equivalently, the number of indécomposables, is \p(p + 3) 
_ (p + i) = i(£2 _|_ p _ 2) = ! ( £ — !)(£ + 2). A comparison of this num­
ber with the number obtained by the induction process shows that we have 
obtained all the indécomposables. 

The following is the D-matrix for the 5-block of 5io with 5-core [0]. As 
noted before, each column contains exactly four Ts except the seventh, 
which contains three. 
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[10] ~1 0 0 0 0 0 0 0 0 0 0 0 0 0 
[9,1] 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
[8,11 0 1 1 0 0 0 0 0 0 0 0 0 0 0 
[7,13] 0 0 1 1 0 0 0 0 0 0 0 0 0 0 
[6,14] 0 0 0 1 0 0 1 0 0 0 0 0 0 0 

m 0 1 0 0 1 0 0 0 0 0 0 0 0 0 
[5,4,1] 1 1 1 0 1 1 0 0 0 0 0 0 0 0 
[5,3,1*] 0 0 1 1 0 1 0 1 0 0 0 0 0 0 
[5,2,13] 0 0 0 1 0 0 1 1 0 0 1 0 0 0 
[5,1*1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 
[42,2] 1 0 0 0 0 1 0 0 0 1 0 0 0 0 
[4,3,2,1] 0 0 0 0 1 1 0 1 1 1 0 0 0 0 
[4,2M2] 0 0 0 0 0 0 0 1 1 0 1 1 0 0 
[4,16] 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
[32,22] 0 0 0 0 1 0 0 0 1 0 0 0 0 1 
[3.2M] 0 0 0 0 0 0 0 0 1 1 0 1 1 1 
[3,1'] 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
[26] 0 0 0 0 0 0 0 0 0 1 0 0 1 0 
[2,18] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
[I10] J ) 0 0 0 0 0 0 0 0 0 0 0 0 1. 

5. The indecomposable representations of Sn (n > 2p). In the section 
just concluded, the notion of a linkage has proved a useful tool in determining 
the indécomposables of S2p belonging to the £-block with zero p-core, where a 
linkage was defined as taking place only between &£-hooks of consecutive 
leg lengths. Following this lead, we formulated a number of empirical rules 
regarding the use of linkages in constructing the indécomposables of Sn from 
those of Sn-u and these rules produced (without apparent ambiguity) the 
indécomposables of Sn up to w = 13 for p = 2, 3,5. The tables for most of 
these cases are contained in the author's thesis on file at the University of 
Toronto Library. A study of numerous examples led to a certain conjecture 
concerning the definition of an indecomposable and this will be the subject of 
a later paper. 
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